
User’s Guide

PowerBuilder Application Server
Plug-In
1.0

DOCUMENT ID: DC00401-01-0100-01

LAST REVISED: November 2006

Copyright © 2006-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, lrLite, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareLink, ShareSpool, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL
Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 07/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

User’s Guide iii

About This Book .. v

CHAPTER 1 Installing and Configuring the PowerBuilder Server Plug-In...... 1
Overview .. 1

JDK versions ... 2
Installing the server plug-in .. 3
Configuring the server plug-in .. 5

JBoss... 6
WebLogic .. 6
WebSphere ... 7

Running the server plug-in ... 8

CHAPTER 2 Creating Embedded Installations .. 9
Configuring and running the silent installer 9

Configuration and run files .. 10
Silent uninstaller files... 15
Troubleshooting and cleanup of the silent installer 16

CHAPTER 3 Developing PowerBuilder Components...................................... 19
Developing PowerBuilder components .. 19

Application server component wizards.................................... 19
Specifying component properties... 20

Data access... 29
Before deploying components.. 31

JBoss... 31
WebLogic .. 31
WebSphere ... 32

Deploying components to an application server............................. 32
Generated code... 35
Naming conventions.. 35
Repository files.. 35
Clusters ... 36

Testing and debugging components .. 36

Contents

iv PowerBuilder Application Server Plug-In

Live editing .. 36
Remote debugging .. 38
Writing messages to the server log ... 39

Troubleshooting ... 39

CHAPTER 4 Developing PowerBuilder Clients .. 41
Developing a PowerBuilder client .. 41

Creating a Connection object .. 42
Generating application server proxy objects 43
Accessing components ... 43

Proxy servers ... 44
Installing proxy servers.. 44
Configuring proxy servers ... 44
Client Edition proxy servers... 47
Starting and stopping proxy servers.. 47
Enabling PowerBuilder clients to communicate with EJBs...... 49
Troubleshooting a proxy server... 52

Index ... 53

User’s Guide v

About This Book

Subject This book contains information about installing and configuring the
PowerBuilder® Application Server Plug-In, and developing
PowerBuilder components and clients.

Audience This book is for anyone responsible for installing or configuring the server
plug-in, or for creating and deploying components and clients.

How to use this book Chapter 1, “Installing and Configuring the PowerBuilder Server Plug-
In,” contains instructions for installing the PowerBuilder Application
Server Plug-In and configuring it for your application server.

Chapter 2, “Creating Embedded Installations,” explains how to install the
PowerBuilder Application Server Plug-In silently.

Chapter 3, “Developing PowerBuilder Components,” describes how to
develop and deploy PowerBuilder components.

Chapter 4, “Developing PowerBuilder Clients,” contains information
about developing PowerBuilder clients and using a proxy server.

Related documents PowerBuilder documentation set The PowerBuilder documentation
set is available on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp.

Conventions The formatting conventions used in this manual are:

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command or property names used in descriptive text

• Method or class names used in descriptive text

variables or files Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

vi PowerBuilder Application Server Plug-In

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com/nav/base.do.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

configure Monospace font indicates:

• Information that you enter in the user interface, on the command line, or as program
text

• Example program fragments

• Example output fragments

Formatting example To indicate

 About This Book

User’s Guide vii

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

viii PowerBuilder Application Server Plug-In

Accessibility
features

PowerBuilder has been tested for compliance with U.S. government Section
508 Accessibility requirements. The online help for this product is also
provided in Eclipse help formats, which you can navigate using a screen reader.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

User’s Guide 1

C H A P T E R 1 Installing and Configuring the
PowerBuilder Server Plug-In

This chapter describes how to install and configure the PowerBuilder
application server plug-in, which runs in the following application
servers:

• JBoss 4.0.4

• WebLogic 9.2

• WebSphere 6.1

The server plug-in is supported for PowerBuilder version 10.5.1 and later.
If PBVM patches that address issues with your application server become
available, apply them to the PBVM.

This version of the PowerBuilder Application Server Plug-In is available
on Windows platforms only.

Throughout this book, the PowerBuilder Application Server Plug-In is
also called the server plug-in.

Overview
The server plug-in provides:

Topic Page
Overview 1

Installing the server plug-in 3

Configuring the server plug-in 5

Running the server plug-in 8

Overview

2 PowerBuilder Application Server Plug-In

• A deployment tool that wraps PowerBuilder NVOs as either Enterprise
JavaBean (EJB) session beans or J2EE 1.4 Web services for deployment
into a J2EE-compliant application server; for session beans, J2EE 1.3 and
1.4 are supported; for Web services, J2EE 1.4 or later is required

Note NVO is a generic term used to describe “custom class user objects,”
which inherit directly from the PowerBuilder system type
NonVisualObject.

• A server runtime library that integrates a PowerBuilder Virtual Machine
(PBVM) with an EJB container and an application server’s transaction and
connection managers

• A remote debugging component that permits debugging from the
PowerBuilder IDE

• A proxy server, which allows PowerBuilder clients to call deployed
PowerBuilder NVOs, without the need for a client-side JVM

• Sample deployment and configuration templates for getting started
quickly and efficiently

Using the server plug-in, you can develop PowerBuilder components on the
Windows platform. You can run the components on any platform where your
application server supports a PBVM.

The deployment tool runs on your application server and emulates the
PowerBuilder NVO deployment API.

JDK versions
The server plug-in installs version 1.4.2 and version 1.5.0 of the Java
Development Kit (JDK) from Sun Microsystems. You can also configure the
installation to use an existing version, as long as it is the required patch level.

Table 1-1: JDK versions and required patch levels

To verify the version and patch level of an existing installation, change to the
bin directory of the JDK installation and run:

java -version

JDK version Patch level

1.4.2 13

1.5.0 09

CHAPTER 1 Installing and Configuring the PowerBuilder Server Plug-In

User’s Guide 3

Installing the server plug-in
Install the server plug-in on the application server host, which need not be the
same machine where the PowerBuilder IDE is running.:

1 Exit any programs that are running. If you do not, the Sybase installer may
not be able to copy some files to the appropriate directories.

2 If you have downloaded PowerBuilder Application Server Plug-In,
expand the installation software to a temporary location. Otherwise, insert
the software CD into your CD drive.

3 Select Start | Run, and enter:

 path\setup.exe

where path is the location of the installation software

The installer starts, and the installation window displays.

4 Click Next in the installation window.

Note Use Back and Next to step backward and forward through the
installation process to modify specifications as necessary.

Select Cancel to halt the installation process.

5 Select your country from the dropdown list to display the license
agreement. You must read and accept the terms of the license agreement
for your country before you can install any Sybase products. Click Next.

6 Enter the full path to which the PowerBuilder Application Server Plug-In
is to be installed.

If you want to modify the default locations of either the Sybase or Shared
directory locations, select Show Advanced Locations and modify.

7 Select the type of installation, then click Next:

• Typical – installs the most common installation options.

• Full – installs everything.

• Custom – allows you to choose specific installation options.

Select the features to install by placing a check mark next to the
feature.

Installing the server plug-in

4 PowerBuilder Application Server Plug-In

8 To use a JDK that is already installed, select Use the Following JDK, and
enter the path to the JDK installation or use the Browse button to locate it.
The JDK version must be one of those listed in Table 1-1 on page 2.

If the installer detects an existing JDK of the appropriate version, it is
displayed as the default location.

If you do not select to use an existing JDK, the JDK is installed from the
CD. If you choose a Typical install, JDK version 1.4.2 is installed. If you
choose a Full install, both JDK versions 1.4.2 and 1.5 are installed. If you
choose a Custom install, you can select which JDK versions to install.

9 The installer displays a summary of the features to be installed and the
installation directory. Review these entries, then click Next to continue or
Back to modify your entries.

The installer begins copying files.

10 If the PowerBuilder Application Server Plug-In will obtain the licences it
requires from a license server, select yes, and enter the host name and port
number of the server.

11 To configure e-mail alerts, select yes, and enter:

• SMTP Server Host Name

• SMTP Server Port Number

• Sender E-mail

• Recipient E-mails

• Message Severity for E-mail Alerts

12 The installer prompts you for an administrative password. Enter and
confirm a password, following the guidelines described by the installer.

13 A summary screen informs you when the installation is complete.

Select either of these options if you want to perform the corresponding
tasks at this time. You can also perform these tasks at a later time:

• View Readme – displays the readme file.

CHAPTER 1 Installing and Configuring the PowerBuilder Server Plug-In

User’s Guide 5

• Launch the Sybase Product Download Center (SPDC) Web Site – log
in to the SPDC Web site to obtain a license for the PowerBuilder
Application Server Plug-In. You need to know the product edition and
license type for your particular installation. If you do not have this
information, ask your system administrator. See the FLEXnet
Licensing End User Guide, and the Sybase Software Asset
Management User's Guide for more information.

14 Click Finish to exit the installer.

You can install multiple copies of the server plug-in on one machine, as long
as each copy is in a separate installation directory.

Note PB_SERVER_HOME represents the server plug-in installation
directory.

Configuring the server plug-in
To configure your system to run the server plug-in:

1 Open the %PB_SERVER_HOME%\bin\set-java-home.bat file, and verify
that the Java environment variable—either DJC_JAVA_HOME_14 or
DJC_JAVA_HOME_15—refers to the home directory of the JDK you
plan to use.

Verify that all the DJC_* variables are set to the correct JDK version; for
example, for WebSphere:

set DJC_JAVA_HOME_15=%WAS_HOME%\java
set DJC_RT_DEFAULT=15
set DJC_JDK_DEFAULT=15
set DJC_JAVAC_TARGET=1.5

2 Set the administrative password for the server plug-in by running:

“%PB_SERVER_HOME%”\bin\set-admin-password.bat

The system prompts you to enter a password, which must contain at least
six characters, and one of these must be a digit.

3 Configure the server plug-in for your application server, as described in
the following sections.

Configuring the server plug-in

6 PowerBuilder Application Server Plug-In

When you configure the server plug-in, properties are added to
%PB_SERVER_HOME%\Repository. If you configure the server plug-in
for one application server, then want to configure the server plug-in for
another application server, first remove the
%PB_SERVER_HOME%\Repository directory. Otherwise, the repository
will contain properties for both application servers, which causes
problems.

Note If a directory name contains a space, you must enclose the “-D” options
in double quotes for both configuring the server plug-in and starting the
application server; for example, to run JBoss:

bin\run.bat “-Dpb.server.home=%PB_SERVER_HOME%”

JBoss
To configure the server plug-in installed in a JBoss application server:

1 Shut down the JBoss application server.

2 Change to the %PB_SERVER_HOME%\config directory.

3 Verify the settings in the configuration scripts:

• pb-server-jboss.xml – general server plug-in, listener, security, and
data source properties.

• ejb-proxy-jboss.xml – proxy server properties.

If required, edit then save the files.

4 Change to the %PB_SERVER_HOME%\bin directory.

5 Run the following command, where jboss-home-dir represents the JBoss
installation directory:

configure pb-server-jboss –Djboss.home=jboss-home-dir

WebLogic

Note Sybase recommends that you use a Sun JVM with WebLogic; stability
issues have been reported with the BEA jRockit JVM.

CHAPTER 1 Installing and Configuring the PowerBuilder Server Plug-In

User’s Guide 7

To configure the server plug-in installed in a WebLogic application server:

1 Shut down the application server if it is running.

2 Change to the %PB_SERVER_HOME%\config directory.

3 Verify the settings in the configuration scripts:

• pb-server-weblogic.xml – general server plug-in, listener, security,
and data source properties.

• ejb-proxy-weblogic.xml – proxy server properties.

If required, edit, then save the files.

4 Change to the %PB_SERVER_HOME%\bin directory.

5 Run the following commands, where wls-home-dir represents the
WebLogic installation directory:

configure pb-server-weblogic –Dwls.home=wls-home-dir

WebSphere
To configure the server plug-in installed in a WebSphere application server:

1 Shut down the WebSphere application server.

2 Change to the %PB_SERVER_HOME%\config directory.

3 Verify the settings in the configuration scripts:

• pb-server-websphere.xml – general server plug-in, listener, security,
and data source properties.

• ejb-proxy-websphere.xml – proxy server properties.

If required, edit then save the files.

4 Change to the %PB_SERVER_HOME%\bin directory.

5 Run the following commands, where was-home-dir represents the
WebSphere application server installation directory:

configure pb-server-websphere –Dwas.home=was-home-dir

Note If you edit any of the configuration scripts after you have configured the
server plug-in, re-run the configure command.

Running the server plug-in

8 PowerBuilder Application Server Plug-In

Running the server plug-in
After you install and configure the server plug-in, start your application server:

1 WebLogic only: verify that %PB_SERVER_HOME%\lib\pb-server-15.jar
is in either the CLASSPATH or a location that is shared by all the deployed
applications in the JVM.

2 Start your application server.

The configuration task creates the script start-<appServer>.bat, which
you use to start the application server with the plug-in. Consult your
application server administrator to determine the best start-up options, and
add them to the script if necessary.

The configuration task also creates run-<appServer>.bat, which defines
the environment variables that are required to run the server plug-in.
start-<appServer>.bat calls run-<appServer>.bat.

❖ Starting a JBoss application server

• Run:

%PB_SERVER_HOME%\bin\start-jboss.bat

❖ Starting a WebLogic application server

• Run:

%PB_SERVER_HOME%\bin\start-weblogic.bat

The first time you start the server:

a Use the WebLogic console to define a start-up class called
com.sybase.pb.server.PbServerStart.

b Shut down, then restart the server.

❖ Starting a WebSphere application server

• Run:

%PB_SERVER_HOME%\bin\start-websphere.bat

The first time you start the server:

a Use the WebSphere administration console to enable the Start-up
Beans service.

b Deploy the PowerBuilder start-up service:
%PB_SERVER_HOME%\deploy\websphere\pb-startup.jar.

c Shut down, then restart the server.

User’s Guide 9

C H A P T E R 2 Creating Embedded Installations

If you are packaging the PowerBuilder Application Server Plug-In with
your own software, you may want to use a script to create a silent
installation, so your end users can install the PowerBuilder Application
Server Plug-In without interacting with the server plug-in installer.

Configuring and running the silent installer
The silent installer is a Java program. The installation CD contains a
sample batch file to run the install with the correct JRE and CLASSPATH
settings. An additional text file specifies the installation type and options.
These instructions assume that you will include the PowerBuilder
Application Server Plug-In install files and customized installer scripts
with the install media for your own software.

❖ Configuring the silent installer

1 Create a directory for your install image.

2 Copy the following files from the PowerBuilder Application Server
Plug-In installation CD to the install image directory:

• PBASP100.jar.

• readme.htm. This file contains a link to the online
documentation.

• The JRE_1_5 subdirectory and its contents. Sybase recommends
that you use this JRE to run the install. Other JRE versions may
not work as well.

• The Modules\LicensePanel directory is required, as are the files
in the Modules folder.

Topic Page
Configuring and running the silent installer 9

Configuring and running the silent installer

10 PowerBuilder Application Server Plug-In

3 Create configuration and run files as described in “Configuration and run
files” on page 10. Copy any required additional files from the
PowerBuilder Application Server Plug-In CD to your install image, as
described in that section.

4 To support the silent uninstallation process, create the files described in
“Silent uninstaller files” on page 15.

❖ Testing and running the silent installer

1 Before running a silent installation:

a Exit any programs that are running. If you do not, the installer may
not be able to copy some files to the appropriate directories.

b Verify that there is enough space in your product directories; 450MB
are required.

c If your home directory contains an InstallShield vpd.properties file,
make a backup copy. If you run the installer with a different user ID,
check for this file in the home directory of that user ID and back it up
if it exists.

2 Test the silent installer using the run script that you created at the
command line or in your own product’s installation script. Running a silent
installation takes 5 – 10 minutes, depending on the speed of your
computer.

3 After each trial run, check for errors, and clean up your machine as
described in “Troubleshooting and cleanup of the silent installer” on page
16.

Configuration and run files
In a silent installation, users cannot input information or choices. You must
supply all required information in a configuration file or on the command line
that runs the silent installer. The PowerBuilder Application Server Plug-In
installation script contains a sample configuration file, SilentInstall.txt. The
script SilentInstall.bat runs the install with this configuration. Start with copies
of these files and modify them to suit your installation.

Place your configuration file and run script in the root directory of your install
image. Edit the run script to refer to the file name you are using for your
configuration file.

Edit the configuration file to customize the install as described below.

CHAPTER 2 Creating Embedded Installations

User’s Guide 11

Installation location

To specify the installation location, set -W setPBInstallLocWindow.value.

The default value is C:\Program Files\Sybase\PBAppServer1.

License agreement

For the silent installation to run, you must change the value of
-V AgreeToSybaseLicense from false to true, indicating that you have read
and agreed to the software license agreement. You can view license text by
running the interactive install or on the Sybase Web site at
http://www.sybase.com/softwarelicenses.

JDK installation parameters

You can configure the PowerBuilder Application Server Plug-In to use the
JDKs listed in Table 1-1 on page 2. For each JDK version, you can either
install the JDK or use an existing installation.

The parameters in Table 2-1 allow you to configure the PowerBuilder
Application Server Plug-In installation to use JDK installations that are already
in place.

Table 2-1: Silent installer existing JDK parameters

To install a JDK from your install image, enable the feature parameter for that
JDK and include the required files in your image, as listed in Table 2-2.

Parameter Specifies

-V EASJDKUseExisting_JDK14_CheckBox Whether to use an existing JDK 1.4 installation. To use an existing
installation, set this parameter to true and specify the location as the
value of the next parameter. Also, set the value of JDK14.active to
false in the feature selection section.

-V EAS_JDK14_Install_Location If you are using an existing JDK 1.4 installation, the location where
it is installed. Verify the version and patch level of the specified JDK
as described in “JDK versions” on page 2.

-V EASJDKUseExisting_JDK15_CheckBox Whether to use an existing JDK 1.5 installation. To use an existing
installation, set this parameter to true and specify the location as the
value of the next parameter. Also, set the value of JDK15.active to
false in the feature selection section.

-V EAS_JDK15_Install_Location If you are using an existing JDK 1.5 installation, the location where
it is installed. Verify the version and patch level of the specified JDK
as described in “JDK versions” on page 2.

Configuring and running the silent installer

12 PowerBuilder Application Server Plug-In

Table 2-2: Parameters to install JDKs

Administrative password

To enable starting the application server, set the administrative password:

“set JVM_ARG=%JVM_ARG% -Deas.password=adminPassword”

Sybase Software Asset Management License input parameters

If licenses are to be obtained from the License Server, you must define the
license server parameters. Set the parameters in Table 2-3 to define the license
server.

Table 2-3: License server parameters

Sybase Software Asset Management e-mail alerts

To configure e-mail alerts, set:

-V Variable_RBEmailAlertsYes=true
-V Variable_RBEmailAlertsNo=false

Uncomment and set the -V Variable_CBSySAMEmailSeverity variable to one of
these values:

WARNING
INFORMATIONAL
ERROR

Additional SySAM variables that you can set include:

• -V Variable_TFSySAMEmailHost

• -V Variable_TFSySAMEmailPort

• -V Variable_TFSySAMEmailSender

Parameter Specifies Comments

-P JDKs.active Whether to install any JDKs
from the install image

If not set to true, the next two parameters are
ignored

-P JDK14.active Whether to install JDK 1.4

-P JDK15.active Whether to install JDK 1.5

Parameter Set the value to

-V Variable_LicServerYes Set to true to use a license server

-V Variable_LicServerHostname The license server host

-V Varaiable_LicServerPortNum The license server port

CHAPTER 2 Creating Embedded Installations

User’s Guide 13

• -V Variable_TFSySAMEmailRecipient

• -V Variable_CBSySAMEmailSeverity

See the Sybase Software Asset Management User’s Guide for additional
information.

Feature selection parameters

These parameters specify which optional features to install. Table 2-4 lists the
parameters that select which features are installed. Each parameter requires a
value. Specify true to install the feature or false to not install the feature.

Some features have a parent-child relationship (shown by indentation in the
sample installation script). To install child features, you must enable both the
parent feature and the child feature.

Some features require additional files to be added to your installation image, as
listed in Table 2-4. If you enable these features, add the required files to your
image by copying them from the PowerBuilder Application Server Plug-In
installation CD. Paths within your install image must match those listed in
Table 2-4.

Table 2-4: Feature selection parameters

Parameter Feature Additional requirements

-P Server.active Parent feature for several
core server and client
install features.

-P CorePluginFiles.active Files required to run the
server plug-in.

Requires parent feature -P Server.active.

Requires file:
\Modules\PBASP-100_ThirdPartyLegal.pdf

-P RuntimeLibraries.active Parent feature for client
runtime libraries. No
runtime libraries are
installed unless this
parameter is set to true.

Requires parent feature -P Server.active.

-P Standard.active Standard is compatible with
JDK 1.4 and JDK 1.5.

Requires parent feature
-P RuntimeLibraries.active.

-P Optimized.active Optimized is compatible
with JDK 1.5 only.

Requires parent feature
-P RuntimeLibraries.active.

-P Extras.active Parent feature for extra
features.

Requires parent feature -P Server.active.

-P jConnect605.active Installs the jConnect DB
Scripts.

Requires parent feature -P Extras.active.

Configuring and running the silent installer

14 PowerBuilder Application Server Plug-In

Specifying parameters on the command line

You may want to configure some install settings dynamically at install time.
For example, you may want to set the PowerBuilder Application Server
Plug-In installation directory to a location selected by the end user of your own
installer. To do this, you can remove settings from the configuration file and
specify them as command line arguments to the silent installer.

For example, if your silent installation script is SilentInstall.bat, this command
installs the PowerBuilder Application Server Plug-In to
C:\Program Files\Sybase\PBserverPlugin:

SilentInstall.bat -W
"setInstallLocWindow.value=C:\Program Files\Sybase\PBserverPlugin"

-P JDKs.active Parent feature for JDK
installation.

-P JDK14.active Installs JDK 1.4. Requires parent feature -P JDKs.active.

Requires file:

\Modules\eas-jdk-14.jar

-P JDK15.active Installs JDK 1.5. Requires parent feature -P JDKs.active.

Requires file:

\Modules\eas-jdk-15.jar

-P SybaseSYSAM.active Parent feature for Sybase
Software Asset
Management (SySAM)

-P NetworkLicenseServer.active Installs the SySAM
network license server.

Requires parent feature -P SybaseSYSAM.active

Requires file:

\Modules\sysam.jar

-P LicenseUtils.active Installs the SySAM license
utilities.

Requires parent feature -P SybaseSYSAM.active

Requires file:

\Modules\sysam-utils.jar

-P ToolsSupport.active Parent option for the tools
support option. If this
parameter is set to false, the
tools support options are
ignored.

-P PowerBuilderv1051.active Installs the PowerBuilder
version 10.5.1 virtual
machine.

Requires parent feature -P ToolsSupport.active.

Requires file:

\Modules\pbvm1051.jar

Parameter Feature Additional requirements

CHAPTER 2 Creating Embedded Installations

User’s Guide 15

You must also remove the equivalent settings from the silent install
configuration file.

Silent uninstaller files
You can configure the silent installer to support silent uninstallation. This
creates a script that your users can run to silently remove the installation from
their system. The silent uninstaller requires:

• The PBASPuninstall.jar and uninstall.dat files that are created when users
run the installer. The JAR file contains the Java uninstallation program,
and the .dat file contains data about installed features. These files are
installed in the _uninstall subdirectory of your PowerBuilder Application
Server Plug-In installation.

• A JRE installation of the same version as found on the PowerBuilder
Application Server Plug-In install CD.

• The files SilentUninstall.txt and SilentUninstall.bat. If these are present in
the root directory of your silent installer, they are copied to the _uninstall
directory when users run the install. You must prepare these files as
described below before you release your silent installer to your users.

SilentUninstall.txt

A sample of this file is on the PowerBuilder Application Server Plug-In
installation CD. However, SilentUninstall.txt does not run unless you edit the
copy placed in your install image. This file configures the features to uninstall,
using syntax similar to the options described in “Feature selection parameters”
on page 13. To remove everything, set all the feature options to true. For a
partial uninstallation, change the feature options to false for those features that
should not be removed.

Note Some feature options in SilentUninstall.txt have a parent-child
relationship, indicated by indentation in the sample file. To uninstall a parent
feature, the parent feature and all child features must be set to true in
SilentUninstall.txt.

Configuring and running the silent installer

16 PowerBuilder Application Server Plug-In

SilentUninstall.bat

Users will run this file to remove the installation from their systems. A sample
of this file is on the PowerBuilder Application Server Plug-In installation CD.
Place a copy in your install image, and verify the following, keeping in mind
that the file will be run in the PowerBuilder Application Server Plug-In
_uninstall directory:

• The CLASSPATH includes PBASPuninstall.jar (located in the same
directory).

• The java command line specifies the path to a java executable of the same
version as supplied on the PowerBuilder Application Server Plug-In
software CD. You can run the uninstall with the JRE that is installed in the
_jvm subdirectory of the installation, for example:

.._jvm\bin\java -classpath %CLASSPATH% run %* -options
SilentUninstall.txt

The uninstaller does not remove all files. Files created after the installer was
run are not deleted. This includes log files, property and resource files updated
at runtime, and any application files that you have created in the PowerBuilder
Application Server Plug-In directory. After uninstalling, you must remove
these files manually.

Troubleshooting and cleanup of the silent installer
After a trial run of your silent install, check for errors, verify the installation,
and clean up the machine before trying another run.

Check for installer errors on the console and in the installer log file in the
specified install location. If you see ZipException errors, make sure you have
included all required files in the install image.

When testing your installation results, start a server in the installation and
verify that the expected features are licensed by checking the licensed features
listed in the server log file. If not, verify that you have configured the license
parameters described in “Sybase Software Asset Management License input
parameters” on page 12.

Test any other features that you are installing, such as the Web Console, Web
Services, and so forth.

CHAPTER 2 Creating Embedded Installations

User’s Guide 17

❖ Cleaning up the machine

Before re-running a silent installation, uninstall the previous installation using
the silent uninstaller—see “Silent uninstaller files” on page 15.

If your installer was not configured correctly, or you abort the installation
before it completes, the uninstall process may fail. In that case, clean the
previous installation from your machine as follows:

1 Delete the PowerBuilder Application Server Plug-In installation directory
and subdirectories.

2 If you made a backup copy of the vpd.properties file, restore it. Otherwise,
delete the vpd.properties file that was generated during the installation.

3 Make sure the DJC_HOME environment variable is not set in the shell
where you re-run the install.

Configuring and running the silent installer

18 PowerBuilder Application Server Plug-In

User’s Guide 19

C H A P T E R 3 Developing PowerBuilder
Components

This chapter describes how to build and deploy PowerBuilder components
using the PowerBuilder Integrated Development Environment (IDE)
version 10.5.1.

Developing PowerBuilder components
PowerBuilder provides built-in system objects you can use in
client/server, multitier, and Web applications. You can also build both
visual and nonvisual user-defined objects. One type of nonvisual
user-defined object, the custom class user object, inherits directly from the
PowerBuilder NonVisualObject system class. Objects of this type, often
called simply NVOs, can be deployed to J2EE-compliant application
servers as EJB components and EJB 2.1 Web services. The server plug-in
must be installed and configured on the application server.

Application server component wizards
Develop and deploy PowerBuilder NVOs as application server
components using application server component wizards and projects in
the PowerBuilder development environment.

Topic Page
Developing PowerBuilder components 19

Specifying component properties 20

Before deploying components 31

Deploying components to an application server 32

Testing and debugging components 36

Troubleshooting 39

Specifying component properties

20 PowerBuilder Application Server Plug-In

There are three application server component wizards, which are available
from the Target, PB Object, and Project pages in the New dialog box.

Target From the Target page, the Application Server Component wizard creates a new
PowerBuilder application server target, a PowerBuilder library (PBL), and a
PowerBuilder custom class user object (NVO). It also creates a project from
which you deploy the component to the server.

In the wizard, specify the properties of the application server component,
including the profile of the server to which you want to deploy, a package
name, transaction properties, and whether the components should be deployed
as a Web service. For details, see “Specifying component properties” on page
20.

When you complete the wizard, open the NVO in the User Object painter, add
methods to your component’s interface, and write scripts for events. The object
has two pairs of events: Activate and Deactivate, and Constructor and
Destructor. You typically use the Activate and Deactivate events to control
instance pooling. For more information, see “Controlling the state of a pooled
instance” on page 24.

PB Object To add additional objects to the same target, and optionally, to the same PBL,
package, and project, right-click the application server target in the System
Tree, select New, and complete the Application Server Component wizard
from the PB Object page of the New dialog.

Project From the Project page, the Application Server Component wizard creates a
new project to which you can add any NVOs in the current target’s library list.
You might want to use this wizard to deploy a set of components to more than
one application server.

Specifying component properties
Most of the properties listed in this section can be specified in any of the
wizards or in the Project painter. Table 3-1 lists the properties in the order they
appear in the Application Server Component wizard that you launch from the
Target page.

Note You must define an application server profile before you use a wizard.
For more information, see “Creating an application server profile” on page 22.

CHAPTER 3 Developing PowerBuilder Components

User’s Guide 21

Table 3-1: Component properties

Property Description

Application name,
library, and target

By default, the name you use for the application is used for the library and target and as
part of the object and component names.

Library search path The path the target searches for NVOs. Click Browse to add additional libraries to the
path.

PowerBuilder object
name and description

The name of the NVO in the PowerBuilder library.

Application server
component name

The name of the EJB component generated from the NVO. Do not use hyphens in the
name of the component or any of its methods.

Application server
profile

A predefined profile that specifies the host, port, user name, and password for an
application server.

Package name The name used to generate the default Java package name and JNDI name for the
component.

Java package name The name of the Java package. For an NVO package called “xyz,” the default Java
package name is xyz.ejb. Use this property if you want to specify a different name, such
as com.mycompany.bank. You must specify a name to deploy the component as an EJB
2.1 Web service.

Package comment An optional comment that is associated with the package.

Role name list One or more security role names, entered one on each line. In the Target and PB Object
wizards, the role names apply to the component generated by the wizard. In the Project
wizard, the role names apply to all the components selected in the wizard. You can
associate role names with individual components on the Components page of the
Properties dialog in the Project painter.

If required, use your application server to map these logical role names to physical
roles.

Instance pooling options Whether an instance of a component is always pooled after each client use, or controlled
by the CanBePooled event. See “Controlling the state of a pooled instance” on page 24.

Component timeout How long a component can remain idle before being deactivated. The default, 0,
specifies that the component is never automatically deactivated.

Transaction support
options

Whether the component supports transactions. See “Transaction support options” on
page 22.

Stateless session bean Whether the component is in stateless mode.

Expose user events as
methods

Whether to include user-defined events in the component interface.

Expose public instance
variables

Whether to generate get and set methods for public instance variables.

Use of unsupported
datatypes generates an
error

Whether to generate an error at build time if the component uses unsupported datatypes
such as system datatypes and the Any datatype. If you choose not to generate errors, any
functions or variables that use unsupported datatypes are not available in the component
interface.

Specifying component properties

22 PowerBuilder Application Server Plug-In

❖ Creating an application server profile

An application server profile is a named set of parameters stored in your system
registry that defines a connection to a particular application server host. Before
you use a wizard to create a component, create a profile for the server where
the component will be deployed.

1 Select Tools | Application Server Profile.

The Application Server Profiles dialog displays, listing your configured
application server profiles.

2 Select Add.

The Edit Application Server Profile dialog displays.

3 Enter the profile name, the TCP host name for the server, the IIOP port
number on the server, the login name admin@system, and the password
you specified for the server plug-in.

4 (Optional) Select Test to verify the connection.

5 Click OK to save your changes and close the dialog box.

The Application Server Profiles dialog displays, with the new profile
name listed. The application server profile values are saved in the Registry
in HKEY_CURRENT_USER/Software/Sybase/PowerBuilder/10.5/
JaguarServerProfiles.

Transaction support
options

Each component has a transaction attribute that indicates how the component
participates in transactions. Table 3-2 lists the options.

Perform full rebuild Whether to perform a full rebuild before deploying to the server to ensure that all
objects are synchronized.

Collapse class hierarchy Whether the methods of ancestor objects are included in the component interface.

Debugging options Whether the component can be debugged remotely and rebuilt from the User Object
painter. These options are for use in test environments only. See “Testing and
debugging components” on page 36.

Expose component as
EJB 2.1 Web service

Whether to expose the component on the server as an EJB 2.1 Web service. The
application server must support J2EE 1.4, and you must specify a Java package name.
EJB 2.1 Web services do not support the ResultSet return type. You must use array or
structure types instead. Method names cannot be overloaded.

Project name and
description

The name and optional description of the project used to generate and deploy the
component.

Dynamic library options Whether to consolidate all the libraries in the library list into a single PowerBuilder
dynamic library (PBD) file. To ensure that DataWindow™ objects are included in the
PBD, select Include Unreferenced Objects.

Property Description

CHAPTER 3 Developing PowerBuilder Components

User’s Guide 23

Table 3-2: Transaction attribute options

The PowerBuilder TransactionServer class supports the following methods:

• CreateInstance – (for NVO intercomponent calls) use the two-argument
form, and specify the full JNDI name of the target component:

TransactionServer ts
getContextService(“TransactionServer”, ts)

// generate and use proxies
pbtest_MyComp comp
ts.createInstance(comp, “pbtest/MyComp”)

Transaction type Description

Not Supported The component never executes as part of a transaction. If
the component is activated by another component that is
executing within a transaction, the new instance’s work is
performed outside the existing transaction.

Supports Transaction The component can execute in the context of a transaction,
but a transaction is not required to execute the component’s
methods. If the component is instantiated directly by a
client, the server does not begin a transaction. If
component A is instantiated by component B and
component B is executing within a transaction, component
A executes in the same transaction.

Requires Transaction The component always executes in a transaction. When the
component is instantiated directly by a client, a new
transaction begins. If component A is activated by
component B and B is executing within a transaction, A
executes within the same transaction; if B is not executing
in a transaction, A executes in a new transaction.

Requires New
Transaction

Whenever the component is instantiated, a new transaction
begins. If component A is activated by component B, and
B is executing within a transaction, then A begins a new
transaction that is unaffected by the outcome of B’s
transaction; if B is not executing in a transaction, A
executes in a new transaction.

Mandatory Methods can be invoked only by a client that has an
outstanding transaction. Calling this component when
there is no outstanding transaction generates a runtime
error.

Never Methods cannot be invoked when there is an outstanding
transaction. Calling this component when there is an
outstanding transaction generates a runtime error.

Specifying component properties

24 PowerBuilder Application Server Plug-In

// call methods on comp

If the target NVO is not in the same EJB-JAR as the calling NVO, your
application server’s class loader may not work correctly; you may get a
ClassCastException. Consult your application server vendor for help with
class-loader issues across EJB-JAR boundaries.

• DisableCommit – prevents the current transaction from being committed,
because the component’s work has not been completed. The instance
remains active after the current method returns.

• EnableCommit – do not deactivate the component after the current method
invocation; allow the current transaction to be committed if the component
instance is deactivated.

• IsTransactionAborted – determines whether the current transaction has
been aborted.

• SetAbort – specifies that the component cannot complete its work for the
current transaction and that the transaction should be rolled back. The
component instance is deactivated when the method returns.

• SetComplete – indicates that the component has completed its work in the
current transaction and that, as far as it is concerned, the transaction can be
committed and the component instance can be deactivated.

Note If you are using neither a proxy server nor the
TransactionServer.CreateInstance method for NVO intercomponent calls,
remove “-djcProxy” from the ejbSourceOptions property value in
pb-server-<targetServerName>.xml, and re-run configure. This prevents
generating unused code.

Controlling the state of
a pooled instance

When you create an application server component that supports instance
pooling, that component might need to reset its state after each client has
finished using the pooled instance.

To allow you to control the state of a component, the application server triggers
one or more of the events shown in Table 3-3 during the life cycle of the
component.

CHAPTER 3 Developing PowerBuilder Components

User’s Guide 25

Table 3-3: Component-state events

When the component’s pooling option is set to Supported, you might need to
script the Activate and Deactivate events to reset the state of the pooled
component. This is necessary if the component maintains state in an instance,
shared, or global variable.

When the component’s pooling option is set to Not Supported, you can
optionally script the CanBePooled event to specify whether a particular
component instance should be pooled. If you script the CanBePooled event,
you may also need to script the Activate and Deactivate events to reset the state
of the pooled component. If you do not script the CanBePooled event, the
component instance is not pooled.

The Application Server Component wizards that you launch from the Target
and PB Object pages automatically add the Activate and Deactivate events to the
NVOs they generate. If you want to script the CanBePooled event, add this
event yourself. If you do this, map the event to the correct PBM code.

Constructor and Destructor are fired once When instance pooling is in
effect, a component’s Constructor and Destructor events are each fired only
once. The Constructor and Destructor events are not fired each time a new client
uses the component instance. Therefore, to reset the state of a component
instance that is pooled, add logic to the Activate and Deactivate events, instead
of to the Constructor and Destructor events.

PowerBuilder to EJB
datatype mapping

Table 3-4 lists the PowerBuilder to EJB datatype mappings, which are valid for
datatypes passed by value, in and return parameter modes.

The PowerBuilder Application Server Plug-In does not support IDL inout and
out parameter modes, because JAX-RPC holder classes are not portable in EJB
remote interfaces.

Event PBM code

Activate PBM_COMPONENT_ACTIVATE

CanBePooled PBM_COMPONENT_CANBEPOOLED

Deactivate PBM_COMPONENT_DEACTIVATE

Specifying component properties

26 PowerBuilder Application Server Plug-In

Table 3-4: PowerBuilder to EJB datatype mappings

PowerBuilder type EJB parameter type

Blob byte[]

Boolean boolean

Byte

See “Byte datatype” on page 27.

byte

Char char – see “Character datatypes” on page 28.

Date java.util.Calendar

DateTime java.util.Calendar

Decimal java.math.BigDecimal

Double double

Integer short

For Java client components that
communicate with PowerBuilder server
components, the numerical range that this
datatype supports is -32768 – 32767.

Long int

For Java client components that
communicate with PowerBuilder server
components, the numerical range that this
datatype supports is -2147483648 –
2147483647.

LongLong long

Real float

String String

Time java.util.Calendar

MyModule_MyArray[] or MyArray[]
(return type only)

MyModule.ejb.MyElement[]

MyModule_MyException or
MyException

MyModule.ejb.MyException

MyModule_MyComp or MyComp MyModule.ejb.MyComp

MyModule_MyStruct or MyStruct MyModule.ejb.MyStruct

MyModule_MyUnion or MyUnion MyModule.ejb.MyUnion

MyModule_MyElement[] or
MyElement[]

MyModule.ejb.MyElement[]

MyModule_MySequence or
MySequence
(return type only)

MyModule.ejb.MyElement[]

MyModule_MyElement[n] or
MyElement[n]

MyModule.ejb.MyElement[]

CHAPTER 3 Developing PowerBuilder Components

User’s Guide 27

Sybase suggests that you use the PowerBuilder DataStore system object with
the ResultSet return type, especially for NVOs running in an application server.
For improved performance, use NVO instance variables, and create the
DataStore and assign the DataObject in your NVO constructor.

Byte datatype PowerBuilder version 10.5 introduced a Byte datatype. To use the
PowerBuilder Char datatype for backward compatibility, run the following
command (once) before deployment:

configure idl-octet-to-pb-char

To switch back to using the PowerBuilder Byte datatype, run the following
command (once) before deployment:

configure idl-octet-to-pb-byte

Camel case option You can modify the default mapping of CORBA IDL identifiers to EJB
identifiers to use Java naming conventions. This is called the “camel case”
deployment option. When using this option, IDL operation and parameter
names, such abc_xyz, map to abcXyz. IDL interfaces, sequence, structure, and
union type names, such as abc_xyz, map to AbcXyz. These mappings are not
applied to exception and structure field names. By default, the camel case
option is disabled.

ResultSet java.sql.ResultSet

ResultSets java.sql.ResultSet[]

XDT_BooleanValue java.lang.Boolean

See “XDT datatypes” on page 29.

XDT_CharValue java.lang.Character

See “Character datatypes” on page 28.

XDT_ByteValue java.lang.Byte

XDT_ShortValue java.lang.Short

XDT_IntValue java.lang.Int

XDT_LongValue java.lang.Long

XDT_FloatValue java.lang.Float

XDT_DoubleValue java.lang.Double

XDT_DecimalValue java.math.BigDecimal

XDT_IntegerValue java.math.BigInteger

XDT_DateValue java.util.Calendar

XDT_TimeValue java.util.Calendar

XDT_DateTimeValue java.util.Calendar

PowerBuilder type EJB parameter type

Specifying component properties

28 PowerBuilder Application Server Plug-In

To enable the camel case option:

configure camel-case-on

To disable the camel case option:

configure camel-case-off

If you plan to expose components as Web services, enable the camel case
option; otherwise, you may have problems with the JAX-RPC identifier
mapping rules. See Chapter 20, “Appendix: Mapping of XML Names” in the
JAX-RPC 1.1 specification, which you can download from Java Technology
and XML Downloads at
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcdocs11.

Character datatypes Only characters in the ISO 8859-1 character set can be used for in and return
parameter modes. To propagate other characters, use the String datatype.

The char and java.lang.Character datatypes have no defined XML schema
mappings for EJB Web services, so you cannot use these as a parameter types
or structure field types if you intend to expose a component as a Web service.
Use the String datatype instead.

DataStore system
object

Sybase recommends that you use the PowerBuilder DataStore system object
with the ResultSet return type, especially for NVOs running in an application
server. For improved performance, use NVO instance variables, and create the
DataStore and assign the DataObject in your NVO constructor.

ResultSet datatype If you intend to expose a component as a Web service, do not use the ResultSet
datatype, because java.sql.ResultSet is not portable in EJB Web service
endpoint interfaces. You can use arrays (IDL sequences) of structures instead,
Java arrays or PowerBuilder variable-sized arrays. The EJB return type
java.sql.ResultSet maps to a complex XML schema element that contains result
set data and the schema for the result set. The content of the nested XML
element is mapped according to the SQL/XML ANSI standard; for example:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="jdbc.wst.sybase.com">

<import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
<complexType name="DataReturn">
<sequence>

<element name="XML" nillable="true" type="xsd:string" />
<element name="updateCount" type="xsd:int" />
<element name="DTD" nillable="true" type="xsd:string" />
<element name="schema" nillable="true" type="xsd:string" />

</sequence>
</complexType>

</schema>

CHAPTER 3 Developing PowerBuilder Components

User’s Guide 29

Using IDL parameter modes inout and out with TabularResults::ResultSet is not
supported for components that are exposed as Web services. You may find that
using arrays (IDL sequences) of structures instead of ResultSets simplifies the
coding of Web service client applications, and this technique is portable across
all application servers. When writing PowerBuilder NVO methods, which do
not permit the use of arrays as method return types, define a row structure to
represent a result row, and a table structure containing an array of row
structures to represent a ResultSet.

XDT datatypes To obtain the PowerBuilder XDT_* datatypes to use as PowerBuilder structure
field types or component parameter types, use the EAServer Proxy wizard or
the Application Server Proxy wizard in the PowerBuilder IDE to generate
proxies for the XDT package. Each of the XDT_* datatypes contains a value
field and an isNull field. You must set isNull to true if you want to indicate null
values.

Data access
From PowerBuilder NVOs, you can access data using either JDBC data
sources or Sybase native data sources.

❖ Accessing JDBC data sources in NVOs

1 To set up a JDBC data source in an NVO, use this PowerScript™ code:

sqlca.dbms = “JDBC”
sqlca.dbparm = “CacheName=’DefaultDS’”

connect; // check error code
... // use embedded SQL or DataStore

disconnect; // check error code

2 Using your application server facilities, define a JDBC data source and
assign a JNDI name to it.

3 Edit %PB_SERVER_HOME%\config\pb-server-<serverName>.xml, and
map the value of the PowerBuilder CacheName to an application server
data source JNDI name.

4 Re-run the configure command—see “Configuring the server plug-in” on
page 5.

Specifying component properties

30 PowerBuilder Application Server Plug-In

Native data sources The server plug-in supports five native data source types: Sybase, Oracle,
Oracle Unicode, ODBC, and ODBC Unicode. These data source types create
their connections using C/C++ code. The connections are managed using Java
objects, which provide a JDBC API.

❖ Accessing Sybase native data sources in NVOs

1 The following PowerScript code sets the DBMS to Sybase native, and the
cache name to the Sybase_JCM cache:

sqlca.dbms = “SYJ”
sqlca.dbparm = “CacheName=’Sybase_JCM’”
...

To use a cache other than “Sybase_JCM,” set CacheName to the value of
a data source that is defined in
%PB_SERVER_HOME%\config\pb-server-<serverName>.xml.

2 In your application server interface, set the driver class and database URL
data source properties, replacing dbName, userName, and password with
the appropriate values.

3 Sybase_JCM data source type. The server plug-in uses different names for
Open Client™ libraries. Copy the libraries from the Open Client dll
directory to %PB_SERVER_HOME%\lib, changing the library names as
appropriate—the Open Client library names begin with “lib” and the
PowerBuilder library names begin with “libj.”

Data source
type Driver class Database connection URL

Sybase_JCM com.sybase.jaguar.jcm.sybase.SybaseDriver jdbc:sybase:jcm:sybase:databaseName=
db-name;user=userName;
password=password

Oracle_JCM com.sybase.jaguar.jcm.oracle.OracleDriver jdbc:sybase:jcm:oracle:databaseName=
db-name;user=userName;
password=password

Oracle_Unicode com.sybase.jaguar.jcm.oracle.OracleuDriver jdbc:sybase:jcm:oracle:databaseName=
db-name;user=userName;
password=password

Odbc_JCM com.sybase.jaguar.jcm.odbc.OdbcDriver jdbc:sybase:jcm:odbc:databaseName=
db-name;user=userName;
password=password

Odbc_Unicode com.sybase.jaguar.jcm.odbc.OdbcuDriver jdbc:sybase:jcm:odbc:databaseName=
db-name;user=userName;
password=password

CHAPTER 3 Developing PowerBuilder Components

User’s Guide 31

Before deploying components
This section describes tasks to perform before you deploy PowerBuilder
components to your application server.

JBoss
Before you deploy PowerBuilder components to a JBoss application server:

1 Verify that automatic deployment is enabled—see the JBoss online
documentation at
http://wiki.jboss.org/wiki/Wiki.jsp?page=ConfiguringTheDeploymentScannerI
nConfjbossSystem.xml.

2 Set the ScanEnabled attribute to true.

Sybase tests have shown that automatic redeployment does not always work
correctly—you may need to restart JBoss to pick up your changes.

WebLogic
Before you deploy PowerBuilder components to a WebLogic application
server:

1 Customize the WebLogic Ant deployment options in
%PB_SERVER_HOME%\config\wls-ejb-deploy.xml. See your WebLogic
documentation for details.

2 In %PB_SERVER_HOME%\bin\wls-ejb-deploy.bat, verify the settings
for:

• username

• password

• port

Open Client libraries PowerBuilder libraries

libcs.dll libjcs.dll

libct.dll libjct.dll

Deploying components to an application server

32 PowerBuilder Application Server Plug-In

• servername

WebSphere
Before you deploy PowerBuilder components to a WebSphere application
server, customize the WebSphere Ant deployment options in the following
files, located in %PB_SERVER_HOME%\config:

• ws-ejb-deploy.xml

• ws-install-app.xml

See your WebSphere documentation for details.

Sybase tests have found that deploying an EJB-JAR to WebSphere can be
slower than deploying to JBoss or WebLogic. Check your application-server or
server plug-in log file to verify the status of deployment in progress.

Deploying components to an application server
The deployment tool provided with the server plug-in wraps PowerBuilder
NVOs as standard EJB session beans and generates target-specific deployment
descriptors to bind JNDI names and JDBC data source resource references
automatically.

❖ Deploying PowerBuilder components

1 Open the PowerBuilder Application Server Component project in the
Project painter.

2 Select Edit | Properties from the menu, or click Properties on the
PainterBar.

3 On the Server Host page in the Properties dialog, verify that the properties
you specified in the Application Server Profiles dialog are correct. See
“Creating an application server profile” on page 22.

Note You can override the host name and port number that the server uses
for its deployment listener by changing the iiopListeners property in
%PB_SERVER_HOME%\config\pb-server-<targetServerName>.xml. If
you change this property, re-run the configure command.

CHAPTER 3 Developing PowerBuilder Components

User’s Guide 33

4 In the Standard Options group on the Components page, verify that you
have selected Stateless Session Bean if you want the component to be
stateless.

5 If your scripts reference DataWindow objects dynamically, on the
Libraries page, select the Include Unreferenced Objects in Consolidated
PBD to make the DataWindow definitions available to the component.

6 On the Advanced page, optionally specify the names and values of custom
EJB properties.

7 Click OK to apply your changes.

8 Select Design | Deploy Project from the menu or click the Deploy button
on the PainterBar.

❖ Validating deployment

To validate that your NVOs deployed successfully, you can run the test
program pb-server-test. pb-server-test must communicate directly with the
application server, not with a proxy server.

1 Verify that the application server with the server plug-in is running.

2 Use the PowerBuilder IDE to define a component called “MyComp” (case
sensitive) in a package called “pbtest.”

3 Add a few business methods to the component; perhaps methods that
access the database.

4 To generate basic performance metrics, create a method called “perftest”;
for example, as in the following pseudocode:

integer perftest(integer a, integer b)
{

return a+b;
}

5 In pb-server-<targetServerName>.xml (for example,
pb-server-weblogic.xml), verify that these properties are set correctly:

<property name="test.username" value="weblogic”/>
<property name="test.password" value="weblogic"/>

Note If you change the XML configuration file, re-run configure—see
“Configuring the server plug-in” on page 5.

6 For WebSphere only, use the IBM JVM, instead of the Sun JVM:

a Set JAVA_HOME to %WAS_HOME%\java.

Deploying components to an application server

34 PowerBuilder Application Server Plug-In

b Add %JAVA_HOME%\bin to the path.

7 Deploy the package to your application server.

8 Change to %PB_SERVER_HOME%\bin, and run:

pb-server-test

The test program tries to call all the methods in your component, using
fake parameter values; for example, 1, 2, “S1,” “S2.” If you created a
“perftest” method, the test program calls it repeatedly. If the program runs
successfully, you see something similar to the following:

Looking up home interface using JNDI name: pbtest/MyComp
Obtaining EJB meta data...
Resolving home interface class...
Home interface type is: ejb.components.pbtest.MyCompHome
Narrowing home interface...
Looking up home create() method...
Calling home create method...
Remote interface type is: ejb.components.pbtest.MyComp
Business method signatures:
perftest(integer, integer)
mymethod(java.lang.String, java.lang.String)
Calling business methods:
perftest(1, 2) -> 3
... checking application server remote call performance
#remote calls/sec = 1189
#remote calls/sec = 1641
#remote calls/sec = 1650
#remote calls/sec = 1739
#remote calls/sec = 1749
#remote calls/sec = 1748
#remote calls/sec = 1748
#remote calls/sec = 1749
#remote calls/sec = 1768
#remote calls/sec = 1768
mymethod(S1, S2) -> S1S2
Test passed.

Note If you see an error such as LoadLibrary Failed: pbjag100.dll,
verify that the PowerBuilder directory that contains pbvmXXX.dll is in the
system PATH.

Source code for the test program is located in
%DJC_HOME%\src\java\com\sybase\pb\server\PbServerTest.java.

CHAPTER 3 Developing PowerBuilder Components

User’s Guide 35

Generated code
The base directory for generated files is
%PB_SERVER_HOME%\genfiles\java, which includes these subdirectories:

• applications

• classes

• ejbjars

• src

• stubs

Typically, you can delete generated files after deployment, but this causes
redeployment to be slower. If you are using a proxy server, do not delete the
generated files; the proxy server uses some of them at runtime.

Naming conventions
If you enable the camel case option (see “Camel case option” on page 27),
PowerScript identifiers that contain underscores are mapped to Java names
using lowerCamelCase for NVO methods; for example, “my_simple_method”
maps to “mySimpleMethod.”

A similar mapping is used for structure names, but the first letter is capitalized;
for example, “my_structure” maps to “MyStructure.”

Component names are not changed from the names you enter in the Project
painter. Sybase recommends that you use the Java class naming conventions;
for example, “MyComp.”

An NVO implementation class can use any name.

Repository files
The base directory for repository files is %PB_SERVER_HOME%\Repository,
which includes these subdirectories:

• IDL – interface definitions.

• Component – component properties and PowerBuilder dynamic libraries
(PBDs).

• Instance – server and data source properties.

Testing and debugging components

36 PowerBuilder Application Server Plug-In

• Package – package properties.

The repository files are used during deployment and at runtime.

Clusters
If your application server is running in a cluster, and each server in the cluster
has its own copy of the server plug-in directory, you must either:

• Deploy all the components to all the servers, or

• Copy the contents of the Repository directory to all the servers in the
cluster, and use your application server to distribute the deployed
EJB-JAR files across the cluster.

Testing and debugging components
This section describes three techniques you can use to test your components:

• Live editing

• Remote debugging

• Writing messages to the server log

Live editing
To test or debug a component, you can use a feature of PowerBuilder called
live editing, which allows you to build the project automatically from the User
Object painter. When live editing is enabled, PowerBuilder builds the project
for an application server component each time you save the corresponding user
object. The generator does not deploy PBDs to the application server, but
instead tells the application server how to access the PBLs that contain the
required object definitions.

Configuring a server
for live editing

To configure an application server for live editing:

1 Open
%PB_SERVER_HOME%\config\pb-server-<targetServerName>.xml,
and set the ejbDeployIfUnchanged property to false.

CHAPTER 3 Developing PowerBuilder Components

User’s Guide 37

2 Re-run configure.

Enabling live editing
for an NVO

To enable live editing for an NVO:

1 Create a project that includes the user object for which you want to
generate an application server component.

You can use an existing PBL that allows for deployment to an application
server, or alternately, you can create a new project and use it only for
testing.

2 Optionally modify the live editing library list for the project.

When you are testing a component with a server that resides on a remote
machine, you must tell the server where to find the PBLs. To do this,
modify the library list on the Advanced page of the Properties dialog in the
Project painter.

The library list you specify must contain fully qualified paths that use
Universal Naming Convention (UNC) names. UNC names take the form:
\\servername\sharename\path\file.

By default, the live editing library list is based on the application library
list. You need not modify the live editing library list if your server is local.

3 In the User Object painter, on the General page in the Properties view,
specify the project that will generate the component.

The project name you specify must meet these requirements:

• It must be an application server component project.

• It must include the user object that you currently have open in the
User Object painter.

• The library list for the project must match the current application
library list.

Generating the
component in the
painter

To generate an application server component from the User Object painter,
select File | Save. PowerBuilder builds the component just as it would at
deployment time, except that it does not generate PBDs for the component.

If the project build results in errors, PowerBuilder displays the error messages
in the Output window.

If instance pooling is enabled for the user object, the generator disables pooling
for the current build. Pooling is not supported with live editing because
PowerBuilder cannot save the user object if the PBL that contains the user
object is locked by the application server.

Testing and debugging components

38 PowerBuilder Application Server Plug-In

Remote debugging
When you are building a PowerBuilder NVO as an application server
component, you can use the PowerBuilder debugger to debug the application
server component. You can debug the component whether you use the live
editing feature in the User Object painter or deploy the component to the server
from the Project painter.

Getting ready to
debug a component

Before you begin debugging a remote component, check that your
configuration meets these requirements:

• You are using the same version of the application and PBLs as were used
to develop the deployed component. To debug several deployed
components in the same session, they must all have been built using the
same versions of the PBLs, the same application name, and the same
library list.

• The Supports Remote Debugging check box on the Components page in
the Project painter is selected. You can also set the debugging option by
checking the Supports Remote Debugging check box in the Project
wizard.

• You have a client application that exercises the methods and properties in
the deployed components. This can be a compiled executable built with
any compatible development tool, or a PowerBuilder application running
in another PowerBuilder session.

Starting the debugger Open the target that contains the deployed components. Click Start Remote
Debugging in the PainterBar, and complete the wizard. You can select only
components that were generated in PowerBuilder with remote debugging
support turned on. Remote debugging support is a security setting that does not
add any debugging information to the component. To prevent users from
stepping into and examining your code, turn remote debugging support on
when you are testing a component, then, turn it off when you deploy the
component to a user’s site.

Set breakpoints as you would when debugging a local application, then start the
client application that invokes the remote components (if it is not already
running).

About states The Instances view shows the state of each component instance:

• Idle The component is idle or in the instance pool.

• Running The component is currently executing code.

• Stopped The component is stopped at a breakpoint waiting for a
debugger action.

CHAPTER 3 Developing PowerBuilder Components

User’s Guide 39

When a component instance is destroyed, it is removed from the Instances
view.

Multiple instances Multiple component instances can be stopped at the same time, but actions you
take in the debugger act only on the first instance that hits a breakpoint. This
instance is indicated by a yellow arrow in the Instances view. The current
instance changes to the next instance in the queue when the method completes
or when you click Continue.

You can also change context from one instance to another by double-clicking
the new instance in the Instances view. You might want to do this if you step
over a call to another component instance and the Instances view shows that
the called instance stopped.

Writing messages to the server log
To record errors generated by PowerBuilder objects running in an application
server to %PB_SERVER_HOME%\logs\pb-server.log, create an instance of
the ErrorLogging service context object and invoke its log method. For example:

ErrorLogging errlog
getContextService("ErrorLogging", errlog)
errlog.log("Write this string to log")

You can use the ErrorLogging service to provide detailed information about the
context of a system or runtime error on the server. This information is useful to
system administrators and developers in resolving problems.

While you are developing components, you can use the ErrorLogging service
to trace the execution of your component. For example, you can write a
message to the log when you enter and exit functions. The message can identify
the name of the component, the name of the function, and whether it is entering
or exiting the function.

Troubleshooting
To troubleshoot runtime problems, check:

• The PowerBuilder application server plug-in log
%PB_SERVER_HOME%\logs\pb-server.log

• The application server log files

Troubleshooting

40 PowerBuilder Application Server Plug-In

• The application server console window, if available

User’s Guide 41

C H A P T E R 4 Developing PowerBuilder Clients

This chapter describes how to build PowerBuilder clients and how to use
a proxy server to allow PowerBuilder clients to connect to NVOs running
in an EJB server.

Developing a PowerBuilder client
A PowerBuilder application can act as a client to an application server
component. To access a method associated with a component on the
server, the PowerBuilder client must connect to the server, instantiate the
component, and invoke the component method.

❖ Building and deploying an application server client

1 Use the Connection Object wizard to create a standard class user
object that inherits from the Connection object. You can use this
object in a script to establish a connection.

If you use the Template Application wizard to create the client
application, you can create the Connection object in that wizard.

2 Use the Application Server Proxy wizard from the Project page of the
New dialog to create a project for building proxy objects that you can
use to communicate with a proxy server running on the application
server. Then generate the proxy objects.

3 Create the windows, menus, and scripts required to implement the
user interface.

4 Write the code required to create the application server component
instance and call one or more component methods from the client.

5 Test and debug the client.

Topic Page
Developing a PowerBuilder client 41

Proxy servers 44

Developing a PowerBuilder client

42 PowerBuilder Application Server Plug-In

6 Deploy the application.

Creating a Connection object
When you select Application Server as the connection type in the Connection
Object wizard, PowerBuilder creates a standard class user object that inherits
from the Connection object. You supply the connection-object properties in the
wizard and specify whether connection information will be in the registry, an
INI file, or a script. The Connection Object wizard gets information about the
server to which you want to connect from the application server profiles. See
“Creating an application server profile” on page 22.

The Constructor event of the new Connection object calls the function
of_getconnectioninfo, which gets the stored connection information from the
source you specified.

Once you have completed the Connection Object wizard, execute these
PowerScript statements:

1 Use the Create statement to instantiate the connection object.

2 Invoke the ConnectToServer function to establish a connection to the
server.

3 Check for errors.

You need not set properties for the connection object, but you can modify them
in the of_getconnectioninfo function. You can also set options for the connection
object in its Constructor event.

Example The following script instantiates the myconnect instance of the
n_myclient_connect object that is created by the wizard, invokes the
ConnectToServer function to establish a connection to the server, and checks
for errors:

long ll_rc
myconnect = create n_myclient_connect
ll_rc = myconnect.ConnectToServer()
IF ll_rc <> 0 THEN

MessageBox("Connection failed", ll_rc)
END IF

Establishing multiple
connections

You can establish multiple connections in a single client application. To
connect a client to two different servers, run the Connection Object wizard
again to create a new user object with different connection properties.

CHAPTER 4 Developing PowerBuilder Clients

User’s Guide 43

Generating application server proxy objects
To access an application server component, communicate through an
application server proxy object in the client application.

Use the Application Server Proxy wizard on the Project page of the New dialog
to create projects for building application server proxy objects. It allows you to
connect to an application server and select the components you want to be able
to access from the client. Once you have created the project, use the Project
painter to modify your project settings and build the proxy library.

When you generate a proxy for an application server component that was not
created in PowerBuilder, the names of any methods that use a PowerBuilder
reserved word are changed. The proxy generator automatically adds an
underscore (“_”) prefix to these methods. For example, if the component has a
method named destroy, the method name in the proxy will be _destroy.

Many application server components throw exceptions that you can handle in
your client application. To use the proxy you are generating with a client
application that does not handle exceptions, or to not declare the exceptions in
the client you are building, exclude exceptions from the generated proxy, either
in the wizard or in the Project painter.

Accessing components
For clients—JavaServer Pages (JSPs), servlets, or other EJBs—running in the
same application server process, you can use either EJB references or direct
JNDI lookups to access components.

When you deploy PowerBuilder components, if the package name is
“MyPackage” and the component name is “MyComp”:

• The generated EJB home interface is MyPackage.ejb.MyCompHome.

• The generated EJB remote interface is MyPackage.ejb.MyComp.

• The JNDI name is “MyPackage/MyComp.”

The PowerBuilder EJBConnection class allows you to call EJBs running in an
application server—see the EJBConnection class description in the
PowerBuilder documentation at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.pb_10.5.app
tech/html/apptech/CCJBGAEBA.htm.

Proxy servers

44 PowerBuilder Application Server Plug-In

You can find configuration information; for example, the initial context
factory, provider URL, and required class path settings, in
%PB_SERVER_HOME%\config\pb-server-<targetServerName>.xml.

Proxy servers
The PowerBuilder application server proxy enables PowerBuilder clients to
communicate with EJB session beans, using a Connection object. The EJB
session beans must be running in one of the application servers defined in
“Installing and Configuring the PowerBuilder Server Plug-In” on page 1.

The PowerBuilder Application Server Plug-In includes two editions of the
proxy server:

• Client – runs as a separate process on the same machine as your
PowerBuilder client application.

• Server – runs as a separate process on the same machine as your
application server.

Installing proxy servers
The Server Edition of the proxy server is installed when you install the
PowerBuilder Application Server Plug-In.

❖ Installing a Client Edition proxy server

• To install the Client Edition of the proxy server, run:

%PB_SERVER_HOME%\bin\configure ejb-proxy-client

A standalone client proxy server is installed in
%PB_SERVER_HOME%\..\EJBProxy.

Configuring proxy servers
To configure a proxy server, the target application server must be installed on
the same machine as the proxy server. For both the Client and Server Editions,
verify the Java environment variables, then run the configure command for your
application server. The Client Edition may require additional configuration:

CHAPTER 4 Developing PowerBuilder Clients

User’s Guide 45

1 Open set-java-home.bat, and verify that the Java environment variable—
either DJC_JAVA_HOME_14 or DJC_JAVA_HOME_15—refers to the
home directory of the JDK you plan to use. The location of
set-java-home.bat depends on the proxy server edition:

• Client Edition – %PB_SERVER_HOME%\..\EBJProxy\bin

• Server Edition – %PB_SERVER_HOME%\bin

Use a JDK version that your application-server vendor recommends for
creating standalone EJB client applications.

To use the proxy server with IBM WebSphere, use an IBM JDK.

2 Run the configure command, specifying the application server installation
directory. You can also specify the options defined in Table 4-1.

Table 4-1: Configuration options

For each supported application server, the configure command calls an Ant
configuration script, which you can customize. The Ant scripts are located
in %PB_SERVER_HOME%\config:

• ejb-proxy-jboss.xml

• ejb-proxy-weblogic.xml

• ejb-proxy-websphere.xml

Property name Default value Syntax example

proxy.name ejb-proxy -Dproxy.name=my-proxy

proxy.host host name -Dproxy.host=my-host

Note Can be either a host name
or an IP address.
Ignored in the Client Edition,
which always listens on the local
loopback address 127.0.0.1.

proxy.port 2000 -Dproxy.port=1000

jboss.host host name -Djboss.host=my-host

jboss.port 1099 -Djboss.port=2099

wls.host host name -Dwls.host=my-host

wls.port 7001 -Dwls.port=7501

was.host host name -Dwas.host=my-host

was.port 2809 -Dwas.port=3809

Proxy servers

46 PowerBuilder Application Server Plug-In

3 Client Edition only. If developers will be connecting to the client proxy
server using the PowerBuilder IDE:

a Set the administrative password. Change to the bin subdirectory of the
client proxy server installation, and run:

 set-admin-password.bat

The system prompts you to enter a password, which must contain at
least six characters, and one of those characters must be a digit.

b Ping the client proxy port (by default, 2000).

If only client applications will be connecting to the client proxy server,
these steps are not required.

❖ Configuring a proxy server on JBoss

• Change to the %PB_SERVER_HOME%\bin directory, and run:

configure.bat ejb-proxy-jboss “-Djboss.home=jboss-home-dir”
[“-D<property-name>=<property-value>”]

where:

• jboss-home-dir is the JBoss installation directory

• property-name is one of the optional properties listed in Table 4-1

• property-value is the property value

For example, to set the name of the proxy server to “myProxy”:

configure.bat ejb-proxy-jboss “-Djboss.home=jboss-home-dir”
“-Dproxy-name=myProxy” “-Dproxy.port=1000”

Note If the application server installation directory path contains spaces,
enclose the -D options in double quotes; otherwise, quotes are not required.

❖ Configuring a proxy server on WebLogic

• Change to the %PB_SERVER_HOME%\bin directory, and run:

configure.bat ejb-proxy-weblogic “-Dwls.home=wls-home-dir”
[“-D<property-name>=<property-value>”]

where wls-home-dir is the WebLogic installation directory, and
property-name and property-value are optional property name/value pairs.

❖ Configuring a proxy server on WebSphere

• Change to the %PB_SERVER_HOME%\bin directory, and run:

CHAPTER 4 Developing PowerBuilder Clients

User’s Guide 47

configure.bat ejb-proxy-websphere “-Dwas.home=was-home-dir”
[“-D<property-name>=<property-value>”]

where was-home-dir is the WebSphere installation directory, and
property-name and property-value are optional property name/value pairs.

Client Edition proxy servers
After you configure a Client Edition proxy server:

1 Copy the client proxy server installation directory
%PB_SERVER_HOME%\..\EJBProxy (including its subdirectories) to a
client machine. The client machine does not need an application server
installation.

You can also copy the client proxy server installation to a server machine
that is not running the PowerBuilder Application Server Plug-In.

2 On each machine where the client proxy server is installed:

a Install JDK version 1.4 or 1.5.

Note WebSphere requires an IBM JDK.

b Edit EJBProxy\bin\set-java-home.bat, and verify that all the DJC_*
variables are set to the correct JDK version.

3 Optionally, you can delete the application server installation from the
machine on which you configured the Client Edition proxy server.

Starting and stopping proxy servers
The Server Edition of the proxy server starts and stops automatically when you
start or stop the application server. To prevent the proxy server from starting
automatically, specify the following option when you configure the
PowerBuilder Application Server Plug-In:

“-Dproxy.name=none”

See “Configuring the server plug-in” on page 5.

The .bat files that start and stop a proxy server are located in the bin
subdirectory of the proxy server installation.

Proxy servers

48 PowerBuilder Application Server Plug-In

❖ Starting a proxy server in the current window

• For a proxy server that uses the default name, run:

run-server.bat ejb-proxy

Or, if you configured the proxy server using a nondefault value for the
proxy.name property, run:

run-server.bat proxy-name

where proxy-name is the name of the proxy server.

The run-server command prints the location of the server log file. Check
the server log for debugging information. The default log is ejb-proxy.log,
located in the logs subdirectory of the proxy server installation.

❖ Starting a proxy server in a new window

• For a proxy server that uses the default name, run:

start-server.bat ejb-proxy

Or, if you configured the proxy server using a nondefault value for the
proxy.name property, run:

start-server.bat proxy-name

❖ Starting a proxy server in the background

• For a proxy server that uses the default name, run:

start-server.bat -bg ejb-proxy

Or, if you configured the proxy server using a nondefault value for the
proxy.name property, run:

start-server.bat -bg proxy-name

❖ Starting a proxy server from a PowerBuilder client

• In a PowerBuilder client, you can start a proxy server using the
PowerScript Run function. For example, add the following code to an
application’s Open event:

Run(“C:\ejb-proxy\bin\start-server -bg ejb-proxy”,
Minimized!)

Sybase recommends that you start the proxy server in the background to
impede stopping the proxy server while the client application is running.

❖ Stopping a proxy server that is running in a command window

• In the window where the proxy server is running, enter Ctrl+C.

CHAPTER 4 Developing PowerBuilder Clients

User’s Guide 49

❖ Stopping a proxy server that is running in the background

1 Open a command window.

2 If you did not specify a name when you started the proxy server, enter:

stop-server.bat -local ejb-proxy

If you did specify a name when you started the proxy server, enter:

stop-server.bat -local proxy-name

❖ Stopping a proxy server from a PowerBuilder client

• In a PowerBuilder client, you can stop a proxy server using the
PowerScript Run function. For example, add the following code to an
application’s Close event:

Run(“C:\ejb-proxy\bin\stop-server -local”,
Minimized!)

Enabling PowerBuilder clients to communicate with EJBs
To enable PowerBuilder clients to communicate with EJBs using a proxy
server:

1 Generate a PowerScript proxy class for each EJB session bean that the
client application calls. Session beans can use only the datatypes defined
in Table 4-2 on page 51.

2 Code your PowerBuilder client application to communicate with the proxy
server.

❖ Generating PowerScript proxy classes for EJB session beans

For each EJB session bean, generate proxy classes:

1 Deploy the EJB module to the proxy server.

Note If you are using the Server Edition of the proxy server and your
client application calls only PowerBuilder NVOs (wrapped as EJBs), you
can skip this step. When you deploy an NVO, this step is performed
automatically.

To deploy an EJB module, where name-prefix is a JNDI name prefix that
the application server uses to look up the remote home interfaces in your
EJB module. deploy.bat is located in the bin subdirectory of your proxy
server installation:

Proxy servers

50 PowerBuilder Application Server Plug-In

deploy.bat bank.jar -nc:name-prefix

For example, if an EJB called Teller has a JNDI lookup name of
“com.acme.bank/Teller,” the name prefix must be “com.acme.bank”. If
you do not specify the -nc:name-prefix option, an empty name prefix is
used.

2 Use the Application Server Proxy wizard to generate PowerScript proxy
classes for the EJB module—see “Generating application server proxy
objects” on page 43.

Note A proxy class that is generated using the EJB Client Proxy wizard
cannot access the EJB. To rectify, delete the proxy project and the PBL,
then generate the proxy class using the Application Server Proxy wizard.

❖ Coding PowerBuilder clients to communicate with proxy servers

1 In the client application, add the code to establish a connection to the
proxy server; for example:

Connection conn
conn = create Connection
conn.driver = “jaguar”
conn.userID = “myUserName”
conn.password = myPassword
conn.location = “iiop://my-host:2000”;

int status
status = conn.connectToServer()
if status <> 0 then
// report error
end if

The proxy server passes the values of the connection userID and password
properties to your application server. See your application server’s
documentation for instructions on configuring user name/password
authentication.

Note If you are using the Client Edition of the proxy server, Sybase
recommends that you use a retry loop for establishing a connection, in case
the proxy server’s start-up procedure has not completed when you try to
connect.

2 Obtain a reference to call the session bean; for example:

bank_Teller teller

CHAPTER 4 Developing PowerBuilder Clients

User’s Guide 51

status = con.createInstance(teller, “bank/Teller”)
if status <> 0 then
// report error
end if

The name prefix used in the createInstance call is the EJB module name
(without the .jar suffix) followed by a “/”; in this example, “bank/”. If the
EJB module name contains periods or hyphens, they are replaced with
underscores. The name prefix used in the createInstance call need not
match the JNDI name-prefix that you specified when you deployed the
module.

3 Call business methods on the session bean; for example:

teller.deposit(“MyAccount”, 1000.0)

4 For stateful session beans only: remove the session bean. For example:

teller.remove()

Table 4-2: Java datatypes allowed in proxy classes

Java datatype PowerBuilder datatype

Array PowerScript Array

Note PowerBuilder methods cannot return an Array
datatype. PowerBuilder maps a Java Array return type to a
PowerBuilder Structure that contains an array.

boolean Boolean

byte Byte

byte[] Blob

char Char

Note You can use only characters in the ISO 8859-1
character set. If other characters must be propagated via
the proxy server, you must use the String datatype.

double Double

float Real

int Long

java.lang.Boolean XDT_BooleanValue

java.lang.Byte XDT_ByteValue

java.lang.Character XDT_CharValue

See the note for the char datatype.

java.lang.Double XDT_DoubleValue

Proxy servers

52 PowerBuilder Application Server Plug-In

Collection types Collection types, such as java.util.list, are not supported in this release. Use Java
arrays to ensure full interoperability.

Troubleshooting a proxy server
To find runtime problems with a proxy server, check
%PB_SERVER_HOME%\logs\pb-server-proxy.log.

java.lang.Float XDT_FloatValue

java.lang.Integer XDT_IntValue

java.lang.Long XDT_LongValue

java.lang.Short XDT_ShortValue

java.math.BigDecimal XDT_DecimalValue

java.math.BigInteger XDT_IntegerValue

java.sql.Date XDT_DateValue

java.sql.ResultSet ResultSet

java.sql.RowSet XDT_DataTable

java.sql.Time XDT_DateValue

java.sql.Timestamp XDT_DateValue

java.util.Calendar XDT_DateTimeValue

java.util.Date XDT_DateTimeValue

long LongLong

short Int

Serializable class PowerScript Structure

Note For any serializable Java class, each non-final non-
transient field (private, protected, or public) is mapped to
a PowerScript Structure field. Class methods are not
mapped.

Java datatype PowerBuilder datatype

User’s Guide 53

A
accessibility features viii
accessing components 43
accessing data sources in NVOs

JDBC 29
Sybase native 30

Activate event 24, 25
administrative password 5
Ant configuration files

proxy servers, configuring 45
Application Server Component wizards 19
application server proxy objects

about 43
application servers, supported 1
applications

clients 41
naming 21

B
before deploying

JBoss 31
WebLogic 31
WebSphere 32

Byte datatype 27

C
camel case deployment option 27
CanBePooled event 24
certifications, Sybase vi
Character datatype 28
CLASSPATH environment variable, WebLogic 8
Client Edition proxy servers

administrative password, setting 46
installing 44
post-configuration 47

retry loop, using to connect to 50
clients

developing 41
clusters, running servers in 36
component instances, debugging 39
component state events

Activate 24

CanBePooled 24

Deactivate 24
components

accessing 43
before deploying 31
debugging 38
deploying 32
developing 19
instance states 38
properties, specifying 20

configuring
server plug-in 5
silent installation 10

Connection object
Constructor event 42
creating 42

Connection Object wizard 42
Constructor event and instance pooling 25
conventions

Java naming 35
typographical v

CreateInstance, TransactionServer method 23

D
DataStore system object 27, 28
datatype mappings, PowerBuilder to EJB 26
datatypes

Byte 27
Character 28
Java 51

Index

Index

54 PowerBuilder Application Server Plug-In

ResultSet and Web services 28
DataWindows

referencing dynamically 32
Deactivate event 24, 25
debugger, starting 38
debugging

components, remote 2
proxy classes 50
remotely 38

defining paths with -D 6
deploying components 32
deployment listener, overriding properties 32
deployment tool 2
deployment, validating 33
Destructor event and instance pooling 25
developing

clients 41
components 19

DisableCommit, TransactionServer method 24
DJC_JAVA_HOME_14 environment variable 5, 45
DJC_JAVA_HOME_15 environment variable 5, 45
djcProxy option 24
documentation, PowerBuilder v

E
EBFs and software maintenance vii
EJB datatype mappings 26
EJBConnection class 43
EJBs

generating proxy classes for 49
PowerBuilder clients, communicating with 49
remote home interface, looking up 49

EnableCommit, TransactionServer method 24
enabling clients to communicate with EJBs 49
environment variables

CLASSPATH, WebLogic 8
DJC_JAVA_HOME_14 5, 45
DJC_JAVA_HOME_15 5, 45
PB_SERVER_HOME 5

error logging service 39
ErrorLogging class 39
errors, writing to server log 39
events

Activate 25

Constructor 25

Deactivate 25

Destructor 25
events, component state

Activate 24

CanBePooled 24

Deactivate 24

F
files

automatically generated 35
repository 35

G
generated code 35
Getting Started CD vi

I
iiopListeners property, changing 32
information, other sources of vi
installing the server plug-in 3

silently 9
instance pooling options 21
IsTransactionAborted, TransactionServer

method 24

J
JBoss

before deploying to 31
configuring the server plug-in 6
starting the application server 8

JBoss application servers
proxy server, configuring 46

JDK parameters, silent installation 11
JNDI name prefix 49

Index

User’s Guide 55

L
libraries

Open Client and PowerBuilder 30
log, server 39

N
naming

applications 21
conventions 35

NonVisualObject. See NVOs
NVOs

accessing JDBC data sources from 29
accessing Sybase native data sources from 30
defined 2
events, scripting 20
methods, adding 20
projects, adding to 20
proxy classes for 49

O
objects, proxy

generating 43
Open Client libraries 30

P
package names 21
password, administrative 5
paths, defining 6
PB Object wizard 20
PB_SERVER_HOME environment variable 5
PBD, including libraries in 22
pb-server.jar 8
pb-server-test, test program 33
PowerBuilder

application server proxy 44
components, deploying 32
to EJB datatype mappings 26
versions supported 1

PowerBuilder clients
communicating with EJBs 49

connecting to proxy servers 50
Project wizard 20
projects, adding NVOs to 20
properties, component 20
proxy classes

debugging 50
generating 49
Java datatypes permitted 51
PowerScript, generating 50

proxy objects, generating 43
proxy servers 44

Ant configuration files 45
Client Edition, after configuring 47
Client Edition, configuring 46
Client Edition, installing 44
Client Edition, post-configuration 47
configuration options 45
configuring 44
configuring for JBoss 46
configuring for WebLogic 46
configuring for WebSphere 46
connecting from PowerBuilder clients 50
JDK for WebSphere 45
starting 48
stopping 48

R
remote debugging 38
repository files 35
repository properties 6
ResultSet

datatype and Web services 28
return type 28

ResultSet return type 27
running

server plug-in 8
runtime library 2
runtime problems, troubleshooting 38, 39

S
security roles 21
server plug-in

Index

56 PowerBuilder Application Server Plug-In

configuring 5
defined 1
installing 3
JBoss configuration 6
repository properties 6
running 8
WebLogic configuration 6
WebSphere configuration 7

server profile
creating 22
Registry setting 22

servers
log 39
supported 1

SetAbort, TransactionServer method 24
SetComplete, TransactionServer method 24
setup program

starting 3
setup.exe file, starting 3
silent installer

administrative password, setting 12
cleaning up 17
command line arguments 14
configuration files 10
configuring and running 9
e-mail alerts, configuring 12
features 13
files required 9
installation location 11
JDK installation parameters 11
license agreement 11
Sybase Software Asset Management License 12
testing and running 10
troubleshooting 16
uninstalling 15

SilentUninstall.bat 16
SilentUninstall.txt 15
software maintenance vii
starting

JBoss application server 8
setup program 3
WebLogic application server 8
WebSphere application server 8

starting proxy servers 48
state of component s 38
stopping proxy servers 48

Sybase Product Manuals Web site vi
SyBooks CD vi

T
Target wizard 20
targets, adding objects to 20
test program 33

source code location 34
timeout, component 21
transaction support

enable 21
options 22

TransactionServer class 23
troubleshooting 38, 39

proxy classes 50
silent installer 16

typographical conventions v

U
uninstalling, silently 15
user events, exposing as methods 21

V
validating deployment 33

W
WebLogic application servers

before deploying to 31
configuring the server plug-in 6
proxy server, configuring 46
starting 8

WebSphere application servers
before deploying to 32
configuring the server plug-in 7
JDK for proxy server 45
proxy server, configuring 46
starting 8

wizards

Index

User’s Guide 57

Application Server Proxy 41, 43
Connection Object 41, 42
PB Object 20
Project 20
Target 20
Template Application 41

ws-ejb-deploy.xml, WebSphere configuration file 32
ws-install-app.xml, WebSphere configuration file 32

X
XDT datatypes 29

Index

58 PowerBuilder Application Server Plug-In

	About This Book
	CHAPTER 1 Installing and Configuring the PowerBuilder Server Plug-In
	Overview
	JDK versions

	Installing the server plug-in
	Configuring the server plug-in
	JBoss
	WebLogic
	WebSphere

	Running the server plug-in

	CHAPTER 2 Creating Embedded Installations
	Configuring and running the silent installer
	Configuration and run files
	Silent uninstaller files
	Troubleshooting and cleanup of the silent installer

	CHAPTER 3 Developing PowerBuilder Components
	Developing PowerBuilder components
	Application server component wizards

	Specifying component properties
	Data access

	Before deploying components
	JBoss
	WebLogic
	WebSphere

	Deploying components to an application server
	Generated code
	Naming conventions
	Repository files
	Clusters

	Testing and debugging components
	Live editing
	Remote debugging
	Writing messages to the server log

	Troubleshooting

	CHAPTER 4 Developing PowerBuilder Clients
	Developing a PowerBuilder client
	Creating a Connection object
	Generating application server proxy objects
	Accessing components

	Proxy servers
	Installing proxy servers
	Configuring proxy servers
	Client Edition proxy servers
	Starting and stopping proxy servers
	Enabling PowerBuilder clients to communicate with EJBs
	Troubleshooting a proxy server

	Index

