
SQL Remote™

Published: March 2007

Copyright and trademarks
Copyright © 2007 iAnywhere Solutions, Inc. Portions copyright © 2007 Sybase, Inc. All rights reserved.

iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

iAnywhere grants you permission to use this document for your own informational, educational, and other non-commercial purposes; provided
that (1) you include this and all other copyright and proprietary notices in the document in all copies; (2) you do not attempt to "pass-off" the
document as your own; and (3) you do not modify the document. You may not publish or distribute the document or any portion thereof without
the express prior written consent of iAnywhere.

This document is not a commitment on the part of iAnywhere to do or refrain from any activity, and iAnywhere may change the content of
this document at its sole discretion without notice. Except as otherwise provided in a written agreement between you and iAnywhere, this
document is provided “as is”, and iAnywhere assumes no liability for its use or any inaccuracies it may contain.

iAnywhere®, Sybase®, and the marks listed at http://www.ianywhere.com/trademarks are trademarks of Sybase, Inc. or its subsidiaries. ®
indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.ianywhere.com/trademarks

Contents

About This Manual ... v

SQL Anywhere documentation ... vi
Documentation conventions ... ix
Finding out more and providing feedback ... xiii

I. Introduction to SQL Remote ... 1

SQL Remote Concepts .. 3
Introducing SQL Remote ... 4
SQL Remote components ... 5
SQL Remote Publications and subscriptions ... 7
SQL Remote features .. 9
Typical SQL Remote setups .. 10

II. Replication Design for SQL Remote ... 13

Principles of SQL Remote Design ... 15
SQL Remote publication design overview ... 16
How statements are replicated .. 17
How data types are replicated ... 21
Who gets what? ... 23
Replication errors and conflicts .. 24

SQL Remote Installation Design .. 27
Design overview .. 28
Publishing data .. 29
Publication design .. 37
Partitioning tables that do not contain the subscription expression 40
Sharing rows among several subscriptions ... 46
Managing conflicts ... 53
Ensuring unique primary keys ... 61
Creating subscriptions ... 69

III. SQL Remote Administration ... 71

Copyright © 2007, iAnywhere Solutions, Inc. iii

Deploying and Synchronizing Databases with SQL Remote 73
Deployment overview .. 74
Test before deployment ... 75
Synchronizing databases ... 77
Using the Extraction utility (dbxtract) ... 79
Synchronizing data over a message system ... 84

SQL Remote Administration ... 85
Management overview ... 86
Managing SQL Remote permissions ... 87
Using message types .. 94
Running the Message Agent ... 106
Tuning Message Agent performance ... 110
Encoding and compressing messages .. 116
The message tracking system ... 118

Administering SQL Remote .. 121
Running the Message Agent ... 122
Error reporting and handling .. 125
Transaction log and backup management ... 129
Using passthrough mode ... 140

IV. Reference ... 143

SQL Remote Utilities and Options Reference ... 145
Message Agent .. 146
Database Extraction utility ... 153
SQL Remote options ... 160
SQL Remote event-hook procedures .. 162

SQL Remote System Objects ... 167
SQL Remote system tables ... 168

SQL Remote SQL Statements .. 169
SQL Remote statements ... 170

Index .. 171

SQL Remote™

iv Copyright © 2007, iAnywhere Solutions, Inc.

About This Manual
Subject

This book describes the SQL Remote data replication system for mobile computing, which enables sharing
of data between a SQL Anywhere consolidated database and many SQL Anywhere remote databases using
an indirect link such as email or file transfer.

Audience
This book is for users of SQL Anywhere who want to add SQL Remote replication to their information
systems.

Before you begin
For a comparison of SQL Remote with other SQL Anywhere replication technologies, see “Overview of
Data Exchange Technologies” [SQL Anywhere 10 - Introduction].

Copyright © 2007, iAnywhere Solutions, Inc. v

SQL Anywhere documentation
This book is part of the SQL Anywhere documentation set. This section describes the books in the
documentation set and how you can use them.

The SQL Anywhere documentation
The complete SQL Anywhere documentation is available in two forms: an online form that combines all
books, and as separate PDF files for each book. Both forms of the documentation contain identical
information and consist of the following books:

♦ SQL Anywhere 10 - Introduction This book introduces SQL Anywhere 10—a product that provides
data management and data exchange technologies, enabling the rapid development of database-powered
applications for server, desktop, mobile, and remote office environments.

♦ SQL Anywhere 10 - Changes and Upgrading This book describes new features in SQL Anywhere
10 and in previous versions of the software, as well as upgrade instructions.

♦ SQL Anywhere Server - Database Administration This book covers material related to running,
managing, and configuring SQL Anywhere databases. It describes database connections, the database
server, database files, backup procedures, security, high availability, and replication with Replication
Server, as well as administration utilities and options.

♦ SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

♦ SQL Anywhere Server - SQL Reference This book provides a complete reference for the SQL
language used by SQL Anywhere. It also describes the SQL Anywhere system views and procedures.

♦ SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, and Java programming languages, as well as Visual Studio .NET. Users
of tools such as Visual Basic and PowerBuilder can use the programming interfaces provided by these
tools.

♦ SQL Anywhere 10 - Error Messages This book provides a complete listing of SQL Anywhere error
messages together with diagnostic information.

♦ MobiLink - Getting Started This manual introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

♦ MobiLink - Server Administration This manual describes how to set up and administer MobiLink
server-side utilities and functionality.

♦ MobiLink - Client Administration This manual describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases.

♦ MobiLink - Server-Initiated Synchronization This manual describes MobiLink server-initiated
synchronization, a feature of MobiLink that allows you to initiate synchronization or other remote actions
from the consolidated database.

About This Manual

vi Copyright © 2007, iAnywhere Solutions, Inc.

♦ QAnywhere This manual describes QAnywhere, which is a messaging platform for mobile and
wireless clients as well as traditional desktop and laptop clients.

♦ SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

♦ SQL Anywhere 10 - Context-Sensitive Help This manual contains the context-sensitive help for
the Connect dialog, the Query Editor, the MobiLink Monitor, MobiLink Model mode, the SQL Anywhere
Console utility, the Index Consultant, and Interactive SQL.

♦ UltraLite - Database Management and Reference This manual introduces the UltraLite database
system for small devices.

♦ UltraLite - AppForge Programming This manual describes UltraLite for AppForge. With UltraLite
for AppForge you can develop and deploy database applications to handheld, mobile, or embedded
devices, running Palm OS, Symbian OS, or Windows CE.

♦ UltraLite - .NET Programming This manual describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

♦ UltraLite - M-Business Anywhere Programming This manual describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows CE, or Windows
XP.

♦ UltraLite - C and C++ Programming This manual describes UltraLite C and C++ programming
interfaces. With UltraLite, you can develop and deploy database applications to handheld, mobile, or
embedded devices.

Documentation formats
SQL Anywhere provides documentation in the following formats:

♦ Online documentation The online documentation contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product, and is the most complete and
up-to-date source of documentation.

To access the online documentation on Windows operating systems, choose Start ► Programs ► SQL
Anywhere 10 ► Online Books. You can navigate the online documentation using the HTML Help table
of contents, index, and search facility in the left pane, as well as using the links and menus in the right
pane.

To access the online documentation on Unix operating systems, see the HTML documentation under
your SQL Anywhere installation or on your installation CD.

♦ PDF files The complete set of SQL Anywhere books is provided as a set of Adobe Portable Document
Format (pdf) files, viewable with Adobe Reader.

SQL Anywhere documentation

Copyright © 2007, iAnywhere Solutions, Inc. vii

On Windows, the PDF books are accessible from the online documentation via the PDF link at the top
of each page, or from the Windows Start menu (Start ► Programs ► SQL Anywhere 10 ► Online
Books - PDF Format).

On Unix, the PDF books are available on your installation CD.

About This Manual

viii Copyright © 2007, iAnywhere Solutions, Inc.

Documentation conventions
This section lists the typographic and graphical conventions used in this documentation.

Syntax conventions
The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in uppercase, like the words ALTER TABLE in the following
example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers or expressions are shown like
the words owner and table-name in the following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of the list followed by an ellipsis
(three dots), like column-constraint in the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. In this example, if more than one is specified, they must be
separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The square brackets should not be
typed.

♦ Options When none or only one of a list of items can be chosen, vertical bars separate the items and
the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the alternatives are enclosed in curly
braces and a bar is used to separate the options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The brackets and braces should not
be typed.

Operating system conventions
♦ Windows The Microsoft Windows family of operating systems for desktop and laptop computers.

The Windows family includes Windows Vista and Windows XP.

Documentation conventions

Copyright © 2007, iAnywhere Solutions, Inc. ix

♦ Windows CE Platforms built from the Microsoft Windows CE modular operating system, including
the Windows Mobile and Windows Embedded CE platforms.

Windows Mobile is built on Windows CE. It provides a Windows user interface and additional
functionality, such as small versions of applications like Word and Excel. Windows Mobile is most
commonly seen on mobile devices.

Limitations or variations in SQL Anywhere are commonly based on the underlying operating system
(Windows CE), and seldom on the particular variant used (Windows Mobile).

♦ Unix Unless specified, Unix refers to both Linux and Unix platforms.

File name conventions

The documentation generally adopts Windows conventions when describing operating system dependent
tasks and features such as paths and file names. In most cases, there is a simple transformation to the syntax
used on other operating systems.

♦ Directories and path names The documentation typically lists directory paths using Windows
conventions, including colons for drives and backslashes as a directory separator. For example,

MobiLink\redirector

On Unix, Linux, and Mac OS X, you should use forward slashes instead. For example,

MobiLink/redirector

If SQL Anywhere is used in a multi-platform environment you must be aware of path name differences
between platforms.

♦ Executable files The documentation shows executable file names using Windows conventions, with
the suffix .exe. On Unix, Linux, and Mac OS X, executable file names have no suffix. On NetWare,
executable file names use the suffix .nlm.

For example, on Windows, the network database server is dbsrv10.exe. On Unix, Linux, and Mac OS
X, it is dbsrv10. On NetWare, it is dbsrv10.nlm.

♦ install-dir The installation process allows you to choose where to install SQL Anywhere, and the
documentation refers to this location using the convention install-dir.

After installation is complete, the environment variable SQLANY10 specifies the location of the
installation directory containing the SQL Anywhere components (install-dir). SQLANYSH10 specifies
the location of the directory containing components shared by SQL Anywhere with other Sybase
applications.

For more information on the default location of install-dir, by operating system, see “SQLANY10
environment variable” [SQL Anywhere Server - Database Administration].

♦ samples-dir The installation process allows you to choose where to install the samples that are
included with SQL Anywhere, and the documentation refers to this location using the convention
samples-dir.

About This Manual

x Copyright © 2007, iAnywhere Solutions, Inc.

After installation is complete, the environment variable SQLANYSAMP10 specifies the location of the
directory containing the samples (samples-dir). From the Windows Start menu, choosing
Programs ► SQL Anywhere 10 ► Sample Applications and Projects opens a Windows Explorer window
in this directory.

For more information on the default location of samples-dir, by operating system, see “Samples
directory” [SQL Anywhere Server - Database Administration].

♦ Environment variables The documentation refers to setting environment variables. On Windows,
environment variables are referred to using the syntax %envvar%. On Unix, Linux, and Mac OS X,
environment variables are referred to using the syntax $envvar or ${envvar}.

Unix, Linux, and Mac OS X environment variables are stored in shell and login startup files, such
as .cshrc or .tcshrc.

Graphic icons

The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as SQL Anywhere.

♦ An UltraLite application.

♦ A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

Documentation conventions

Copyright © 2007, iAnywhere Solutions, Inc. xi

♦ Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

♦ A Sybase Replication Server

♦ A programming interface.

Interface

About This Manual

xii Copyright © 2007, iAnywhere Solutions, Inc.

Finding out more and providing feedback
Finding out more

Additional information and resources, including a code exchange, are available at the iAnywhere Developer
Network at http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide detailed information about your problem,
including the build number of your version of SQL Anywhere. You can find this information by entering
dbeng10 -v at a command prompt.

The newsgroups are located on the forums.sybase.com news server. The newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.
iAnywhere Technical Advisors as well as other staff assist on the newsgroup service when they have time
available. They offer their help on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback
We would like to receive your opinions, suggestions, and feedback on this documentation.

You can email comments and suggestions to the SQL Anywhere documentation team at
iasdoc@ianywhere.com. Although we do not reply to emails sent to that address, we read all suggestions
with interest.

In addition, you can provide feedback on the documentation and the software through the newsgroups listed
above.

Finding out more and providing feedback

Copyright © 2007, iAnywhere Solutions, Inc. xiii

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

xiv

Part I. Introduction to SQL Remote

This part describes the concepts, architecture, and features of SQL Remote.

CHAPTER 1

SQL Remote Concepts

Contents
Introducing SQL Remote ... 4
SQL Remote components ... 5
SQL Remote Publications and subscriptions .. 7
SQL Remote features .. 9
Typical SQL Remote setups .. 10

Copyright © 2007, iAnywhere Solutions, Inc. 3

Introducing SQL Remote
SQL Remote is a data-replication technology designed for two-way replication between a consolidated data
server and large numbers of remote databases, typically including many mobile databases.

SQL Remote replication is message based, and requires no direct server-to-server connection. An occasional
dialup or email link is sufficient.

Administration and resource requirements at the remote sites are minimal. The time lag between the
consolidated and remote databases is configurable, and can range from minutes to hours or days.

In a SQL Remote installation, you must have properly licensed SQL Remote software at each participating
database.

For a detailed introduction to SQL Remote concepts and features, see “SQL Remote Concepts” on page 3.

For a list of supported operating systems and message links, see see the SQL Remote for SQL Anywhere
table in SQL Anywhere 10.0.1 Components by Platform.

SQL Remote Concepts

4 Copyright © 2007, iAnywhere Solutions, Inc.

SQL Remote components
The following components are required for SQL Remote:

♦ Data server A SQL Anywhere database is required at each remote site and the consolidated database
to maintain the data.

♦ Message Agent A SQL Remote Message Agent is required at the consolidated site and at each remote
site to send and receive SQL Remote messages.

The Message Agent connects to the data server by a client/server connection. It may run on the same
machine as the data server or on a different machine.

♦ Database extraction utility The extraction utility can be used to prepare remote databases from a
consolidated database, during development and testing, and also at deployment time.

♦ Message system client software SQL Remote uses existing message systems to transport
replication messages. A file-sharing "message system" is provided, which does not require client
software. Each computer involved in SQL Remote replication using a message system other than file
sharing must have that message system installed.

♦ Client applications The applications that work with SQL Remote databases are standard client/server
database applications.

Message
system

transport
Data server

Message
Agent

Message
system client

The data server
The data server must be a SQL Anywhere server.

SQL Remote components

Copyright © 2007, iAnywhere Solutions, Inc. 5

Client applications
The client application can use ODBC, embedded SQL, or a variety of other programming interfaces.

See “SQL Anywhere Data Access Programming Interfaces” [SQL Anywhere Server - Programming].

Client applications do not have to know if they are using a consolidated or remote database. From the client
application perspective, there is no difference.

Message Agent

The SQL Remote Message Agent sends and receives replication messages. It is a client application that
sends and receives messages from database to database. The Message Agent must be installed at both the
consolidated and at the remote sites.

The Message Agent is a program called dbremote.exe on PC operating systems, and dbremote on Unix.

Consolidated
database

Remote
database

Message
System

Message Agent Message Agent

Message system client
If you are using a shared file message system, no message system client is needed.

If you are using an email or other message system, you must have a message system for that client in order
to send and receive messages.

SQL Remote Concepts

6 Copyright © 2007, iAnywhere Solutions, Inc.

SQL Remote Publications and subscriptions
The data that is replicated by SQL Remote is arranged in publications. Each database that shares information
in a publication must have a subscription to the publication.

Data is organized into publications
The publication is a database object describing data to be replicated. Remote users of the database who want
to receive a publication do so by subscribing to a publication.

A publication may include data from several database tables. Each table's contribution to a publication is
called an article. Each article may consist of a whole table, or a subset of the rows and columns in a table.

A two-table synchronization definition

Article 1: all of
table A

Article 2: some rows and
columns from table B

+

X

X

X

X

X

X

X X X X X

X X X X X

XXXXX

X

X

X

X

X

X

X

X

X

X

Periodically, the changes made to each publication in a database are replicated to all subscribers to that
publication. These replications are called publication updates.

Messages are always sent both ways

Remote databases subscribe to publications on the consolidated database so that they can receive data from
the consolidated database. To do this, a subscription is created at the consolidated database, identifying the
subscriber by name and by the publication they are to receive.

SQL Remote always involves messages being sent two ways. The consolidated database sends messages
containing publication updates to remote databases, and remote databases also send messages to the
consolidated database.

For example, if data in a publication at a consolidated database is updated, those updates are sent to the
remote databases. And even if the data is never updated at the remote database, confirmation messages must
still be sent back to the consolidated database to keep track of the status of the replication.

SQL Remote Publications and subscriptions

Copyright © 2007, iAnywhere Solutions, Inc. 7

Both databases subscribe
Messages must be sent both ways, so not only does a remote database subscribe to a publication created at
the consolidated database, but the consolidated database must subscribe to a corresponding publication
created at the remote database.

Remote
database

Consolidated
database

Publish Subscribe

PublishSubscribe

Data updates and
receipt confirmations

Data updates and
receipt confirmations

When remote database users modify their own copies of the data, their changes are replicated to the
consolidated database. When the messages containing the changes are applied at the consolidated database
the changes become part of the consolidated database's publication, and are included in the next round of
updates to all remote sites (except the one it came from). In this way, replication from remote site to remote
site takes place via the consolidated database.

Setting up the remote database
When a subscription is initially set up, the two databases must be brought to a state where they both have
the same set of information, ready to start replication. This setup can be done manually, but the database
extraction utility automates the process. You can run the Extraction utility as a command line utility or from
Sybase Central.

The appropriate publication and subscription are created automatically at remote databases when you use
the SQL Remote database extraction utility to create a remote database.

SQL Remote Concepts

8 Copyright © 2007, iAnywhere Solutions, Inc.

SQL Remote features
The following features are key to SQL Remote's design.

Support for many subscribers SQL Remote is designed to support replication with many subscribers
to a publication.

This feature is of particular importance for mobile workforce applications, which may require replication to
the laptop computers of hundreds or thousands of sales representatives from a single office database.

Transaction log-based replication SQL Remote replication is based on the transaction log. This enables
it to replicate only changes to data, rather than all data, in each update. Also, log-based replication has
performance advantages over other replication systems.

The transaction log is the repository of all changes made to a database. SQL Remote replicates changes made
to databases as recorded in the transaction log. Periodically, all committed transactions in the consolidated
database transaction log belonging to any publication are sent to remote databases. At remote sites, all
committed transactions in the transaction log are periodically submitted to the consolidated database.

By replicating only committed transactions, SQL Remote ensures proper transaction atomicity throughout
the replication setup and maintains a consistency among the databases involved in the replication, albeit with
some time lag while the data is replicated.

Central administration SQL Remote is designed to be centrally administered, at the consolidated
database. This is particularly important for mobile workforce applications, where laptop users should not
have to carry out database administration tasks. It is also important in replication involving small offices
that have servers but little in the way of administration resources.

Administration tasks include setting up and maintaining publications, remote users, and subscriptions, as
well as correcting errors and conflicts if they occur.

Economical resource requirements The only software required to run SQL Remote in addition to your
SQL Anywhere DBMS is the Message Agent and a message system. If you use the shared file link, no
message system software is required as long as each remote user ID has access to the directory where the
message files are stored.

Memory and disk space requirements have been kept moderate for all components of the replication system,
so that you do not have to invest in extra hardware to run SQL Remote.

Multi-platform support SQL Remote is provided on a number of operating systems and message links.

See the SQL Remote for SQL Anywhere table in SQL Anywhere 10.0.1 Components by Platform.

SQL Remote features

Copyright © 2007, iAnywhere Solutions, Inc. 9

Typical SQL Remote setups
While SQL Remote can provide replication services in many different environments, its features are designed
with the following characteristics in mind:

♦ SQL Remote should be a solution even when no administration load can be assigned to the remote
databases, as in mobile workforce applications.

♦ Data communication among the sites may be occasional and indirect: it need not be permanent and direct.

♦ Memory and resource requirements at remote sites are assumed to be at a premium.

The following examples show some typical SQL Remote setups.

Server-to-laptop replication for mobile workforces
SQL Remote provides two-way replication between a database on an office network and personal databases
on the laptop computers of sales representatives. Such a setup may use an email system as a message
transport.

Remote
database

Laptop computer

Remote
database

Laptop computer

Remote
database

Laptop computer

Remote
database

Laptop computer

Office network server

Consolidated
database

SQL Remote Concepts

10 Copyright © 2007, iAnywhere Solutions, Inc.

The office server may be running a server to manage the company database. The Message Agent at the
company database runs as a client application for that server.

At the laptop computers each sales representative has a SQL Anywhere personal server to manage their own
data.

While away from the office, a sales representative can make a single phone call from their laptop to carry
out the following functions:

♦ Collect new email.

♦ Send any email messages they have written.

♦ Collect publication updates from the office server.

♦ Submit any local updates, such as new orders, to the office server.

The updates may include, for example, new specials on the products the sales representative handles, or new
pricing and inventory information. These are read by the Message Agent on the laptop and applied to the
sales rep's database automatically, without requiring any additional action on the sales representative's part.

The new orders recorded by the sales representative are also automatically submitted to the office without
any extra action on the part of the sales representative.

Server-to-server replication among offices
SQL Remote provides two-way replication between database servers at sales offices or outlets and a central
company office, without requiring database administration experience at each sales office beyond the initial
setup and that required to maintain the server.

SQL Remote is not designed for instantaneous data availability at each site. For example, it may use an email
system to carry the replication. Alternatively, an occasional dial-up system and file transfer software can be
used to implement a FILE message system.

SQL Remote is easy to configure to allow each office to receive their own set of data. Tables that are of
office interest only (staff records, perhaps, if the office is a franchise) may be kept private in the same database
as the replicated data.

Layers can be added to SQL Remote hierarchies: for example, each sales office server could act as a
consolidated database, supporting remote subscribers who work from that office.

Typical SQL Remote setups

Copyright © 2007, iAnywhere Solutions, Inc. 11

12

Part II. Replication Design for SQL
Remote

This part describes replication design issues for SQL Remote.

CHAPTER 2

Principles of SQL Remote Design

Contents
SQL Remote publication design overview ... 16
How statements are replicated .. 17
How data types are replicated ... 21
Who gets what? ... 23
Replication errors and conflicts ... 24

Copyright © 2007, iAnywhere Solutions, Inc. 15

SQL Remote publication design overview
This chapter describes general publication design issues that you must address when designing a SQL Remote
application. It also describes how SQL Remote replicates data.

For system-specific details, see “SQL Remote Installation Design” on page 27.

Design at the consolidated database
Like all SQL Remote administrative tasks, design is carried out by a database administrator or system
administrator at the consolidated database.

The database administrator should perform all SQL Remote configuration tasks.

Using compatible sort orders and character sets
The SQL Remote Message Agent does not perform any character set conversions.

The character set and collation used by the SQL Anywhere consolidated database must be the same as the
remote databases. For information about supported character sets, see “International Languages and
Character Sets” [SQL Anywhere Server - Database Administration].

Principles of SQL Remote Design

16 Copyright © 2007, iAnywhere Solutions, Inc.

How statements are replicated
SQL Remote replication is based on the transaction log, enabling it to replicate only changes to data, rather
than all data, in each update. When SQL Remote replicates data, it replicates SQL statements that modify
data.

Only committed transactions are replicated
SQL Remote only replicates statements in committed transactions. This is done to ensure proper transaction
atomicity throughout the replication setup and to maintain consistency among the databases involved in the
replication, albeit with some time lag while the data is replicated.

Primary keys
When an UPDATE or a DELETE is replicated, SQL Remote uses the primary key columns to uniquely
identify the row being updated or deleted. All tables being replicated must have a declared primary key or
uniqueness constraint. A unique index is not sufficient. The columns of the primary key are used in the
WHERE clause of replicated updates and deletes. If a table has no primary key, the WHERE clause refers
to all columns in the table.

An UPDATE is not always an UPDATE
When a simple INSERT statement is entered at one database, it is sent to other databases in the SQL Remote
setup as an INSERT statement. However, not all statements are replicated exactly as they are entered by the
client application. This section describes how SQL Remote replicates SQL statements. It is important to
understand this material if you are to design a robust SQL Remote installation.

The Message Agent is the component that carries out the replication of statements.

Replication of inserts and deletes

INSERT and DELETE statements are the simplest replication case. SQL Remote takes each INSERT or
DELETE operation from the transaction log, and sends it to all sites that subscribe to the row being inserted
or deleted.

If only a subset of the columns in the table is subscribed to, the INSERT statements sent to subscribers
contains only those columns.

The Message Agent ensures that statements are not replicated to the user that initially entered them.

Replication of updates

UPDATE statements are not replicated exactly as the client application enters them. This section describes
two ways in which the replicated UPDATE statement may differ from the entered UPDATE statement.

UPDATE statements replicated as INSERTS or DELETES
If an UPDATE statement has the effect of removing a row from a given remote user's subscription, it is sent
to that user as a DELETE statement. If an UPDATE statement has the effect of adding a row to a given
remote user's subscription, it is sent to that user as an INSERT statement.

How statements are replicated

Copyright © 2007, iAnywhere Solutions, Inc. 17

The figure illustrates a publication, where each subscriber subscribes by their name:

Consolidated
ID Rep

Ann
2
1

Marc

Dept
101
101

3 Ann 101

Ann

ID Rep
1 Ann
3 Ann>

Marc

ID Rep
2 Marc
3 Marc

Marc

ID Rep
2 Marc
3 Marc

Ann

ID Rep
1 Ann

Consolidated
ID Rep

Ann
2
1

Marc

Dept
101
101

3 Marc 101

An UPDATE that changes the Rep value of a row from Marc to Ann is replicated to Marc as a DELETE
statement, and to Ann as an INSERT statement.

This reassignment of rows among subscribers is sometimes called territory realignment, because it is a
common feature of sales force automation applications, where customers are periodically reassigned among
representatives.

UPDATE conflict detection
An UPDATE statement changes the value of one or more rows from some existing value to a new value.
The rows altered depend on the WHERE clause of the UPDATE statement.

When SQL Remote replicates an UPDATE statement, it does so as a set of single-row updates. These single-
row statements can fail for one of the following reasons:

♦ The row to be updated does not exist Each row is identified by its primary key values, and if a
primary key has been altered by some other user, the row to be updated is not found.

In this case, the UPDATE does not update anything.

♦ The row to be updated differs in one or more of its columns If one of the values expected to be
present has been changed by some other user, an update conflict occurs.

At remote databases, the update takes place regardless of the values in the row.

At the consolidated database, SQL Remote allows conflict resolution operations to take place. Conflict
resolution operations are held in a trigger or stored procedure, and run automatically when a conflict is
detected. The conflict resolution trigger runs before the update, and the update proceeds when the trigger
is finished.

♦ A table without a primary key or uniqueness constraint refers to all columns in the WHERE
clause of replicated updates When two users update the same row, replicated updates will not

Principles of SQL Remote Design

18 Copyright © 2007, iAnywhere Solutions, Inc.

update anything and databases will become inconsistent. All replicated tables should have a primary key
or uniqueness constraint and the columns in the constraint should never be updated.

Replication of procedures

Any replication system is faced with a choice between two options when replicating a stored procedure call:

♦ Replicate the procedure call A corresponding procedure is executed at the replicate site, or

♦ Replicate the procedure actions The individual actions (INSERTs, UPDATEs, DELETEs and so
on) of the procedure are replicated.

SQL Remote replicates procedures by replicating the actions of a procedure. The procedure call is not
replicated.

Replication of triggers

By default, the Message Agent does not replicate actions performed by triggers; it is assumed that the trigger
is defined remotely. This avoids permissions issues and the possibility of each action occurring twice. There
are some exceptions to this rule:

♦ Conflict resolution trigger actions The actions carried out by conflict resolution, or RESOLVE
UPDATE, triggers are replicated from a consolidated database to all remote databases, including the
one that sent the message causing the conflict.

♦ Replication of BEFORE triggers Some BEFORE triggers can produce undesirable results when
using SQL Remote, and so BEFORE trigger actions that modify the row being updated are replicated,
before UPDATE actions.

You must be aware of this behavior when designing your installation. For example, a BEFORE UPDATE
that bumps a counter column in the row to keep track of the number of times a row is updated would
double count if replicated, as the BEFORE UPDATE trigger will fire when the UPDATE is replicated.
To prevent this problem, you must ensure that, at the subscriber database, the trigger is not present or
does not carry out the replicated action. Also, a BEFORE UPDATE that sets a column to the time of the
last update will get the time the UPDATE is replicated as well.

An option to replicate trigger actions
The Message Agent has an option that causes it to replicate all trigger actions when sending messages. This
is the dbremote -t option.

If you use this option, you must ensure that the trigger actions are not carried out twice at remote databases,
once by the trigger being fired at the remote site, and once by the explicit application of the replicated actions
from the consolidated database.

How statements are replicated

Copyright © 2007, iAnywhere Solutions, Inc. 19

To ensure that trigger actions are not carried out twice, you can wrap an IF CURRENT REMOTE USER IS
NULL … END IF statement around the body of the triggers or you can set the SQL Anywhere fire_triggers
option to Off for the Message Agent user ID.

Replication of data definition statements

Data definition statements (CREATE, ALTER, DROP, and others that modify database objects) are not
replicated by SQL Remote unless they are entered while in passthrough mode.

See “Using passthrough mode” on page 140.

Principles of SQL Remote Design

20 Copyright © 2007, iAnywhere Solutions, Inc.

How data types are replicated
Long binary or character data, and datetime data, need special consideration.

Replication of BLOBs

BLOBs are LONG VARCHAR, LONG BINARY, TEXT, and IMAGE data types: values that are longer
than 256 characters.

SQL Remote includes a special method for replicating BLOBs between databases.

The Message Agent uses a variable in place of the value in the INSERT or UPDATE statement that is being
replicated. The value of the variable is built up by a sequence of statements of the form

SET vble = vble || 'more_stuff'

This makes the size of the SQL statements involving long values smaller, so that they fit within a single
message. The SET statements are separate SQL statements, so that the BLOB is effectively split over several
SQL Remote messages.

Using the verify_threshold option to minimize message size
The verify_threshold database option can prevent long values from being verified (in the VERIFY clause
of a replicated UPDATE). The default value for the option is 1000. If the data type of a column is longer
than the threshold, old values for the column are not verified when an UPDATE is replicated. This keeps
the size of SQL Remote messages down, but has the disadvantage that conflicting updates of long values
are not detected.

There is a technique allowing detection of conflicts when verify_threshold is being used to reduce the size
of messages. Whenever a "BLOB" is updated, a last_modified column in the same table should also be
updated. Conflicts can then be detected because the old value of the last_modified column is verified.

Using a work table to avoid redundant updates
Repeated updates to a BLOB should be done in a "work" table, and the final version should be assigned to
the replicated table. For example, if a document in progress is updated 20 times throughout the day and the
Message Agent is run once at the end of the day, all 20 updates are replicated. If the document is 200 KB in
length, this causes 4 MB of messages to be sent.

The better solution is to have a document_in_progress table. When the user is done revising a document,
the application moves it from the document_in_progress table to the replicated table. The results in a single
update (200 kb of messages).

Controlling replication of BLOBs
The SQL Anywhere blob_threshold option allows further control over the replication of long values. Any
value longer than the blob_threshold option is replicated as a BLOB. That is, it is broken into pieces and
replicated in chunks, before being reconstituted by using a SQL variable and concatenating the pieces at the
recipient site.

How data types are replicated

Copyright © 2007, iAnywhere Solutions, Inc. 21

Replication of dates and times

When date or time columns are replicated, the Message Agent uses the setting of the sr_date_format,
sr_time_format, and sr_timestamp_format database options to format the date.

For example, the following option setting instructs the Message Agent to send a date of May 2, 1987 as
1987-05-02.

SET OPTION sr_date_format = 'yyyy-mm-dd'

See “SQL Remote options” on page 160.

The following points may be useful when replicating dates and times:

♦ The time, date, and timestamp formats must be consistent throughout the installation.

♦ Ensure that the order of year, month, and day used for the date and timestamp formats matches the setting
of the date_order database option.

You can change the date_order option for the duration of each connection.

Principles of SQL Remote Design

22 Copyright © 2007, iAnywhere Solutions, Inc.

Who gets what?
Each time a row in a table is inserted, deleted, or updated, a message has to be sent to those subscribed to
the row. In addition, an update may cause the subscription expression to change, so that the statement is sent
to some subscribers as a delete, some as an update, and some as an insert.

For more information about what statements get sent to which subscribers, see “How statements are
replicated” on page 17.

For more information about subscriptions, see:

♦ “SQL Remote Installation Design” on page 27
♦ “Deploying and Synchronizing Databases with SQL Remote” on page 73

This section describes how SQL Remote sends the right operations to the right recipients.

The task of determining who gets what is divided between the database server and the Message Agent. The
engine handles those aspects that are to do with publications, while the Message Agent handles aspects to
do with subscriptions.

SQL Anywhere actions
SQL Anywhere evaluates the subscription expression for each update made to a table that is part of a
publication. It adds the value of the expression to the log, both before and after the update.

For a table that is part of more than one publication, the subscription expression is evaluated before and after
the update for each publication.

The addition of information to the log can affect performance in the following cases:

♦ Expensive expressions When a subscription expression is expensive to evaluate, it can affect
performance.

♦ Many publications When a table belongs to many publications, many expressions must be evaluated.
In contrast, the number of subscriptions is irrelevant.

♦ Many-valued expressions Some expressions are many-valued. This can lead to much additional in
formation in the transaction log, with a corresponding effect on performance.

Message Agent actions
The Message Agent reads the evaluated subscription expressions or subscription column entries from the
transaction log, and matches the before and after values against the subscription value for each subscriber
to the publication. In this way, the Message Agent can send the correct operations to each subscriber.

While large numbers of subscribers do not have any impact on server performance, they can impact Message
Agent performance. Both the work in matching subscription values against large numbers of subscription
values, and the work in sending the messages, can be demanding.

Who gets what?

Copyright © 2007, iAnywhere Solutions, Inc. 23

Replication errors and conflicts
SQL Remote is designed to allow databases to be updated at many different sites. Careful design is required
to avoid replication errors, especially if the database has a complicated structure. This section describes the
kinds of errors and conflict that can occur in a replication setup; subsequent sections describe how you can
design your publications to avoid errors and manage conflicts.

Delivery errors not discussed here
This section does not discuss issues related to message delivery failures. For information on delivery errors
and how they are handled, see “The message tracking system” on page 118

Replication errors

Replication errors fall into the following categories:

♦ Duplicate primary key errors Two users INSERT a row using the same primary key values, or one
user updates a primary key and a second user inserts a primary key of the new value. The second operation
to reach a given database in the replication system fails because it would produce a duplicate primary
key.

♦ Row not found errors A user DELETES a row (that is, the row with a given primary key value). A
second user UPDATES or DELETES the same row at another site.

In this case, the second statement fails, as the row is not found.

♦ Referential integrity errors If a column containing a foreign key is included in a publication, but the
associated primary key is not included, the extraction utility leaves the foreign key definition out of the
remote database so that INSERTS at the remote database will not fail.

This can be solved by including proper defaults into the table definitions.

Also, referential integrity errors can occur when a primary table has a SUBSCRIBE BY expression and
the associated foreign table does not: rows from the foreign table may be replicated, but the rows from
the primary table may be excluded from the publication.

Replication conflicts

Replication conflicts are different from errors. Properly handled, conflicts are not a problem in SQL Remote.

♦ Conflicts A user updates a row. A second user updates the same row at another site. The second user's
operation succeeds, and SQL Remote allows a trigger to be fired to resolve these conflicts in a way that
makes sense for the data being changed.

Conflicts will occur in many installations. SQL Remote allows appropriate resolution of conflicts as part
of the regular operation of a SQL Remote setup, using triggers and procedures.

Principles of SQL Remote Design

24 Copyright © 2007, iAnywhere Solutions, Inc.

Tracking SQL errors

SQL errors in replication must be designed out of your setup. SQL Remote includes an option to help you
track errors in SQL statements, but this option is not intended to resolve such errors.

By setting the replication_error option, you can specify a stored procedure to be called by the Message Agent
when a SQL error occurs. By default no procedure is called.

♦ To set the replication_error option

• Issue the following statement:

SET OPTION
remote-user.replication_error
= 'procedure-name'

where remote-user is the user ID on the Message Agent command line and procedure-name is the
procedure called when a SQL error is detected.

Replication error procedure requirements
The replication error procedure must have a single argument of type CHAR, VARCHAR, or LONG
VARCHAR. The procedure is called once with the SQL error message and once with the SQL statement
that causes the error.

Replication errors and conflicts

Copyright © 2007, iAnywhere Solutions, Inc. 25

26

CHAPTER 3

SQL Remote Installation Design

Contents
Design overview .. 28
Publishing data .. 29
Publication design ... 37
Partitioning tables that do not contain the subscription expression 40
Sharing rows among several subscriptions ... 46
Managing conflicts ... 53
Ensuring unique primary keys ... 61
Creating subscriptions ... 69

Copyright © 2007, iAnywhere Solutions, Inc. 27

Design overview
Designing a SQL Remote installation includes the following tasks:

♦ Designing publications The publications determine what information is shared among which
databases.

♦ Designing subscriptions The subscriptions determine what information each user receives.

♦ Implementing the design Creating publications and subscriptions for all users in the system.

All administration is at the consolidated database
Like all SQL Remote administrative tasks, design is carried out by a database administrator or system
administrator at the consolidated database.

The SQL Anywhere Database Administrator should perform all SQL Remote configuration tasks.

SQL Remote Installation Design

28 Copyright © 2007, iAnywhere Solutions, Inc.

Publishing data
This section describes how to create simple publications consisting of whole tables, or of column-wise
subsets of tables; these tables are also called articles. You can perform these tasks using Sybase Central or
with the CREATE PUBLICATION statement in Interactive SQL.

All publications in Sybase Central appear in the Publications folder. Any articles you create for a publication
appear on the Articles tab in the right pane when a publication is selected.

Each publication can contain one or more entire tables, but partial tables are also permitted. A table can be
subdivided by columns, rows, or both.

Publishing whole tables
The simplest publication you can make consists of a single article, which consists of all rows and columns
of one or more tables. These tables must already exist.

♦ To publish one or more entire tables (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select the Publications folder.

3. From the File menu, choose New ► Publication.

The Create Publication wizard appears.

4. Type a name for the publication. Click Next.

5. On the Tables tab, select a table from the list of Available tables. Click Add. The table appears in the
list of Selected Tables on the right.

6. Optionally, you may add additional tables. The order of the tables is not important.

7. Click Finish.

♦ To publish one or more entire tables (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the name of the new publication and the
table you want to publish.

Example
♦ The following statement creates a publication that publishes the whole Customers table:

CREATE PUBLICATION PubCustomers (
 TABLE Customers
)

♦ The following statement creates a publication including all columns and rows in each of a set of tables:

Publishing data

Copyright © 2007, iAnywhere Solutions, Inc. 29

CREATE PUBLICATION PubSales (
 TABLE Customers,
 TABLE SalesOrders,
 TABLE SalesOrderItems,
 TABLE Products
)

See “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Publishing only some columns in a table
You can create a publication that contains all the rows, but only some of the columns, of a table from Sybase
Central or by listing the columns in the CREATE PUBLICATION statement.

♦ To publish only some columns in a table (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select the Publications folder.

3. From the File menu, choose New ► Publication.

The Create Publication wizard appears.

4. Type a name for the new publication. Click Next.

5. On the Tables tab, select a table from the list of Available tables. Click Add. The table is added to the
list of Selected Tables on the right.

6. On the Columns tab, double-click the table's icon to expand the list of Available Columns. Select each
column you want to publish and click Add. The selected columns appear on the right in the Selected
Columns list.

7. Click Finish.

♦ To publish only some columns in a table (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the publication name and the table name.
List the published columns in parentheses following the table name.

Example
♦ The following statement creates a publication that publishes all rows of the ID, CompanyName, and City

columns of the Customers table:

CREATE PUBLICATION PubCustomers (
 TABLE Customers (
 ID,
 CompanyName,
 City)
)

SQL Remote Installation Design

30 Copyright © 2007, iAnywhere Solutions, Inc.

See “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Publishing only some rows in a table
You can create a publication that contains all the columns, but only some of the rows, of a table from Sybase
Central. In either case, you do so by writing a search condition that matches only the rows you want to
publish.

Sybase Central and the SQL language provide two ways of publishing only some of the rows in a table;
however, only one way is compatible with MobiLink.

♦ WHERE clause You can use a WHERE clause to include a subset of rows in an article. All subscribers
to the publication containing this article receive the rows that satisfy the WHERE clause.

♦ Subscription expression You can use a subscription expression to include a different set of rows in
different subscriptions to publications containing the article.

You can combine a WHERE clause and a subscription expression in an article. You can specify them in
Sybase Central or in a CREATE PUBLICATION statement.

Use the Subscription expression when different subscribers to a publication are to receive different rows
from a table. The Subscription expression is the most powerful method of partitioning tables.

Use the WHERE clause to exclude the same set of rows from all subscriptions to a publication.

Publishing only some rows using a WHERE clause
You can specify a WHERE clause to include in the publication only the rows that satisfy the WHERE
conditions.

♦ To create a publication using a WHERE clause (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select the Publications folder.

3. From the File menu, choose New ► Publication.

The Create Publication wizard appears.

4. Type a name for the new publication. Click Next.

5. On the Tables tab, select a table from the list of Available tables. Click Add. The table is added to the
list of Selected Tables on the right.

6. On the WHERE Clauses tab, select the table then type the search condition in the lower box.

7. Click Finish.

Publishing data

Copyright © 2007, iAnywhere Solutions, Inc. 31

♦ To create a publication using a WHERE clause (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that includes the rows you wish to include in the
publication and a WHERE condition.

Examples
♦ The following statement creates a publication that publishes the ID, CompanyName, City, State, and

Country columns of the Customers table, for the customers marked as active in the status column.

CREATE PUBLICATION PubCustomers (
 TABLE Customers (
 ID,
 CompanyName,
 City,
 State,
 Country)
 WHERE Status = 'active'
)

In this case, the status column is not published. All unpublished rows must have a default value.
Otherwise, an error occurs when rows are downloaded for insert from the consolidated database.

♦ The following is a single-article publication sending relevant order information to Samuel Singer, a sales
rep:

CREATE PUBLICATION PubOrdersSamuelSinger (
 TABLE SalesOrders WHERE SalesRepresentative = 856
)

See “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

SUBSCRIBE BY
The create publication statement also allows a SUBSCRIBE BY clause. This clause can also be used to
selectively publish rows in SQL Remote. However, it is ignored during MobiLink synchronization.

Publishing only some rows using a subscription expression

You can specify a subscription expression to include a different set of rows in different subscriptions to
publications containing the article.

For example, in a mobile workforce situation, a sales publication may be wanted where each sales rep
subscribes to their own sales orders, enabling them to update their sales orders locally and replicate the sales
to the consolidated database.

Using the WHERE clause model, a separate publication for each sales rep would be needed: the following
publication is for sales rep Samuel Singer: each of the other sales reps would need a similar publication.

CREATE PUBLICATION PubOrdersSamuelSinger (
 TABLE SalesOrders

SQL Remote Installation Design

32 Copyright © 2007, iAnywhere Solutions, Inc.

 WHERE SalesRepresentative = 856
)

To address the needs of setups requiring large numbers of different subscriptions, SQL Remote allows a
subscription expression to be associated with an article. Subscriptions receive rows depending on the value
of a supplied expression.

Benefits of subscription expressions
Publications using a subscription expression are more compact, easier to understand, and provide better
performance than maintaining several WHERE clause publications. The database server must add
information to the transaction log, and scan the transaction log to send messages, in direct proportion to the
number of publications. The subscription expression allows many different subscriptions to be associated
with a single publication, whereas the WHERE clause does not.

♦ To create an article using a subscription expression (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select the Publications folder.

3. From the File menu, choose New ► Publication.

The Create Publication wizard appears.

4. Type a name for the publication and click Next.

5. On the Specify SUBSCRIBE BY Restrictions page, enter the subscription expression.

6. Follow the remaining instructions in the wizard.

♦ To create an article using a subscription expression (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that includes the expression you wish to use as a match
in the subscription expression.

Examples
♦ The following statement creates a publication that publishes the ID, CompanyName, City, State, and

Country columns of the Customers table, and which matches the rows with subscribers according to the
value of the State column:

CREATE PUBLICATION PubCustomers (
 TABLE Customers (
 ID,
 CompanyName,
 City,
 State,
 Country)
 SUBSCRIBE BY State
)

♦ The following statements subscribe two employees to the publication: Ann Taylor receives the customers
in Georgia (GA), and Sam Singer receives the customers in Massachusetts (MA).

Publishing data

Copyright © 2007, iAnywhere Solutions, Inc. 33

CREATE SUBSCRIPTION
TO PubCustomers ('GA')
FOR Ann_Taylor ;
CREATE SUBSCRIPTION
TO PubCustomers ('MA')
FOR Sam_Singer

Users can subscribe to more than one publication, and can have more than one subscription to a single
publication.

See also
♦ “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
♦ “Partitioning tables that do not contain the subscription expression” on page 40
♦ “Creating subscriptions” on page 69
♦ “Publishing only some rows using a WHERE clause” on page 31
♦ “Altering existing publications” on page 34

Altering existing publications

After you have created a publication, you can alter it by adding, modifying, or deleting articles, or by
renaming the publication. If an article is modified, the entire specification of the modified article must be
entered.

You can perform these tasks using Sybase Central or with the ALTER PUBLICATION statement in
Interactive SQL.

♦ To modify the properties of existing publications or articles (Sybase Central)

1. Connect to the database as a user who owns the publication or as a user with DBA authority.

2. Right-click the publication or article and choose Properties from the popup menu.

3. Configure the desired properties.

♦ To add articles (Sybase Central)

1. Connect to the database as a user who owns the publication or as a user with DBA authority.

2. In the left pane, open the Publications folder.

3. Select the publication you want to add an article to.

4. From the File menu, choose New ► Article.

The Create Article wizard appears.

5. In the Create Article wizard, do the following:

♦ Choose a table and click Next.

SQL Remote Installation Design

34 Copyright © 2007, iAnywhere Solutions, Inc.

♦ Choose the columns for the article. Click Next.

♦ Enter a WHERE clause (if desired). Click Next.

♦ Create a SUBSCRIBE BY restriction (if desired).

6. Click Finish to create the article.

♦ To remove articles (Sybase Central)

1. Connect to the database as a user who owns the publication or as a user with DBA authority.

2. Open the Publications folder.

3. Select the publication you want to remove an article from.

4. Right-click the article you want to delete and choose Delete from the popup menu.

♦ To modify an existing publication (SQL)

1. Connect to the database as a user who owns the publication or as a user with DBA authority.

2. Execute an ALTER PUBLICATION statement.

Example
♦ The following statement adds the Customers table to the PubContacts publication.

ALTER PUBLICATION PubContacts (
 ADD TABLE Customers
)

See also
♦ “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
♦ “Publishing only some rows using a WHERE clause” on page 31
♦ “Publishing only some rows using a subscription expression” on page 32

Dropping publications

You can drop a publication using either Sybase Central or the DROP PUBLICATION statement. If you drop
a publication, all subscriptions to that publication are automatically deleted as well.

You must have DBA authority to drop a publication.

♦ To delete a publication (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Open the Publications folder.

3. Right-click the desired publication and choose Delete from the popup menu.

Publishing data

Copyright © 2007, iAnywhere Solutions, Inc. 35

♦ To delete a publication (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP PUBLICATION statement.

Example
The following statement drops the publication named PubOrders.

DROP PUBLICATION PubOrders

See “DROP PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Notes on publications

♦ The different publication types described above can be combined. A single publication can publish a
subset of columns from a set of tables and use a WHERE clause to select a set of rows to be replicated.

♦ DBA authority is required to create and drop publications.

♦ Publications can be altered only by the DBA or the publication's owner.

♦ Altering publications in a running SQL Remote setup is likely to cause replication errors and can lead
to loss of data in the replication system unless carried out with care.

♦ Views cannot be included in publications.

♦ Stored procedures cannot be included in publications. For a discussion of how SQL Remote replicates
procedures and triggers, see “Replication of procedures” on page 19.

SQL Remote Installation Design

36 Copyright © 2007, iAnywhere Solutions, Inc.

Publication design
Once you understand how to create simple publications, you must think about proper publication design.
Sound design is an important part of building a successful SQL Remote installation. This section helps set
out the principles of sound design as they apply to SQL Remote for SQL Anywhere.

Design issues overview

Each subscription must be a complete relational database
A remote database shares with the consolidated database the information in their subscriptions. The
subscription is both a subset of the relational database held at the consolidated site, and also a complete
relational database at the remote site. The information in the subscription is therefore subject to the same
rules as any other relational database:

♦ Foreign key relationships must be valid For every entry in a foreign key, a corresponding primary
key entry must exist in the database.

The database extraction utility ensures that the CREATE TABLE statements for remote databases do
not have foreign keys defined to tables that do not exist remotely.

♦ Primary key uniqueness must be maintained There is no way of checking what new rows have
been entered at other sites, but not yet replicated. The design must prevent users at different sites adding
rows with identical primary key values, as this would lead to conflicts when the rows are replicated to
the consolidated database.

Transaction integrity must be maintained in the absence of locking
The data in the dispersed database (which consists of the consolidated database and all remote databases)
must maintain its integrity in the face of updates at all sites, even though there is no system-wide locking
mechanism for any particular row.

♦ Locking conflicts must be prevented or resolved In a SQL Remote installation, there is no
method for locking rows across all databases to prevent different users from altering the rows at the same
time. Such conflicts must be prevented by designing them out of the system or must be resolved in an
appropriate manner at the consolidated database.

These key features of relational databases must be incorporated into the design of your publications and
subscriptions. This section describes principles and techniques for sound design.

Conditions for valid articles
All columns in the primary key must be included in the article.

Supporting INSERTS at remote databases
For INSERT statements at a remote database to replicate correctly to the consolidated database, you can
exclude from an article only columns that can be left out of a valid INSERT statement. These are:

Publication design

Copyright © 2007, iAnywhere Solutions, Inc. 37

♦ Columns that allow NULL.

♦ Columns that have defaults.

If you exclude any column that does not satisfy one of these requirements, INSERT statements carried out
at a remote database will fail when replicated to the consolidated database.

Consolidated ID Rep
Ann

2
1

Marc

Remote ID Rep

2
1 Ann

Marc

Dept
101
101

3 Shih

3 Shih X

INSERT
INTO SalesRep (ID, Rep)
VALUES (3, 'Shih')

INSERT
INTO SalesRep (ID, Rep)
VALUES (3, 'Shih')

Insert fails

Insert
succeeds

Using BEFORE triggers as an alternative
An exception to this case is when the consolidated database is a SQL Anywhere database, and a BEFORE
trigger has been written to maintain the columns that are not included in the INSERT statement.

Design tips for performance

This section presents a checklist for designing high performance SQL Remote installations.

♦ Keep the number of publications small In particular, try not to reference the same table in many
different publications.

The work the database server needs to do is proportional to the number of publications. Keeping the
number low and making effective use of subscriptions lightens the load on the database server.

When operations occur on a table, the database server and the Message Agent must do some work for
each publication that contains the table. Having one publication for each remote user will drastically
increase the load on the database server. It is much better to have a few publications that use SUBSCRIBE
BY and have subscriptions for each remote user. The database server does no additional work when more
subscriptions are added for a publication. The Message Agent is designed to work efficiently with a large
number of subscriptions.

SQL Remote Installation Design

38 Copyright © 2007, iAnywhere Solutions, Inc.

♦ Group publications logically For example, if there is a table that every remote user requires, such
as a price list table, make a separate publication for that table. Make one publication for each table where
the data can be partitioned by a column value.

♦ Use subscriptions effectively When remote users receive similar subsets of the consolidated
database, always use publications that incorporate SUBSCRIBE BY expressions. Do not create a separate
publication for each remote user.

♦ Pay attention to Update Publication Triggers In particular:

♦ Use the NEW / OLD SUBSCRIBE BY syntax.

♦ Tune the SELECT statements to ensure they are accessing the database efficiently.

♦ Monitor the transaction log size The larger the transaction log, the longer it takes the Message
Agent to scan it. Rename the log regularly and use the delete_old_logs option.

Publication design

Copyright © 2007, iAnywhere Solutions, Inc. 39

Partitioning tables that do not contain the subscription
expression

In many cases, the rows of a table need to be partitioned even when the subscription expression does not
exist in the table.

The Contacts example
The Contacts database illustrates why and how to partition tables that do not contain the subscription
expression.

Example
Here is a simple database that illustrates the problem.

Contact
contact_key char(10)
name char(40)
cust_key char(12)

Customer
cust_key char(12)
name char(40)
rep_key char(5)

SalesRep
rep_key char(5)
name char(40)

cust_key = cust_key

rep_key = rep_key

Each sales representative sells to several customers. At some customers there is a single contact, while other
customers have several contacts.

The tables in the database
The three tables are described in more detail as follows:

Table Description

SalesReps All sales representatives that work for the company. The SalesReps table has the
following columns:

♦ rep_key An identifier for each sales representative. This is the primary key.

♦ name The name of each sales representative.

The SQL statement creating this table is as follows:

CREATE TABLE SalesReps (
 Rep_key CHAR(12) NOT NULL,
 Name CHAR(40) NOT NULL,
 PRIMARY KEY (rep_key)
)

SQL Remote Installation Design

40 Copyright © 2007, iAnywhere Solutions, Inc.

Table Description

Customers All customers that do business with the company. The Customers table includes
the following columns:

♦ cust_key An identifier for each customer. This is the primary key.

♦ name The name of each customer.

♦ rep_key An identifier for the sales representative in a sales relationship. This
is a foreign key to the SalesReps table.

The SQL statement creating this table is as follows:

CREATE TABLE Customers (
 Cust_key CHAR(12) NOT NULL,
 Name CHAR(40) NOT NULL,
 Rep_key CHAR(12) NOT NULL,
 FOREIGN KEY REFERENCES SalesReps,
 PRIMARY KEY (cust_key)
)

Contacts All individual contacts that do business with the company. Each contact belongs
to a single customer. The Contacts table includes the following columns:

♦ contact_key An identifier for each contact. This is the primary key.

♦ name The name of each contact.

♦ cust_key An identifier for the customer to which the contact belongs. This
is a foreign key to the Customers table.

The SQL statement creating this table is:

CREATE TABLE Contacts (
 Contacts_key CHAR(12) NOT NULL,
 Name CHAR(40) NOT NULL,
 Cust_key CHAR(12) NOT NULL,
 FOREIGN KEY REFERENCES Customers,
 PRIMARY KEY (contact_key)
)

Replication goals
The goals of the design are to provide each sales representative with the following information:

♦ The complete SalesReps table.

♦ Those customers assigned to them, from the Customers table.

♦ Those contacts belonging to the relevant customers, from the Contacts table.

Partitioning the Customers table in the Contacts example
The Customers table can be partitioned using the rep_key value as a subscription expression. A publication
that includes the SalesReps and Customers tables would be as follows:

Partitioning tables that do not contain the subscription expression

Copyright © 2007, iAnywhere Solutions, Inc. 41

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps
 TABLE Customers SUBSCRIBE BY rep_key
)

Partitioning the Contacts table in the Contacts example
The Contacts table must also be partitioned among the sales representatives, but contains no reference to
the sales representative rep_key value. How can the Message Agent match a subscription value against rows
of this table, when rep_key is not present in the table?

To solve this problem, you can use a subquery in the Contacts article that evaluates to the rep_key column
of the Customers table. The publication then looks like this:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps
 TABLE Customers
 SUBSCRIBE BY rep_key
 TABLE Contacts
 SUBSCRIBE BY (SELECT rep_key
 FROM Customers
 WHERE Contacts.cust_key = Customers.cust_key)
)

The WHERE clause in the subscription expression ensures that the subquery returns only a single value, as
only one row in the Customers table has the cust_key value in the current row of the Contacts table.

Territory realignment in the Contacts example

In territory realignment, rows are reassigned among subscribers. In the present case, territory realignment
is the reassignment of rows in the Customers table, and by implication also the Contacts table, among the
Sales Reps.

When a customer is reassigned to a new sales rep, the Customers table is updated. The UPDATE is replicated
as an INSERT or a or a DELETE to the old and new sales representatives, respectively, so that the customer
row is properly transferred to the new sales representative.

For information on the way in which SQL Anywhere and SQL Remote work together to handle this situation,
see “Who gets what?” on page 23.

When a customer is reassigned, the Contacts table is unaffected. There are no changes to the Contacts
table, and consequently no entries in the transaction log pertaining to the Contacts table. In the absence of
this information, SQL Remote cannot reassign the rows of the Contacts table along with the Customers.

This failure will cause referential integrity problems: the Contacts table at the remote database of the old
sales representative contains a cust_key value for which there is no longer a Customers.

Use triggers to maintain Contactss
The solution is to use a trigger containing a special form of UPDATE statement, which does not make any
change to the database tables, but which does make an entry in the transaction log. This log entry contains
the before and after values of the subscription expression, and so is of the proper form for the Message Agent
to replicate the rows properly.

SQL Remote Installation Design

42 Copyright © 2007, iAnywhere Solutions, Inc.

The trigger must be fired BEFORE operations on the row. In this way, the BEFORE value can be evaluated
and placed in the log. Also, the trigger must be fired FOR EACH ROW rather than for each statement, and
the information provided by the trigger must be the new subscription expression. The Message Agent can
use this information to determine which subscribers receive which rows.

Trigger definition
The trigger definition is as follows:

CREATE TRIGGER UpdateCustomer
BEFORE UPDATE ON Customers
REFERENCING NEW AS NewRow
 OLD as OldRow
FOR EACH ROW
BEGIN
 // determine the new subscription expression
 // for the Customers table
 UPDATE Contacts
 PUBLICATION SalesRepData
 OLD SUBSCRIBE BY (OldRow.rep_key)
 NEW SUBSCRIBE BY (NewRow.rep_key)
 WHERE cust_key = NewRow.cust_key;
END;

A special UPDATE statement for publications
The UPDATE statement in this trigger is of the following special form:

UPDATE table-name
PUBLICATION publication-name
{ SUBSCRIBE BY subscription-expression |
 OLD SUBSCRIBE BY old-subscription-expression
 NEW SUBSCRIBE BY new-subscription-expression }
WHERE search-condition

♦ Here is what the UPDATE statement clauses mean:

♦ The table-name indicates the table that must be modified at the remote databases.

♦ The publication-name indicates the publication for which subscriptions must be changed.

♦ The value of subscription-expression is used by the Message Agent to determine both new and existing
recipients of the rows. Alternatively, you can provide both OLD and NEW subscription expressions.

♦ The WHERE clause specifies which rows are to be transferred between subscribed databases.

Notes on the trigger
♦ If the trigger uses the following syntax:

UPDATE table-name
PUBLICATION pub-name
 SUBSCRIBE BY sub-expression
WHERE search-condition

the trigger must be a BEFORE trigger. In this case, a BEFORE UPDATE trigger. In other contexts,
BEFORE DELETE and BEFORE INSERT are necessary.

Partitioning tables that do not contain the subscription expression

Copyright © 2007, iAnywhere Solutions, Inc. 43

♦ If the trigger uses the alternate syntax:

UPDATE table-name
PUBLICATION publication-name
 OLD SUBSCRIBE BY old-subscription-expression
 NEW SUBSCRIBE BY new-subscription-expression }
WHERE search-condition

The trigger can be a BEFORE or AFTER trigger.

♦ The UPDATE statement lists the publication and table that is affected. The WHERE clause in the
statement describes the rows that are affected. No changes are made to the data in the table itself by this
UPDATE, it makes entries in the transaction log.

♦ The subscription expression in this example returns a single value. Subqueries returning multiple values
can also be used. The value of the subscription expression must the value after the UPDATE.

In this case, the only subscriber to the row is the new sales representative. In “Sharing rows among
several subscriptions” on page 46, there are existing as well as new subscribers.

Information in the transaction log
Understanding the information in the transaction log helps in designing efficient publications.

♦ Assume the following data:

♦ SalesReps table

rep_key Name

rep1 Ann

rep2 Marc

♦ Customers table

cust_key name rep_key

cust1 Sybase rep1

cust2 SQL Anywhere rep2

♦ Contacts table

contact_key name cust_key

contact1 David cust1

contact2 Stefanie cust2

♦ Now apply the following territory realignment Update statement

UPDATE Customers
SET rep_key = 'rep2'
WHERE cust_key = 'cust1'

SQL Remote Installation Design

44 Copyright © 2007, iAnywhere Solutions, Inc.

The transaction log would contain two entries arising from this statement: one for the BEFORE trigger
on the Contacts table, and one for the actual UPDATE to the Customers table.

SalesRepData – Publication Name
rep1 – BEFORE list
rep2 – AFTER list
UPDATE Contacts
SET contact_key = 'contact1',
 name = 'David',
 cust_key = 'cust1'
WHERE contact_key = 'contact1'
SalesRepData – Publication Name
rep1 – BEFORE list
rep2 – AFTER list
UPDATE Customers
SET rep_key = 'rep2'
WHERE cust_key = 'cust1'

The Message Agent scans the log for these tags. Based on this information it can determine which remote
users get an INSERT, UPDATE or DELETE.

In this case, the BEFORE list was rep1 and the AFTER list is rep2. If the before and after list values are
different, the rows affected by the UPDATE statement have "moved" from one subscriber value to
another. This means the Message Agent will send a DELETE to all remote users who subscribed by the
value rep1 for the Customers record cust1 and send an INSERT to all remote users who subscribed by
the value rep2.

If the BEFORE and AFTER lists are identical, the remote user already has the row and an UPDATE will
be sent.

Partitioning tables that do not contain the subscription expression

Copyright © 2007, iAnywhere Solutions, Inc. 45

Sharing rows among several subscriptions
There are cases where a row may need to be included in several subscriptions, such as in a many-to-many
relationship. This section uses a case study to illustrate how to handle this situation.

The Policy example

The Policy database illustrates why and how to partition tables when there is a many-to-many relationship
in the database.

Example database
Here is a simple database that illustrates the problem.

Policy

policy_key

cust_key

rep_key

SalesRep

rep_key

name

Customer

cust_key

name

Each sales representative sells to several customers, and some customers deal with more than one sales
representative. In this case, the relationship between Customers and SalesReps is thus a many-to-many
relationship.

The tables in the database
The three tables are described in more detail as follows:

Table Description

SalesReps All sales representatives that work for the company. The SalesReps table has the
following columns:

♦ rep_key An identifier for each sales representative. This is the primary key.

♦ name The name of each sales representative.

The SQL statement creating this table is as follows:

CREATE TABLE SalesReps (
 Rep_key CHAR(12) NOT NULL,
 Name CHAR(40) NOT NULL,
 PRIMARY KEY (rep_key)
);

SQL Remote Installation Design

46 Copyright © 2007, iAnywhere Solutions, Inc.

Table Description

Customers All customers that do business with the company. The Customers table includes
the following columns:

♦ cust_key A primary key column containing an identifier for each customer

♦ name A column containing the name of each customer

The SQL statement creating this table is as follows:

CREATE TABLE Customers (
 Cust_key CHAR(12) NOT NULL,
 Name CHAR(40) NOT NULL,
 PRIMARY KEY (cust_key)
);

Policy A three-column table that maintains the many-to-many relationship between cus-
tomers and sales representatives. The Policy table has the following columns:

♦ policy_key A primary key column containing an identifier for the sales re-
lationship.

♦ cust_key A column containing an identifier for the customer representative
in a sales relationship.

♦ rep_key A column containing an identifier for the sales representative in a
sales relationship.

The SQL statement creating this table is as follows.

CREATE TABLE Policy (
 policy_key CHAR(12) NOT NULL,
 cust_key CHAR(12) NOT NULL,
 rep_key CHAR(12) NOT NULL,
 FOREIGN KEY (cust_key)
 REFERENCES Customers (cust_key)
 FOREIGN KEY (rep_key)
 REFERENCES SalesReps (rep_key),
 PRIMARY KEY (policy_key)
);

Replication goals
The goals of the replication design are to provide each sales representative with the following information:

♦ The entire SalesReps table.

♦ Those rows from the Policy table that include sales relationships involving the sales rep subscribed to
the data.

♦ Those rows from the Customers table listing customers that deal with the sales rep subscribed to the
data.

New problems
The many-to-many relationship between customers and sales representatives introduces new challenges in
maintaining a proper sharing of information:

Sharing rows among several subscriptions

Copyright © 2007, iAnywhere Solutions, Inc. 47

♦ There is a table (in this case the Customers table) that has no reference to the sales representative value
that is used in the subscriptions to partition the data.

Again, this problem is addressed by using a subquery in the publication.

♦ Each row in the Customers table may be related to many rows in the SalesReps table, and shared with
many sales representatives databases.

Put another way, the rows of the Contacts table in “Partitioning tables that do not contain the subscription
expression” on page 40 were partitioned into disjoint sets by the publication. In the present example
there are overlapping subscriptions.

To meet the replication goals, you need one publication and a set of subscriptions. In this case, you can use
two triggers to handle the transfer of customers from one sales representative to another.

The publication

A single publication provides the basis for the data sharing:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps,
 TABLE Policy SUBSCRIBE BY rep_key,
 TABLE Customers SUBSCRIBE BY (
 SELECT rep_key FROM Policy
 WHERE Policy.cust_key =
 Customers.cust_key
),
);

The subscription statements are exactly as in the previous example.

How the publication works
The publication includes part or all of each of the three tables. To understand how the publication works, it
helps to look at each article in turn:

♦ SalesReps table There are no qualifiers to this article, so the entire SalesReps table is included in
the publication.

...
 TABLE SalesReps,
...

♦ Policy table This article uses a subscription expression to specify a column used to partition the data
among the sales reps:

...
 TABLE Policy
 SUBSCRIBE BY rep_key,
...

The subscription expression ensures that each sales rep receives only those rows of the table for which
the value of the rep_key column matches the value provided in the subscription.

The Policy table partitioning is disjoint: there are no rows that are shared with more than one subscriber.

SQL Remote Installation Design

48 Copyright © 2007, iAnywhere Solutions, Inc.

Customers table A subscription expression with a subquery is used to define the partition. The article
is defined as follows:

...
 TABLE Customers SUBSCRIBE BY (
 SELECT rep_key
 FROM Policy
 WHERE Policy.cust_key =
 Customers.cust_key
),
...

The Customers partitioning is non-disjoint: some rows are shared with more than one subscriber.

Multiple-valued subqueries in publications
The subquery in the Customers article returns a single column (rep_key) in its result set, but may return
multiple rows, corresponding to all those sales representatives that deal with the particular customer. When
a subscription expression has multiple values, the row is replicated to all subscribers whose subscription
matches any of the values. It is this ability to have multiple-valued subscription expressions that allows non-
disjoint partitionings of a table.

Territory realignment with a many-to-many relationship

The problem of territory realignment (reassigning rows among subscribers) requires special attention, just
as in the section “Territory realignment in the Contacts example” on page 42.

You need to write triggers to maintain proper data throughout the installation when territory realignment
(reassignment of rows among subscribers) is allowed.

How customers are transferred
This example requires that a customer transfer be achieved by deleting and inserting rows in the Policy table.

To cancel a sales relationship between a customer and a sales representative, a row in the Policy table is
deleted. In this case, the Policy table change is properly replicated to the sales representative, and the row
no longer appears in their database. However, no change has been made to the Customers table, and so no
changes to the Customers table are replicated to the subscriber.

In the absence of triggers, this would leave the subscriber with incorrect data in their Customers table. The
same kind of problem arises when a new row is added to the Policy table.

Using Triggers to solve the problem
The solution is to write triggers that are fired by changes to the Policy table, which include a special syntax
of the UPDATE statement. The special UPDATE statement makes no changes to the database tables, but
does make an entry in the transaction log that SQL Remote uses to maintain data in subscriber databases.

A BEFORE INSERT trigger
Here is a trigger that tracks INSERTS into the Policy table, and ensures that remote databases contain the
proper data.

CREATE TRIGGER InsPolicy
BEFORE INSERT ON Policy

Sharing rows among several subscriptions

Copyright © 2007, iAnywhere Solutions, Inc. 49

REFERENCING NEW AS NewRow
FOR EACH ROW
BEGIN
 UPDATE Customers
 PUBLICATION SalesRepData
 SUBSCRIBE BY (
 SELECT rep_key
 FROM Policy
 WHERE cust_key = NewRow.cust_key
 UNION ALL
 SELECT NewRow.rep_key
)
 WHERE cust_key = NewRow.cust_key;
END;

A BEFORE DELETE trigger
Here is a corresponding trigger that tracks DELETES from the Policy table:

CREATE TRIGGER DelPolicy
BEFORE DELETE ON Policy
REFERENCING OLD AS OldRow
FOR EACH ROW
BEGIN
 UPDATE Customers
 PUBLICATION SalesRepData
 SUBSCRIBE BY (
 SELECT rep_key
 FROM Policy
 WHERE cust_key = OldRow.cust_key
 AND Policy_key <> OldRow.Policy_key
)
 WHERE cust_key = OldRow.cust_key;
END;

Some of the features of the trigger are the same as in the previous section. The major new features are that
the INSERT trigger contains a subquery, and that this subquery can be multi-valued.

Multiple-valued subqueries
The subquery in the BEFORE INSERT trigger is a UNION expression, and can be multi-valued:

...
SELECT rep_key
FROM Policy
WHERE cust_key = NewRow.cust_key
UNION ALL
SELECT NewRow.rep_key
...

♦ The second part of the UNION is the rep_key value for the new sales representative dealing with the
customer, taken from the INSERT statement.

♦ The first part of the UNION is the set of existing sales representatives dealing with the customer, taken
from the Policy table.

This illustrates the point that the result set of the subscription query must be all those sales representatives
receiving the row, not just the new sales representatives.

The subquery in the BEFORE DELETE trigger is multi-valued:

SQL Remote Installation Design

50 Copyright © 2007, iAnywhere Solutions, Inc.

...
SELECT rep_key
FROM Policy
WHERE cust_key = OldRow.cust_key
AND rep_key <> OldRow.rep_key
...

♦ The subquery takes rep_key values from the Policy table. The values include the primary key values of
all those sales reps who deal with the customer being transferred (WHERE cust_key =
OldRow.cust_key), with the exception of the one being deleted (AND rep_key <> OldRow.rep_key).

This again emphasizes that the result set of the subscription query must be all those values matched by
sales representatives receiving the row following the DELETE.

Notes
♦ Data in the Customers table is not identified with an individual subscriber (by a primary key value, for

example) and is shared among more than one subscriber. This allows the possibility of the data being
updated in more than one remote site between replication messages, which could lead to replication
conflicts. You can address this issue either by permissions (allowing only certain users the right to update
the Customers table, for example) or by adding RESOLVE UPDATE triggers to the database to handle
the conflicts programmatically.

♦ UPDATES on the Policy table have not been described here. They should either be prevented, or a
BEFORE UPDATE trigger is required that combines features of the BEFORE INSERT and BEFORE
DELETE triggers shown in the example.

Using the subscribe_by_remote option with many-to-many relationships
When the subscribe_by_remote option is On, operations from remote databases on rows with a subscribe
by value of NULL or an empty string will assume the remote user is subscribed to the row. By default, the
subscribe_by_remote option is set to On. In most cases, this setting is the desired setting.

The subscribe_by_remote option solves a problem that otherwise would arise with some publications,
including the Policy example. This section describes the problem, and how the option automatically avoids
it.

The publication uses a subquery for the Customers table subscription expression, because each Customers
may belong to several Sales Reps:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps,
 TABLE Policy SUBSCRIBE BY rep_key,
 TABLE Customers SUBSCRIBE BY (
 SELECT rep_key FROM Policy
 WHERE Policy.cust_key =
 Customers.cust_key
),
);

Marc Dill is a Sales Rep who has just arranged a policy with a new customer. He inserts a new
Customers row and also inserts a row in the Policy table to assign the new Customers to himself.

Sharing rows among several subscriptions

Copyright © 2007, iAnywhere Solutions, Inc. 51

Policy

pol2345

cust1010

195

SalesRep

195

Marc Dill

Customer

cust1010

cust_name

As the INSERT of the Customers row is carried out by the Message Agent at the consolidated database,
SQL Anywhere records the subscription value in the transaction log, at the time of the INSERT.

Later, when the Message Agent scans the log, it builds a list of subscribers from the subscription expression,
and Marc Dill is not on the list, as the row in the Policy table assigning the customer to him has not yet been
applied. If subscribe_by_remote were set to Off, the result would be that the new Customers is sent back to
Marc Dill as a DELETE operation.

As long as subscribe_by_remote is set to On, the Message Agent assumes the row belongs to the Sales Rep
that inserted it, the INSERT is not replicated back to Marc Dill, and the replication system is intact.

If subscribe_by_remote is set to Off, you must ensure that the Policy row is inserted before the Customers
row, with the referential integrity violation avoided by postponing checking to the end of the transaction.

SQL Remote Installation Design

52 Copyright © 2007, iAnywhere Solutions, Inc.

Managing conflicts
An UPDATE conflict occurs when the following sequence of events takes place:

1. User 1 updates a row at remote site 1.

2. User 2 updates the same row at remote site 2.

3. The update from User 1 is replicated to the consolidated database.

4. The update from User 2 is replicated to the consolidated database.

When the SQL Remote Message Agent replicates UPDATE statements, it does so as a separate UPDATE
for each row. Also, the message contains the old row values for comparison. When the update from user 2
arrives at the consolidated database, the values in the row are not those recorded in the message.

UPDATE SalesRep
SET Dept=104
WHERE ID = 3

UPDATE SalesRep
SET Dept=103
WHERE ID = 3

First UPDATE
succeeds

Second UPDATE
overwrites the
first

ID Rep
Ann

2
1

Marc

Dept
101
101

3 Shih 102>103

ID Rep
Ann

2
1

Marc

Dept
101
101

3 Shih 102>104

ID Rep
Ann

2
1

Marc

Dept
101
101

3 Shih 104

Default conflict resolution
By default, the UPDATE still proceeds, so that the User 2 update (the last to reach the consolidated database)
becomes the value in the consolidated database, and is replicated to all other databases subscribed to that
row.

In general, the default method of conflict resolution is that the most recent operation (in this case that from
User 2) succeeds, and no report is made of the conflict. The update from User 1 is lost. SQL Remote also
allows custom conflict resolution, using a trigger to resolve conflicts in a way that makes sense for the data
being changed.

Managing conflicts

Copyright © 2007, iAnywhere Solutions, Inc. 53

Conflict resolution does not apply to primary key updates
UPDATE conflicts do not apply to primary key updates. You should not update primary keys in a SQL
Remote installation. Primary key conflicts must be excluded from the installation by proper design.

This section describes how you can build conflict resolution into your SQL Remote installation at the
consolidated database.

How SQL Remote handles conflicts

When a conflict is detected
SQL Remote replication messages include UPDATE statements as a set of single row updates, each with a
VERIFY clause that includes values prior to updating.

An UPDATE conflict is detected by the database server as a failure of the VERIFY clause values to match
the rows in the database.

Conflicts are detected and resolved by the Message Agent, but only at a consolidated database. When an
UPDATE conflict is detected in a message from a remote database, the Message Agent causes the database
server to take two actions:

1. Any conflict resolution (RESOLVE UPDATE) triggers are fired.

2. The UPDATE is applied.

UPDATE statements are applied even if the VERIFY clause values do not match, whether or not there is a
RESOLVE UPDATE trigger.

Conflict resolution can take several forms. For example,

♦ In some applications, resolution could mean reporting the conflict into a table.

♦ You may wish to keep updates made at the consolidated database in preference to those made at remote
sites.

♦ Conflict resolution can be more sophisticated, for example in resolving inventory numbers in the face
of goods deliveries and orders.

Implementing conflict resolution

This section describes what you need to do to implement custom conflict resolution in SQL Remote.

SQL Remote allows you to define conflict resolution triggers to handle UPDATE conflicts. Conflict
resolution triggers are fired only at a consolidated database, when messages are applied by a remote user.
When an UPDATE conflict is detected at a consolidated database, the following sequence of events takes
place.

1. Any conflict resolution triggers defined for the operation are fired.

SQL Remote Installation Design

54 Copyright © 2007, iAnywhere Solutions, Inc.

2. The UPDATE takes place.

3. Any actions of the trigger, as well as the UPDATE, are replicated to all remote databases, including
the sender of the message that triggered the conflict.

In general, SQL Remote for SQL Anywhere does not replicate the actions of triggers: the trigger is
assumed to be present at the remote database. Conflict resolution triggers are fired only at consolidated
databases, and so their actions are replicated to remote databases.

4. At remote databases, no RESOLVE UPDATE triggers are fired when a message from a consolidated
database contains an UPDATE conflict.

5. The UPDATE is carried out at the remote databases.

At the end of the process, the data is consistent throughout the setup.

UPDATE conflicts cannot happen where data is shared for reading, but each row (as identified by its primary
key) is updated at only one site. They only occur when data is being updated at more than one site.

Using conflict resolution triggers
This section describes how to use RESOLVE UPDATE, or conflict resolution triggers.

UPDATE statements with a VERIFY clause
Conflict resolution triggers are fired by the failure of values in the VERIFY clause of an UPDATE statement
to match the values in the database before the update. An UPDATE statement with a VERIFY clause takes
the following form:

UPDATE table-list
SET column-name = expression, …
[VERIFY (column-name, …)
 VALUES (expression, …)]
[WHERE search-condition]

The VERIFY clause can be used only if table-list consists of a single table. It compares the values of specified
columns to a set of expected values, which are the values that were present in the publisher database when
the UPDATE statement was applied there. When the VERIFY clause is specified, only one table can be
updated at a time.

The VERIFY clause is useful only for single-row updates. However, multi-row update statements entered
at a database are replicated as a set of single-row updates by the Message Agent, so this imposes no constraints
on client applications.

Conflict resolution trigger syntax
The syntax for a RESOLVE UPDATE trigger is as follows:

CREATE TRIGGER trigger-name
RESOLVE UPDATE
OF column-name ON table-name
[REFERENCING [OLD AS old_val]
 [NEW AS new_val]

Managing conflicts

Copyright © 2007, iAnywhere Solutions, Inc. 55

 [REMOTE AS remote_val]]
FOR EACH ROW
BEGIN
 …
END

RESOLVE UPDATE triggers fire before each row is updated. The REFERENCING clause allows access
to the values in the row of the table to be updated (OLD), to the values the row is to be updated to (NEW)
and to the rows that should be present according to the VERIFY clause (REMOTE). Only columns present
in the VERIFY clause can be referenced in the REMOTE AS clause; other columns produce a "column not
found" error.

Using the VERIFY_ALL_ COLUMNS option
The database option verify_all_columns is Off by default. If it is set to On, all columns are verified on
replicated updates, and a RESOLVE UPDATE trigger is fired whenever any column is different. If it is set
to Off, only those columns that are updated are checked.

Setting this option to On makes messages bigger, because more information is sent for each UPDATE.

If this option is set at the consolidated database before remote databases are extracted, it will be set at the
remote databases also.

You can set the verify_all_columns option either for the PUBLIC group or just for the user contained in the
Message Agent connection string.

Using the CURRENT REMOTE USER special constant
The CURRENT REMOTE USER special constant holds the user ID of the remote user sending the message.
This can be used in RESOLVE UPDATE triggers that place reports of conflicts into a table, to identify the
user producing a conflict.

Conflict resolution examples
This section describes some ways of using RESOLVE UPDATE triggers to handle conflicts.

Resolving date conflicts

Suppose a table in a contact management system has a column holding the most recent contact with each
customer.

One representative talks with a customer on a Friday, but does not upload his changes to the consolidated
database until the next Monday. Meanwhile, a second representative meets the customer on the Saturday,
and updates the changes that evening.

There is no conflict when the Saturday UPDATE is replicated to the consolidated database, but when the
Monday UPDATE arrives it finds the row already changed.

By default, the Monday UPDATE would proceed, leaving the column with the incorrect information that
the most recent contact occurred on Friday.

Update conflicts on this column should be resolved by inserting the most recent date in the row.

SQL Remote Installation Design

56 Copyright © 2007, iAnywhere Solutions, Inc.

Implementing the solution
The following RESOLVE UPDATE trigger chooses the most recent of the two new values and enters it in
the database.

CREATE TRIGGER contact_date RESOLVE UPDATE
ON Contacts
REFERENCING OLD AS old_name
NEW AS new_name
FOR EACH ROW
BEGIN
 IF new_name.contact_date <
 old_name.contact_date THEN
 SET new_name.contact_date
 = old_name.contact_date
 END IF
END

If the value being updated is later than the value that would replace it, the new value is reset to leave the
entry unchanged.

Resolving inventory conflicts

Consider a warehouse system for a manufacturer of sporting goods. There is a table of product information,
with a Quantity column holding the number of each product left in stock. An update to this column will
typically deplete the quantity in stock or, if a new shipment is brought in, add to it.

A sales representative at a remote database enters an order, depleting the stock of small tank top tee shirts
by five, from 28 to 23, and enters this in on her database. Meanwhile, before this update is replicated to the
consolidated database, a new shipment of tee shirts comes in, and the warehouse enters the shipment, adding
40 to the Quantity column to make it 68.

Updates
made at
remote
databases

28 > 68

28 > 6828 > 23

The warehouse entry gets added to the database: the Quantity column now shows there are 68 small tank-
top tee shirts in stock. When the update from the sales representative arrives, it causes a conflict–SQL
Anywhere detects that the update is from 28 to 23, but that the current value of the column is 68.

By default, the most recent UPDATE succeeds, and the inventory level is set to the incorrect value of 23.

Managing conflicts

Copyright © 2007, iAnywhere Solutions, Inc. 57

28 > 23

Default
conflict
resolution:
wrong result

68 > 23

28 > 68

In this case the conflict should be resolved by summing the changes to the inventory column to produce the
final result, so that a final value of 63 is placed into the database.

Conflict
resolution
trigger:
correct
result

68 > 63

28 > 6828 > 23

Implementing the solution
A suitable RESOLVE UPDATE trigger for this situation would add the increments from the two updates.
For example,

CREATE TRIGGER resolve_quantity
RESOLVE UPDATE OF Quantity
ON "DBA".Products
REFERENCING OLD AS old_name
NEW AS new_name
REMOTE AS remote_name
FOR EACH ROW
BEGIN
 SET new_name.Quantity = new_name.Quantity
 + old_name.Quantity
 - remote_name.Quantity
END

This trigger adds the difference between the old value in the consolidated database (68) and the old value in
the remote database when the original UPDATE was executed (28) to the new value being sent, before the
UPDATE is implemented. Thus, new_name.Quantity becomes 63 (= 23 + 68 - 28), and this value is entered
into the Quantity column.

Consistency is maintained at the remote database as follows:

1. The original remote UPDATE changed the value from 28 to 23.

SQL Remote Installation Design

58 Copyright © 2007, iAnywhere Solutions, Inc.

2. The warehouse's entry is replicated to the remote database, but fails as the old value is not what was
expected.

3. The changes made by the RESOLVE UPDATE trigger are replicated to the remote database.

Reporting conflicts

In some cases, you may not want to alter the default way in which SQL Remote resolves conflicts; you may
just want to report the conflicts by storing them in a table. In this way, you can look at the conflict table to
see what, if any, conflicts have occurred, and if necessary take action to resolve the conflicts.

Designing to avoid referential integrity errors

The tables in a relational database are related through foreign key references. The referential integrity
constraints applied as a consequence of these references ensure that the database remains consistent. If you
wish to replicate only a part of a database, there are potential problems with the referential integrity of the
replicated database.

By paying attention to referential integrity issues while designing publications you can avoid these problems.
This section describes some of the more common integrity problems and suggests ways to avoid them.

Unreplicated referenced table errors
The sales publication described in “Publishing whole tables” on page 29 includes the SalesOrders table:

CREATE PUBLICATION PubSales (
 TABLE Customers,
 TABLE SalesOrders,
 TABLE SalesOrderItems,
 TABLE Products
)

The SalesOrders table has a foreign key to the Employees table. The ID of the sales rep is a foreign key
in the SalesOrders table referencing the primary key of the Employees table. However, the Employees
table is not included in the publication.

If the publication is created in this manner, new sales orders would fail to replicate unless the remote database
has the foreign key reference removed from the SalesOrders table.

If you use the extraction utility to create the remote databases, the foreign key reference is automatically
excluded from the remote database, and this problem is avoided. However, there is no constraint in the
database to prevent an invalid value from being inserted into the SalesRepresentative column of the
SalesOrders table, and if this happens the INSERT will fail at the consolidated database. To avoid this
problem, you can include the Employees table (or at least its primary key) in the publication.

Designing triggers to avoid errors

Actions performed by triggers are not replicated: triggers that exist at one database in a SQL Remote setup
are assumed by the replication procedure to exist at other databases in the setup. When an action that fires

Managing conflicts

Copyright © 2007, iAnywhere Solutions, Inc. 59

a trigger at the consolidated database is replicated at the replicate site, the trigger is automatically fired. By
default, the database extraction utility extracts the trigger definitions, so that they are in place at the remote
database also.

If a publication includes only a subset of a database, a trigger at the consolidated database may refer to tables
or rows that are present at the consolidated database, but not at the remote databases. You can design your
triggers to avoid such errors by making actions of the trigger conditional using an IF statement. The following
list suggests some ways in which triggers can be designed to work on consolidated and remote databases.

♦ Have actions of the trigger be conditional on the value of CURRENT PUBLISHER. In this case, the
trigger would not execute certain actions at the remote database.

♦ Have actions of the trigger be conditional on the object_id function not returning NULL. The
object_id function takes a table or other object as argument, and returns the ID number of that object or
NULL if the object does not exist.

♦ Have actions of the trigger be conditional on a SELECT statement which determines if rows exist.

The RESOLVE UPDATE trigger is a special trigger type for the resolution of UPDATE conflicts, and is
discussed in the section “Conflict resolution examples” on page 56.

The actions of RESOLVE UPDATE triggers are replicated to remote databases, including the database that
caused the conflict.

SQL Remote Installation Design

60 Copyright © 2007, iAnywhere Solutions, Inc.

Ensuring unique primary keys
Primary key values must be unique. When all users are connected to the same database, there is no problem
keeping unique values. If a user tries to re-use a value, the INSERT statement fails.

The situation is different in a replication system because users are connected to many databases. A potential
problem arises when two users, connected to different databases, insert a row using the same primary key
value. Each of their statements succeeds because the value is unique in each database.

However, problems arise in a replication system when two users, connected to separate databases, INSERT
a row using the same primary key value. The second INSERT to reach a given database in the replication
system fails. As SQL Remote is a replication system for occasionally connected users, there can be no locking
mechanism across all databases in the installation. It is necessary to design your SQL Remote installation
so that primary key duplication errors do not occur.

For primary key errors to be designed out of SQL Remote installations, the primary keys of tables that may
be modified at more than one site must be guaranteed unique. There are several ways of achieving this goal.
This chapter describes two general, economical, and reliable methods.

1. Using the default global autoincrement feature of SQL Anywhere.

2. Using the primary key pools to maintain a list of unused, unique primary key values at each site.

You can use these techniques either separately or together to avoid duplicate values.

Using global autoincrement default column values

In SQL Anywhere, you can set the default column value to be GLOBAL AUTOINCREMENT. You can use
this default for any column in which you want to maintain unique values, but it is particularly useful for
primary keys. This feature is intended to simplify the task of generating unique values in setups where data
is being replicated among multiple databases, typically by MobiLink synchronization.

When you specify default global autoincrement, the domain of values for that column is partitioned. Each
partition contains the same number of values. For example, if you set the partition size for an integer column
in a database to 1000, one partition extends from 1001 to 2000, the next from 2001 to 3000, and so on.

You assign each copy of the database a unique global database identification number. SQL Anywhere
supplies default values in a database only from the partition uniquely identified by that database's number.
For example, if you assigned the database in the above example the identity number 10, the default values
in that database would be chosen in the range 10001–11000. Another copy of the database, assigned the
identification number 11, would supply default value for the same column in the range 11001–12000.

Declaring default global autoincrement

You can set default values in your database by selecting the column properties in Sybase Central, or by
including the DEFAULT GLOBAL AUTOINCREMENT phrase in a TABLE or ALTER TABLE statement.

Ensuring unique primary keys

Copyright © 2007, iAnywhere Solutions, Inc. 61

Optionally, the partition size can be specified in parentheses immediately following the AUTOINCREMENT
keyword. The partition size may be any positive integer, although the partition size is generally chosen so
that the supply of numbers within any one partition will rarely, if ever, be exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is 216 = 65536; for columns of other
types the default partition size is 232 = 4294967296. Since these defaults may be inappropriate, especially
if our column is not of type INT or BIGINT, it is best to specify the partition size explicitly.

For example, the following statement creates a simple table with two columns: an integer that holds a
customer identification number and a character string that holds the customer's name.

CREATE TABLE Customers (
 ID INT DEFAULT GLOBAL AUTOINCREMENT (5000),
 name VARCHAR(128) NOT NULL,
 PRIMARY KEY (ID)
)

In the above example, the chosen partition size is 5000.

For more information on GLOBAL AUTOINCREMENT, see “CREATE TABLE statement” [SQL
Anywhere Server - SQL Reference].

Setting the global_database_id value

When deploying an application, you must assign a different identification number to each database. You can
accomplish the task of creating and distributing the identification numbers by a variety of means. One method
is to place the values in a table and download the correct row to each database based on some other unique
property, such as user name.

♦ To set the global database identification number

• You set the identification number of a database by setting the value of the public option
global_database_id. The identification number must be a non-negative integer.

For example, the following statement sets the database identification number to 20.

SET OPTION PUBLIC.global_database_id = 20

If the partition size for a particular column is 5000, default values for this database are selected from the
range 100001–105000.

Setting unique database identification numbers when extracting databases

If you use the extraction utility to create your remote databases, you can write a stored procedure to automate
the task. If you create a stored procedure named sp_hook_dbxtract_begin, it is called automatically by the
extraction utility. Before the procedure is called, the extraction utility creates a temporary table named
#hook_dict, with the following contents:

SQL Remote Installation Design

62 Copyright © 2007, iAnywhere Solutions, Inc.

name value

extracted_db_global_id user ID being extracted

If you write your sp_hook_dbxtract_begin procedure to modify the value column of the row, that value is
used as the global_database_id option of the extracted database, and marks the beginning of the range of
primary key values for GLOBAL DEFAULT AUTOINCREMENT values.

Example
Consider extracting a database for remote user user2 with a user_id of 101. If you do not define an
sp_hook_dbxtract_begin procedure, the extracted database will have global_database_id set to 101.

If you define a sp_hook_dbxtract_begin procedure, but it does not modify any rows in the #hook_dict then
the option will still be set to 101.

If you set up the database as follows:

set option "PUBLIC"."global_database_id" = '1';
create table extract_id (next_id integer not null) ;
insert into extract_id values(1);
create procedure sp_hook_dbxtract_begin
as
 declare @next_id integer
 update extract_id set next_id = next_id + 1000
 select @next_id = (next_id)
 from extract_id
 commit
 update #hook_dict
 set value = @next_id
 where name = 'extracted_db_global_id'

Then each extracted or re-extracted database will get a different global_database_id. The first starts at
1001, the next at 2001, and so on.

To assist in debugging procedure hooks, dbxtract outputs the following when it is set to operate in verbose
mode:

♦ the procedure hooks found

♦ the contents of #hook_dict before the procedure hook is called

♦ the contents of #hook_dict after the procedure hook is called.

How default values are chosen

The public option global_database_id in each database must be set to a unique, non-negative integer. The
range of default values for a particular database is pn + 1 to p(n + 1), where p is the partition size and n is
the value of the public option global_database_id. For example, if the partition size is 1000 and
global_database_id is set to 3, then the range is from 3001 to 4000.

If global_database_id is set to a non-negative integer, SQL Anywhere chooses default values by applying
the following rules:

Ensuring unique primary keys

Copyright © 2007, iAnywhere Solutions, Inc. 63

♦ If the column contains no values in the current partition, the first default value is pn + 1.

♦ If the column contains values in the current partition, but all are less than p(n + 1), the next default value
will be one greater than the previous maximum value in this range.

♦ Default column values are not affect by values in the column outside of the current partition; that is, by
numbers less than pn + 1 or greater than p(n + 1). Such values may be present if they have been replicated
from another database via MobiLink synchronization.

If the public option global_database_id is set to the default value of 2147483647, a null value is inserted
into the column. Should null values not be permitted, the attempt to insert the row causes an error. This
situation arises, for example, if the column is contained in the table's primary key.

Because the public option global_database_id cannot be set to negative values, the values chosen are always
positive. The maximum identification number is restricted only by the column data type and the partition
size.

Null default values are also generated when the supply of values within the partition has been exhausted. In
this case, a new value of global_database_id should be assigned to the database to allow default values to
be chosen from another partition. Attempting to insert the null value causes an error if the column does not
permit nulls. To detect that the supply of unused values is low and handle this condition, create an event of
type GlobalAutoincrement.

Should the values in a particular partition become exhausted, you can assign a new database ID to that
database. You can assign new database ID numbers in any convenient manner. However, one possible
technique is to maintain a pool of unused database ID values. This pool is maintained in the same manner
as a pool of primary keys.

You can set an event handler to automatically notify the database administrator (or carry out some other
action) when the partition is nearly exhausted. See “Defining trigger conditions for events” [SQL Anywhere
Server - Database Administration].

See “global_database_id option [database]” [SQL Anywhere Server - Database Administration].

For further information on pools, see “Using primary key pools” on page 64.

Using primary key pools

The primary key pool is a table that holds a set of primary key values for each database in the SQL Remote
installation. Each remote user receives their own set of primary key values. When a remote user inserts a
new row into a table, they use a stored procedure to select a valid primary key from the pool. The pool is
maintained by periodically running a procedure at the consolidated database that replenishes the supply.

The method is described using a simple example database consisting of sales representatives and their
customers. The tables are much simpler than you would use in a real database; this allows us to focus just
on those issues important for replication.

The primary key pool technique requires the following components:

♦ Key pool table A table to hold valid primary key values for each database in the installation.

SQL Remote Installation Design

64 Copyright © 2007, iAnywhere Solutions, Inc.

♦ Replenishment procedure A stored procedure keeps the key pool table filled.

♦ Sharing of key pools Each database in the installation must subscribe to its own set of valid values
from the key pool table.

♦ Data entry procedures New rows are entered using a stored procedure that picks the next valid
primary key value from the pool and delete that value from the key pool.

The primary key pool table

The pool of primary keys is held in a separate table. The following CREATE TABLE statement creates a
primary key pool table:

CREATE TABLE KeyPool (
 table_name VARCHAR(40) NOT NULL,
 value INTEGER NOT NULL,
 location CHAR(12) NOT NULL,
 PRIMARY KEY (table_name, value),
);

The columns of this table have the following meanings:

Column Description

table_name Holds the names of tables for which primary key pools must be maintained. In our
simple example, if new sales representatives were to be added only at the consolidated
database, only the Customers table needs a primary key pool and this column is
redundant. It is included to show a general solution.

value Holds a list of primary key values. Each value is unique for each table listed in
table_name.

location An identifier for the recipient. In some setups, this could be the same as the
rep_key value of the SalesReps table. In other setups, there will be users other than
sales representatives and the two identifiers should be distinct.

For performance reasons, you may wish to create an index on the table:

CREATE INDEX KeyPoolLocation
ON KeyPool (table_name, location, value);

Replicating the primary key pool

You can either incorporate the key pool into an existing publication or share it as a separate publication. In
this example, you create a separate publication for the primary key pool.

♦ To replicate the primary key pool (SQL)

1. Create a publication for the primary key pool data.

CREATE PUBLICATION KeyPoolData (
 TABLE KeyPool SUBSCRIBE BY location
);

Ensuring unique primary keys

Copyright © 2007, iAnywhere Solutions, Inc. 65

2. Create subscriptions for each remote database to the KeyPoolData publication.

CREATE SUBSCRIPTION
TO KeyPoolData('user1')
FOR user1;
CREATE SUBSCRIPTION
TO KeyPoolData('user2')
FOR user2;
...

The subscription argument is the location identifier.

In some circumstances it makes sense to add the KeyPool table to an existing publication and use the same
argument to subscribe to each publication. This example keeps the location and rep_key values distinct to
provide a more general solution.

See also
♦ “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
♦ “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Replenishing the key pool

Every time a user adds a new customer, their pool of available primary keys is depleted by one. The primary
key pool table needs to be periodically replenished at the consolidated database using a procedure such as
the following:

CREATE PROCEDURE ReplenishPool()
BEGIN
 FOR EachTable AS TableCursor
 CURSOR FOR
 SELECT table_name
 AS CurrTable, max(value) as MaxValue
 FROM KeyPool
 GROUP BY table_name
 DO
 FOR EachRep AS RepCursor
 CURSOR FOR
 SELECT location
 AS CurrRep, count(*) as NumValues
 FROM KeyPool
 WHERE table_name = CurrTable
 GROUP BY location
 DO
 // make sure there are 100 values.
 // Fit the top-up value to your
 // requirements
 WHILE NumValues < 100 LOOP
 SET MaxValue = MaxValue + 1;
 SET NumValues = NumValues + 1;
 INSERT INTO KeyPool
 (table_name, location, value)
 VALUES
 (CurrTable, CurrRep, MaxValue);
 END LOOP;
 END FOR;
 END FOR;
END;

SQL Remote Installation Design

66 Copyright © 2007, iAnywhere Solutions, Inc.

This procedure fills the pool for each user up to 100 values. The value you need depends on how often users
are inserting rows into the tables in the database.

The ReplenishPool procedure must be run periodically at the consolidated database to refill the pool of
primary key values in the KeyPool table.

The ReplenishPool procedure requires at least one primary key value to exist for each subscriber, so that
it can find the maximum value and add one to generate the next set. To initially fill the pool you can insert
a single value for each user, and then call ReplenishPool to fill up the rest. The following example illustrates
this for three remote users and a single consolidated user named Office:

INSERT INTO KeyPool VALUES('Customers', 40, 'user1');
INSERT INTO KeyPool VALUES('Customers', 41, 'user2');
INSERT INTO KeyPool VALUES('Customers', 42, 'user3');
INSERT INTO KeyPool VALUES('Customers', 43, 'Office');
CALL ReplenishPool();

Cannot use a trigger to replenish the key pool
You cannot use a trigger to replenish the key pool, as trigger actions are not replicated.

Using primary keys from the key pool

When a sales representative wants to add a new customer to the Customers table, the primary key value to
be inserted is obtained using a stored procedure. This example shows a stored procedure to supply the primary
key value, and also illustrates a stored procedure to carry out the INSERT.

The procedures takes advantage of the fact that the Sales Rep identifier is the CURRENT PUBLISHER of
the remote database.

♦ NewKey procedure The NewKey procedure supplies an integer value from the key pool and deletes
the value from the pool.

CREATE PROCEDURE NewKey(
 IN @table_name VARCHAR(40),
 OUT @value INTEGER)
BEGIN
 DECLARE NumValues INTEGER;

 SELECT count(*), min(value)
 INTO NumValues, @value
 FROM KeyPool
 WHERE table_name = @table_name
 AND location = CURRENT PUBLISHER;
 IF NumValues > 1 THEN
 DELETE FROM KeyPool
 WHERE table_name = @table_name
 AND value = @value;
 ELSE
 // Never take the last value, because
 // ReplenishPool will not work.
 // The key pool should be kept large enough
 // that this never happens.
 SET @value = NULL;
 END IF;
END;

Ensuring unique primary keys

Copyright © 2007, iAnywhere Solutions, Inc. 67

♦ NewCustomers procedure The NewCustomers procedure inserts a new customer into the table,
using the value obtained by NewKey to construct the primary key.

CREATE PROCEDURE NewCustomers(
 IN customer_name CHAR(40))
BEGIN
 DECLARE new_cust_key INTEGER ;
 CALL NewKey('Customers', new_cust_key);
 INSERT
 INTO Customers (
 cust_key,
 name,
 location
)
 VALUES (
 'Customers ' ||
 CONVERT (CHAR(3), new_cust_key),
 customer_name,
 CURRENT PUBLISHER
);
);
END

You may want to enhance this procedure by testing the new_cust_key value obtained from NewKey to
check that it is not NULL, and preventing the insert if it is NULL.

SQL Remote Installation Design

68 Copyright © 2007, iAnywhere Solutions, Inc.

Creating subscriptions
To subscribe to a publication, each subscriber must be granted REMOTE permissions and a subscription
must also be created for that user. The details of the subscription are different depending on whether or not
the publication uses a subscription expression.

Working with subscriptions in Sybase Central
♦ To create and manage subscriptions in Sybase Central

1. In the left pane, open the Publications folder.

2. Select the desired publication. You can perform the following tasks in Sybase Central:

3. In the right pane, click the SQL Remote Subscriptions tab. You can configure the appropriate settings
as follows:

♦ To subscribe a remote user to the publication, from the File menu choose New ► SQL Remote
Subscription and follow the instructions in the Create SQL Remote Subscription wizard.

♦ To unsubscribe a remote user, right-click the user in the Subscribers list and choose Delete from
the popup menu.

♦ To manually start, stop, or synchronize subscriptions, select the user in the Subscribers list and
choose Properties from the popup menu.

Click the Advanced tab. On this tab, click Start Now to start subscriptions, Stop Now to stop
subscriptions, or Synchronize Now to synchronize subscriptions.

The subscriptions are affected as soon as you click the button. Subsequently clicking Cancel on the
property sheet does not cancel your start/stop/synchronize action.

Subscriptions with no subscription expression
To subscribe a user to a publication, if that publication has no subscription expression, you need the following
information:

♦ User ID The user who is being subscribed to the publication. This user must have been granted remote
permissions.

♦ Publication name The name of the publication to which the user is being subscribed.

The following statement creates a subscription for a user ID SamS to the PubOrdersSamuelSinger
publication, which was created using a WHERE clause:

CREATE SUBSCRIPTION
TO PubOrdersSamuelSinger
FOR SamS

Subscriptions with a subscription expression
To subscribe a user to a publication, if that publication does have a subscription expression, you need the
following information:

Creating subscriptions

Copyright © 2007, iAnywhere Solutions, Inc. 69

♦ User ID The user who is being subscribed to the publication. This user must have been granted remote
permissions.

♦ Publication name The name of the publication to which the user is being subscribed.

♦ Subscription value The value that is to be tested against the subscription expression of the
publication. For example, if a publication has the name of a column containing an employee ID as a
subscription expression, the value of the employee ID of the subscribing user must be provided in the
subscription. The subscription value is always a string.

The following statement creates a subscription for Samuel Singer (user ID SamS, employee ID 856) to the
PubOrders publication, defined with a subscription expression SalesRepresentative, requesting the rows
for Samuel Singer's own sales:

CREATE SUBSCRIPTION
TO PubOrders ('856')
FOR SamS

Starting a subscription
In order to receive and apply updates properly, each subscriber needs to have an initial copy of the data. The
synchronization process is discussed in “Synchronizing databases” on page 77.

See “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference].

SQL Remote Installation Design

70 Copyright © 2007, iAnywhere Solutions, Inc.

Part III. SQL Remote Administration

This part describes deployment and administration issues for SQL Remote.

CHAPTER 4

Deploying and Synchronizing Databases with
SQL Remote

Contents
Deployment overview .. 74
Test before deployment ... 75
Synchronizing databases .. 77
Using the Extraction utility (dbxtract) ... 79
Synchronizing data over a message system ... 84

Copyright © 2007, iAnywhere Solutions, Inc. 73

Deployment overview
When you have completed the design phase of a SQL Remote system, the next step is to create and deploy
the remote databases and applications.

Deployment tasks
In some cases, deployment is a major undertaking. For example, if you have a large number of remote users
in a sales force automation system, deployment involves the following steps:

1. Building a SQL Anywhere database for each remote user, with their own initial copy of the data.

2. Installing the database, together with the SQL Anywhere database server, the SQL Remote Message
Agent, and client application, on each user's machine.

3. Ensuring that the system is properly configured, with correct user names, Message Agent connection
strings, permissions, and so on.

In the case of large-scale deployments, remote sites are most commonly SQL Anywhere databases, and this
chapter focuses on this case.

Topics covered
This chapter covers the following topics:

♦ Creating remote databases Before you can deploy a SQL Remote system, you must create a remote
database for each remote site.

Most of the description focuses on creating remote SQL Anywhere databases.

♦ Synchronizing data Synchronization of a database is the setting up of the initial copy of data in the
remote database.

Deploying and Synchronizing Databases with SQL Remote

74 Copyright © 2007, iAnywhere Solutions, Inc.

Test before deployment
Thorough testing of your SQL Remote system should be carried out before deployment, especially if you
have a large number of remote sites.

When you are in the design and setup phase, you can alter many facets of the SQL Remote setup. Altering
publications, message types, writing triggers to resolve update conflicts are all easy to do.

Once you have deployed a SQL Remote application, the situation is different. A SQL Remote setup can be
seen as a single dispersed database, spread out over many sites, maintaining a loose form of consistency.
The data may never be in exactly the same state in all databases in the setup at once, but all data changes
are replicated as complete transactions around the system over time. Consistency is built in to a SQL Remote
setup through careful publication design, and through the reconciliation of UPDATE conflicts as they occur.

Upgrading and resynchronization
Once a SQL Remote setup is deployed and is running, it is not easy to tinker with. An upgrade to a SQL
Remote installation needs to be carried out with the same care as an initial deployment. This applies also to
upgrading maintenance releases of the SQL Anywhere database software. Any such software upgrade needs
to be tested for compatibility before deployment.

Making changes to a database schema at one database within the system can cause failures because of
incompatible database objects. The passthrough mode does allow schema changes to be sent to some or all
databases in a SQL Remote setup, but must still be used with care and planning.

The loose consistency in the dispersed database means that updates are always in progress: you cannot
generally stop changes being made to all databases, make some changes to the database schema, and restart.

Without careful planning, changes to a database schema will produce errors throughout the installation, and
will require all subscriptions to be stopped and resynchronized. Resynchronization involves loading new
copies of the data in each remote database, and for more than a few subscribers is a time-consuming process
involving work interruptions and possible loss of data.

Changes to avoid on a running system
The following are examples of changes that should not be made to a deployed and running SQL Remote
setup. From the list, you will see that there is a class of changes that are permissive, and these are generally
permissible, while other changes are restrictive, and must be avoided.

The following changes must be avoided, except under the conditions stated:

♦ Change the publisher for the consolidated database.

♦ Make restrictive changes to tables, such as dropping a column or altering a column to not allow NULL
values. Changes that include the column or including NULL entries may already be being sent in
messages around the SQL Remote setup, and will fail.

♦ Alter a publication. Publication definitions must be maintained at both local and remote sites, and changes
that rely on the old publication definition may already be being sent in messages around the SQL Remote
setup.

Test before deployment

Copyright © 2007, iAnywhere Solutions, Inc. 75

You can make permissive changes, such as adding a new table or column, as long as you use passthrough
to ensure that the new table or column exists in the remote database and in the publication at the remote
database.

♦ Drop a subscription. This can be done only if you use passthrough deletes to remove the data at the
remote site.

♦ Unload and reload a SQL Anywhere database.

If a SQL Anywhere database is participating in replication, it cannot be unloaded and reloaded without
re-synchronizing the database. Replication is based on the transaction log, and when a database is
unloaded and reloaded, the old transaction log is no longer available. For this reason, good backup
practices are especially important when participating in replication.

Deploying and Synchronizing Databases with SQL Remote

76 Copyright © 2007, iAnywhere Solutions, Inc.

Synchronizing databases
What is synchronization?

SQL Remote replication is carried out using the information in the transaction log, but there are two
circumstances where SQL Remote deletes all existing rows from those tables of a remote database that form
part of a publication, and copies the publication's entire contents from the consolidated database to the remote
site. This process is called synchronization.

When to synchronize
Synchronization is used under the following circumstances:

♦ When a subscription is created at a consolidated database a synchronization is carried out, so that the
remote database starts off with a database in the same state as the consolidated database.

♦ If a remote database gets corrupt or gets out of step with the consolidated database, and cannot be repaired
using SQL passthrough mode, synchronization forces the remote site database back in step with the
consolidated site.

How to synchronize
Synchronizing a remote database can be done in the following ways:

♦ Use the database Extraction utility This utility creates a schema for a remote SQL Anywhere
database, and synchronizes the remote database. This is generally the recommended procedure.

♦ Manual synchronization Synchronize the remote database manually by loading from files, using the
PowerBuilder pipeline, or some other tool.

♦ Synchronize over the message system Synchronize the remote database via the message system
using the SYNCHRONIZE SUBSCRIPTION statement.

Caution
Do not execute SYNCHRONIZE SUBSCRIPTION at a remote database.

Mixed operating systems and database extraction

In many installations, the consolidated server will be running on a different operating system than the remote
databases.

SQL Anywhere databases can be copied from one file or operating system to another. This allows you
flexibility in how you carry out your initial synchronization of databases.

Notes on synchronization and extraction

♦ Extracting large numbers of subscriptions, or synchronizing subscriptions to large, frequently-used
tables, can slow down database access for other users. You may want to extract such subscriptions when

Synchronizing databases

Copyright © 2007, iAnywhere Solutions, Inc. 77

the database is not in heavy use. This happens automatically if you use a SEND AT clause with a quiet
time specified.

♦ Synchronization applies to an entire subscription. There is currently no straightforward way of
synchronizing a single table.

Deploying and Synchronizing Databases with SQL Remote

78 Copyright © 2007, iAnywhere Solutions, Inc.

Using the Extraction utility (dbxtract)
The Extraction utility is an aid to creating remote SQL Anywhere databases.

Running the extraction utility
The Extraction utility can be accessed in the following ways:

♦ From Sybase Central, if your consolidated database is SQL Anywhere. See “Extracting a remote database
in Sybase Central” on page 153.

♦ As a command line utility. This is the dbxtract utility. See “Extraction utility” on page 154.

Caution
Do not run the Message Agent while running the Extraction utility. The results are unpredictable.

Creating a database from the reload files

The command line utility unloads a database schema and data suitable for building a remote SQL Anywhere
database for a named subscriber. It produces a SQL command file with default name reload.sql and a set of
data files. You can use these files to create a remote SQL Anywhere database.

Editing of reload.sql may be needed
The database Extraction utility is intended to assist in preparing remote databases, but is not intended as a
black box solution for all circumstances. You should edit the reload.sql command file as needed when
creating remote databases.

♦ To create a remote database from the reload file

1. Create a SQL Anywhere database using one of the following:

♦ the Sybase Central Create Database wizard (from the Tools menu, choose SQL Anywhere
10 ► Create Database)

♦ the dbinit utility

2. Connect to the database from Interactive SQL, and run the reload.sql command file. The following
statement entered in the SQL Statements pane runs the reload.sql command file:

read path\reload.sql

where path is the path of the reload command file.

When used from Sybase Central, the Extraction utility carries out the database unloading task, in the same
way that dbxtract does, and then takes the additional step of creating the new database.

The Extraction utility does not use a message system. The reload file (dbxtract) or database (from Sybase
Central) is created in a directory accessible from the current machine. Synchronizing many subscriptions

Using the Extraction utility (dbxtract)

Copyright © 2007, iAnywhere Solutions, Inc. 79

over a message link can produce heavy message traffic and, if the message system is not completely reliable,
it may take some time for all the messages to be properly received at the remote sites.

Before extracting a database
You must complete the following tasks before using the Extraction utility at a consolidated database.

♦ Create message types for replication.

♦ Add a publisher user ID to the database.

♦ Add remote users to the database.

♦ Add the publication to the database.

♦ Created a subscription for the remote users.

♦ If you need to specify message link parameters, you must have set them. See “Setting message type
control parameters” on page 97.

When you use the Extraction utility to create a remote database, the user for which you are creating the
database receives the same permissions they have in the consolidated database. Further, if the user is a
member of any groups on the consolidated database, those group IDs are created in the remote database with
the permissions they have in the consolidated database.

Using the Extraction utility from Sybase Central
This section describes how to extract a database for a remote user from the current consolidated database.
This section applies only to SQL Anywhere consolidated databases.

When you complete the Extract Database wizard, it does the following on your machine:

♦ Creates the remote database

♦ Extracts (unloads) the relevant structures and/or data from the consolidated database to files

♦ Loads those files into the newly created remote database

♦ To extract a database for a remote user (Sybase Central)

1. From the Tools menu, choose SQL Anywhere 10 ► Extract Database.

2. Follow the instructions in the wizard.

Notes
♦ You can also access this wizard by clicking Tools ► SQL Anywhere 10 ► Extract Database.

♦ You can also invoke the extraction wizard for a particular database or for a particular remote user—
Sybase Central automatically fills in the appropriate entries in the wizard.

Deploying and Synchronizing Databases with SQL Remote

80 Copyright © 2007, iAnywhere Solutions, Inc.

♦ The extraction wizard always extracts (synchronizes) the remote database using the WITH
SYNCHRONIZATION option. In those rare cases where you don't want to use this option, you must
use the dbxtract utility instead.

♦ Only tables for users selected in the Filter Objects by Owner dialog appear in the Extract Database wizard.
If you want to view tables belonging to a particular database user, right-click the database you are
unloading, choose Filter Objects by Owner from the popup menu, and then select the desired user in the
resulting dialog.

See also
♦ For information about the Extraction utility options, available as command line options or as choices

presented by the extraction wizard, see “Extraction utility” on page 154.

Designing an efficient extraction procedure
It is very inefficient to create a large number of remote databases by running the Extraction utility for each
one. You can make the process much more efficient. This section describes one way of making the process
more efficient.

There are several potential causes of inefficiency in a large-scale extraction process:

♦ The Extraction utility extracts one database at a time, including the schema and data for each user.
Commonly, many users share a common schema, and only the data differs. The brute force method of
running the Extraction utility for each user repeats large amounts of work unnecessarily. Extracting
schema and data separately can help with this problem.

♦ Running from Sybase Central, the Extraction utility creates a new database for each user. If subscribers
share a common schema, you could create a single database, with schema but no data, and copy the file.

♦ By default, the Extraction utility runs at isolation level zero. If you are extracting a database from an
active server, you should run it at isolation level 3 to ensure that data in the extracted database is consistent
with data on the server. See “Extraction utility” on page 154

Running at isolation level 3 may hamper others' turnaround time on the server because of the large number
of locks required. It is recommended that you run the Extraction utility when the server is not busy, or
run it against a copy of the database.

An efficient approach to extracting many databases
One approach that avoids these problems is as follows:

1. Make a copy of the consolidated database, and at the same time start the subscriptions from the live
database. Messages will now start being sent to subscribers, even though they have no database and
will not receive them yet.

To start several subscriptions within a single transaction, use the REMOTE RESET statement.

2. Extract the remote databases from the copy of the database. As the database is a copy, there are no
locking and concurrency problems. For a large number of remote databases, this process may take
several days.

Using the Extraction utility (dbxtract)

Copyright © 2007, iAnywhere Solutions, Inc. 81

3. As each remote database is created, it is out of date, but its user can receive and apply messages that
have been being sent from the live consolidated database, to bring themselves up to date.

This solution interferes with the production database only during the first step. The copy must be made at
isolation level three if the database is in use, and uses large numbers of locks. Also, the subscriptions must
be started at the same time that the copy is made. Any operations that take place between the copy and the
starting of the subscriptions would be lost, and could lead to errors at remote databases.

Extracting groups
If the remote user is a group user ID, the Extraction utility extracts all the user IDs of members of that group.
You can use this feature to all multiple users on each remote database, using different user IDs, without
requiring a custom extraction process.

When a database is extracted for a user, all message link parameters for that user and the groups of which
the user is a member are extracted.

Limits to using the Extraction utility
While the Extraction utility is the recommended way of creating and synchronizing remote databases from
a consolidated databases, there are some circumstances where it cannot be used, and you must synchronize
remote databases manually. This section describes some of those cases.

♦ Additional tables at the remote database Remote databases can have tables not present at their
consolidated database as long as these tables do not take part in replication. Of course, the Extraction
utility cannot extract such tables from a consolidated database.

♦ Extracting procedures and views By default, the Extraction utility extracts all stored procedures
and views from the database. While some of these views and procedures are likely to be required at the
remote site, others may not be required—they may refer only to parts of the database that are not included
in the remote site.

After running the Extraction utility, you should edit the reload script and remove unnecessary views and
procedures.

♦ Using the Extraction utility in multi-tiered setups To understand the role of the Extraction utility
in multi-tiered arrangements, consider a three-tiered SQL Remote setup.

This setup is illustrated in the following diagram.

Deploying and Synchronizing Databases with SQL Remote

82 Copyright © 2007, iAnywhere Solutions, Inc.

Laptop 3

HQ

Region 1 Region 2

Laptop 1 Laptop 2

From the consolidated database at the top level, you can use the Extraction utility to create the second-
level databases. You can then add remote users to these second-level databases, and use the Extraction
utility from each second-level database to create the remote databases. However, if you have to re-extract
the second-level databases from the top-level consolidated database, you will delete the remote users
that were created, along with their subscriptions and permissions, and will have to rebuild those users.
The exception is if you resynchronize data only, in which case you can use the Extraction utility to replace
the data in the database, without replacing the schema.

Using the Extraction utility (dbxtract)

Copyright © 2007, iAnywhere Solutions, Inc. 83

Synchronizing data over a message system
Creating subscriptions

Creating a subscription defines the data to be received. It does not synchronize a subscription (provide an
initial copy of the data) or start (exchange messages) a subscription.

Synchronizing subscriptions
Synchronizing a subscription causes the Message Agent to send a copy of all rows in the subscription to the
subscriber. It assumes that an appropriate database schema is in place. Subscriptions are synchronized using
the SYNCHRONIZE SUBSCRIPTION statement.

When synchronization messages are received at a subscriber database, the Message Agent replaces the
current contents of the database with the new copy. Any data at the subscriber that is part of the subscription,
and which has not been replicated to the consolidated database, is lost. Once synchronization is complete,
the subscription is started by the Message Agent using the START SUBSCRIPTION statement.

Large volume of messages may result
Synchronizing databases over a message system may lead to large volumes of messages. In many cases, it
is preferable to use the extraction process to synchronize a database locally without placing this burden on
the message system.

Synchronizing subscriptions during operation
If a remote database becomes out of step with the consolidated database, and cannot be brought back in step
using the SQL passthrough capabilities of SQL Remote, synchronizing the subscription forces the remote
database into step with the consolidated database by copying the rows of the subscription from the
consolidated database over the contents at the remote database.

Data loss on synchronization
Any data in the remote database that is part of the subscription, but which has not been replicated to the
consolidated database, is lost when the subscription is synchronized. You may want to unload or back up
the remote database using Sybase Central or, for SQL Anywhere, the dbunload utility before synchronizing
the database.

Deploying and Synchronizing Databases with SQL Remote

84 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 5

SQL Remote Administration

Contents
Management overview .. 86
Managing SQL Remote permissions ... 87
Using message types .. 94
Running the Message Agent ... 106
Tuning Message Agent performance .. 110
Encoding and compressing messages .. 116
The message tracking system ... 118

Copyright © 2007, iAnywhere Solutions, Inc. 85

Management overview
This chapter describes general issues and principles for administering a running SQL Remote installation.

For system-specific details, see “Administering SQL Remote” on page 121.

Administration of a deployed and running SQL Remote setup is carried out at a consolidated database.

♦ Permissions As a SQL Remote installation includes many different physical databases, a consistent
scheme for users having permissions on remote and consolidated databases is necessary. A section of
this chapter describes the considerations you need to make when assigning users permissions.

♦ Configuring message systems Each message system that is used in a SQL Remote installation has
control parameters and other settings that must be set up. These settings are discussed in this chapter.

♦ The Message Agent The Message Agent is responsible for sending and receiving messages.

♦ Message tracking Administering a SQL Remote installation means managing large numbers of
messages being handed back and forth among many databases. A section on the SQL Remote message
tracking system is included to help you understand what the messages contain, when they are sent, how
they are applied, and so on.

♦ Log management SQL Remote obtains the data to send from the transaction log. Consequently,
proper management of the transaction log, and proper backup procedures, are essential for a smoothly
running SQL Remote installation. While many details depend on the server you are running, the generic
issues are discussed in this chapter.

♦ Passthrough mode This is a method for directly intervening at a remote site from a consolidated
database. This method is discussed in this chapter.

SQL Remote Administration

86 Copyright © 2007, iAnywhere Solutions, Inc.

Managing SQL Remote permissions
Users of a database involved in SQL Remote replication are identified by one of the following sets of
permissions:

♦ PUBLISH A single user ID in a database is identified as the publisher for that database. All outgoing
SQL Remote messages, including both publication updates and receipt confirmations, are identified by
the publisher user ID. Every database in a SQL Remote setup must have a single publisher user ID, as
every database in a SQL Remote setup sends messages.

♦ REMOTE All recipients of messages from the current database, or senders of messages to the current
database, who are immediately lower on the SQL Remote hierarchy than the current database must be
granted REMOTE permissions.

♦ CONSOLIDATE At most one user ID may be granted CONSOLIDATE permissions in a database.
CONSOLIDATE permissions identifies a database immediately above the current database in a SQL
Remote setup. Each database can have only one consolidated database directly above it.

Information about these permissions are held in the SQL Remote system tables, and are independent of other
database permissions.

Granting and revoking PUBLISH permissions

When a database sends a message, a user ID representing that database is included with the message to
identify its source to the recipient. This user ID is the publisher user ID of the database. A database can
have only one publisher. You can find out who the publisher of a SQL Anywhere database is at any time in
Sybase Central by opening the Users & Groups folder.

A publisher is required even for read-only remote databases within a replication system, as even these
databases send confirmations to the consolidated database to maintain information about the status of the
replication. The GRANT PUBLISH statement for remote SQL Anywhere databases is carried out
automatically by the database extraction utility.

Granting and revoking PUBLISH permissions from Sybase Central
You can grant PUBLISH permissions on a SQL Anywhere database from Sybase Central. You must connect
to the database as a user with full system or database administrator permissions.

♦ To create a new user as the publisher (Sybase Central)

1. In the left pane, select the Users & Groups folder.

2. From the File menu, choose New ► User.

The Create User wizard appears.

3. Follow the instructions in the wizard. Ensure that the user has a password and is granted Remote DBA
authority; this enables the user ID to run the Message Agent.

4. Click Finish to create the user.

Managing SQL Remote permissions

Copyright © 2007, iAnywhere Solutions, Inc. 87

5. In the Users & Groups folder, right-click the user you just created and choose Change to Publisher from
the popup menu.

♦ To make an existing user the publisher (Sybase Central)

• In the Users & Groups folder, right-click a user and choose Change to Publisher from the popup menu.

You can also revoke PUBLISH permissions from Sybase Central.

♦ To revoke PUBLISH permissions (Sybase Central)

• In the Users & Groups folder, right-click the user who has granted PUBLISH permissions and choose
Revoke Publisher from the popup menu.

Granting and revoking PUBLISH permissions
For SQL Anywhere, PUBLISH permissions are granted using the GRANT PUBLISH statement:

GRANT PUBLISH TO userid ;

The userid is a user with CONNECT permissions on the current database. For example, the following
statement grants PUBLISH permissions to user S_Beaulieu:

GRANT PUBLISH TO S_Beaulieu

The REVOKE PUBLISH statement revokes the PUBLISH permissions from the current publisher:

REVOKE PUBLISH FROM userid

Notes on PUBLISH permissions
♦ To see the publisher user ID outside Sybase Central, use the CURRENT PUBLISHER special constant.

The following statement retrieves the publisher user ID:

SELECT CURRENT PUBLISHER
♦ If PUBLISH permissions is granted to a user ID with GROUP permissions, it is not inherited by members

of the group.

♦ PUBLISH permissions carry no authority except to identify the publisher in outgoing messages.

♦ For messages sent from the current database to be received and processed by a recipient, the publisher
user ID must have REMOTE or CONSOLIDATE permissions on the receiving database.

♦ The publisher user ID for a database cannot also have REMOTE or CONSOLIDATE permissions on
that database. This would identify them as both the sender of outgoing messages and a recipient of such
messages.

♦ Changing the user ID of a publisher at a remote database will cause serious problems for any subscriptions
that database is involved in, including loss of information. You should not change a remote database
publisher user ID unless you are prepared to resynchronize the remote user from scratch.

♦ Changing the user ID of a publisher at a consolidated database while a SQL Remote setup is operating
will cause serious problems, including loss of information. You should not change the consolidated

SQL Remote Administration

88 Copyright © 2007, iAnywhere Solutions, Inc.

database publisher user ID unless you are prepared to close down the SQL Remote setup and
resynchronize all remote users.

Granting and revoking REMOTE and CONSOLIDATE permissions
REMOTE and CONSOLIDATE permissions are very similar. Each database receiving messages from the
current database must have an associated user ID on the current database that is granted one of REMOTE
or CONSOLIDATE permissions. This user ID represents the receiving database in the current database.

The consolidated user is identified by a message system, identifying the method by which messages are sent
to and received from the consolidated user. There can be only one consolidated user per remote database.

The remote user is identified by a message system, identifying the method by which messages are sent to
and received from the consolidated user.

Databases directly below the current database on a SQL Remote hierarchy are granted REMOTE
permissions, and the at most one database above the current database in the hierarchy is granted
CONSOLIDATE permissions.

Setting REMOTE and CONSOLIDATE permissions
The GRANT REMOTE and GRANT CONSOLIDATE statements identify the message system and address
to which replication messages must be sent.

CONSOLIDATE permissions must be granted even from read-only remote databases to the consolidated
database, as receipt confirmations are sent back from the remote databases to the consolidated database. The
GRANT CONSOLIDATE statement at remote SQL Anywhere databases is executed automatically by the
database extraction utility.

Granting REMOTE permissions

Each remote database must be represented by a single user ID in the consolidated database. This user ID
must be granted REMOTE permissions to identify their user ID and address as a subscriber to publications.

Granting REMOTE permissions accomplishes several tasks:

♦ It identifies a user ID as a remote user.

♦ It specifies a message type to use for exchanging messages with this user ID.

♦ It provides an address to where messages are to be sent.

♦ It indicates how often messages should be sent to the remote user.

Granting REMOTE permissions is also referred to as adding a remote user to the database.

Sybase Central example
You can add a remote user to a database using Sybase Central. Remote users and groups appear in two
locations in Sybase Central: in the Users & Groups folder, and in the SQL Remote Users folder. This section
applies only to SQL Anywhere databases.

Managing SQL Remote permissions

Copyright © 2007, iAnywhere Solutions, Inc. 89

By default, remote users are created with remote DBA authority. Since the message agent for access to the
remote database requires this authority, you shouldn't revoke it.

You cannot create a new remote user until at least one message type is defined in the database.

While you can grant remote permissions to a group, those remote permissions do not automatically apply
to users in the group (unlike table permissions, for example). To do this, you must explicitly grant remote
permissions to each user in the group. Otherwise, remote groups behave exactly like remote users (and are
categorized as remote users).

♦ To add a new user to the database as a remote user (Sybase Central)

1. In the left pane, select the SQL Remote Users folder.

2. From the File menu, choose New ► SQL Remote User.

The Create a New Remote User wizard appears.

3. Follow the instructions in the wizard.

♦ To make an existing user remote (Sybase Central)

1. Open the Users & Groups folder.

2. Right-click the user you want to make remote and choose Change to Remote User from the popup
menu.

3. In the resulting dialog, select the message type from the list, enter an address, choose the frequency of
sending messages, and click OK to make the user a remote user.

This user now appears in both the Users & Groups folder and the SQL Remote Users folder.

Example
The following statement grants remote permissions to user S_Beaulieu, with the following options:

♦ Use an SMTP email system

♦ Send messages to email address s_beaulieu@acme.com:

♦ Send message daily, at 10 p.m.

GRANT REMOTE TO S_Beaulieu
TYPE smtp
ADDRESS 's_beaulieu@acme.com'
SEND AT '22:00'

Selecting a send frequency

There are three alternatives for the setting the frequency with which messages are sent. The alternatives are:

♦ SEND EVERY A frequency can be specified in hours, minutes, and seconds in the format 'HH:MM:SS'.

SQL Remote Administration

90 Copyright © 2007, iAnywhere Solutions, Inc.

When any user with SEND EVERY set is sent messages, all users with the same frequency are sent
messages also. For example, all remote users who receive updates every twelve hours are sent updates
at the same times, rather than being staggered. This reduces the number of times the SQL Anywhere
transaction log has to be processed. You should use as few unique frequencies as possible.

♦ SEND AT A time of day, in hours and minutes.

Updates are started daily at the specified time. It is more efficient to use as few distinct times as possible
than to stagger the sending times. Also, choosing times when the database is not busy minimizes
interference with other users.

♦ Default setting (no SEND clause) If any user has no SEND AT or SEND EVERY clause, the
Message Agent sends messages every time it is run, and then stops: it runs in batch mode.

Setting the send frequency in Sybase Central
In Sybase Central, you can specify the send frequency in the following ways:

♦ When you make an existing user or group remote. See “Granting REMOTE permissions” on page 89.

♦ On the SQL Remote tab of the property sheet of a remote user or group. You can access the property
sheet by right-clicking the remote user or group and choosing Properties from the popup menu.

Granting CONSOLIDATE permissions

In the remote database, the publish and subscribe user IDs are inverted compared to the consolidated
database. The subscriber (remote user) in the consolidated database becomes the publisher in the remote
database. The publisher of the consolidated database becomes a subscriber to publications from the remote
database, and is granted CONSOLIDATE permissions.

At each remote database, the consolidated database must be granted CONSOLIDATE permissions. When
you produce a remote database by running the database extraction utility, the GRANT CONSOLIDATE
statement is executed automatically at the remote database.

Example
The following SQL Anywhere statement grants CONSOLIDATE permissions to the hq_user user ID, using
the VIM email system:

GRANT CONSOLIDATE TO hq_user
TYPE vim
ADDRESS 'hq_address'

There is no SEND clause in this statement, so the default is used and messages will be sent to the consolidated
database every time the Message Agent is run.

Revoking REMOTE and CONSOLIDATE permissions

A user can be removed from a SQL Remote installation by revoking their REMOTE permissions. When you
revoke remote permissions from a user or group, you revert that user or group to a normal user/group. You
also automatically unsubscribe that user or group from all publications.

Managing SQL Remote permissions

Copyright © 2007, iAnywhere Solutions, Inc. 91

Revoking permissions from Sybase Central
You can revoke REMOTE permissions on SQL Anywhere databases from Sybase Central.

♦ To revoke REMOTE permissions (Sybase Central)

1. Open either the Users & Groups folder or the SQL Remote Users folder.

2. Right-click the remote user or group and choose Revoke Remote from the popup menu.

Revoking permissions
REMOTE and CONSOLIDATE permissions can be revoked from a user using the REVOKE statement.
The following statement revokes REMOTE permission from user S_Beaulieu.

REVOKE REMOTE FROM S_Beaulieu

DBA authority is required to revoke REMOTE or CONSOLIDATE access.

Assigning permissions in multi-tier installations

Special considerations are needed for assigning permissions in multi-tier installations. The permissions in a
three-level SQL Remote setup are summarized in the following diagrams. In each diagram one database is
shaded; the diagram shows the permissions that need to be granted in that database for the user ID
representing each of the other databases. The phrase "No permissions" means that the database is not granted
any permissions in the shaded database.

The following picture shows SQL Remote permissions, as granted at the consolidated site of a three-tier
installation.

no
permissions

Remote

Publish

no
permissions

The following picture shows SQL Remote permissions, as granted at an internal site of a three-tier
installation.

SQL Remote Administration

92 Copyright © 2007, iAnywhere Solutions, Inc.

Remote

Publish

Consolidate

Remote

The following picture shows SQL Remote permissions, as granted at an internal site of a three-tier
installation.

Publish

Consolidate

no
permissions

no
permissions

Granting the appropriate PUBLISH and CONSOLIDATE permissions at remote databases is done
automatically by the database extraction utility.

Managing SQL Remote permissions

Copyright © 2007, iAnywhere Solutions, Inc. 93

Using message types
SQL Remote exchanges data among databases using an underlying message system. SQL Remote supports
the following message systems:

♦ File sharing A simple system requiring no extra software.

♦ FTP Internet file transfer protocol.

♦ SMTP/POP Internet email protocol.

♦ MAPI Microsoft Messaging Application Programming Interface, used in Microsoft products and in
cc:Mail release 8 and later.

♦ VIM Vendor Independent Messaging, used in Lotus Notes and in some versions of Lotus cc:Mail.

Note
Support for VIM and MAPI is deprecated

A database can exchange messages using one or more of the available message systems.

Not all systems are supported on all operating systems. For a complete list of supported operating systems,
see the SQL Remote for SQL Anywhere table in SQL Anywhere 10.0.1 Components by Platform.

Operating system availability
Not all message systems are supported on all operating systems for which SQL Remote is available. The
links are implemented as DLLs on Windows operating systems.

For a listing of which message systems are supported on which operating system, see the SQL Remote for
SQL Anywhere table in SQL Anywhere 10.0.1 Components by Platform.

See also
♦ “The file message system” on page 98
♦ “The ftp message system” on page 99
♦ “The SMTP message system” on page 101
♦ “The MAPI message system” on page 103
♦ “The VIM message system” on page 104

Working with message types

Each message type definition includes the type name (file, ftp, smtp, mapi, or vim) and also the address of
the publisher under that message type. The publisher address at a consolidated database is used by the
database extraction utility as a return address when creating remote databases. It is also used by the Message
Agent to identify where to look for incoming messages for the file system.

The address supplied with a message type definition is closely tied to the publisher ID of the database. Valid
addresses are considered in following sections.

SQL Remote Administration

94 Copyright © 2007, iAnywhere Solutions, Inc.

Before you can use a message system, you must set the publisher's address.

Note
Support for VIM and MAPI is deprecated.

Using Sybase Central to work with message types

You can create and alter message types in Sybase Central. Message types appear on the Message Types tab
in the right pane when the SQL Remote Users folder is selected. This section applies only to SQL Anywhere
databases.

You must have DBA authority to create and alter message types.

♦ To add a message type (Sybase Central)

1. Connect to a database.

2. In the left pane, open the SQL Remote Users folder for that database.

3. In the right pane, click the Message Types tab.

4. From the File menu, choose New ► Message Type.

The Create SQL Remote Message Type wizard appears.

5. In the Create SQL Remote Message Type wizard, enter a message type name. The name should
correspond to a message-type DLL already installed in your SQL Anywhere installation directory. Click
Next.

6. Enter a publisher address and click Finish to save the definition in the database.

If you want to change the publisher's address, you can do so by altering a message type. You cannot change
the name of an existing message type; instead, you must delete it and create a new message type with the
new name.

♦ To alter a message type (Sybase Central)

1. In the left pane, open the SQL Remote Users folder for a database.

2. In the right pane, click the Message Types tab.

3. In the right pane, right-click the message type you want to alter and choose Properties from the popup
menu.

4. On the property sheet, configure the various options.

If you want to drop a message type from the installation, you can do so.

Using message types

Copyright © 2007, iAnywhere Solutions, Inc. 95

♦ To drop a message type (Sybase Central)

1. In the left pane, open the SQL Remote Users folder for a database.

2. In the right pane, click the Message Types tab.

3. In the right pane, right-click the message type you want to alter and choose Delete from the popup
menu.

Creating message types for Windows CE
If you have Windows CE services installed, you have an option to set up SQL Remote for ActiveSync
synchronization from Sybase Central. This sets your folder for FILE message link messages to be the
ActiveSync folder. When you dock your Windows CE device to your desktop computer, ActiveSync keeps
the files in your desktop computer's ActiveSync folder synchronized with those in the Windows CE
ActiveSync folder. You can access the utility to set up SQL Remote ActiveSync synchronization by choosing
Tools ► SQL Anywhere 10 ► Edit Windows CE Message Type.

Using commands to work with message types

♦ To create a message type (SQL)

1. Make sure you have decided on an address for the publisher under the message type.

2. Execute a CREATE REMOTE MESSAGE TYPE command.

The CREATE REMOTE MESSAGE TYPE statement has the following syntax:

CREATE REMOTE MESSAGE TYPE type-name
ADDRESS address-string

where type-name is one of the message systems supported by SQL Remote, and address-string is the
publisher's address under that message system.

If you want to change the publisher's address, you can do so by altering the message type.

♦ To alter a message type (SQL)

1. Make sure you have decided on a new address for the publisher under the message type.

2. Execute an ALTER REMOTE MESSAGE TYPE statement.

The ALTER REMOTE MESSAGE TYPE statement has the following syntax:

ALTER REMOTE MESSAGE TYPE type-name
ADDRESS address-string

where type-name is one of the message systems supported by SQL Remote, and address-string is the
publisher's address under that message system.

You can also drop message types if they are no longer used in your installation. This has the effect of removing
the publisher's address from the definition.

SQL Remote Administration

96 Copyright © 2007, iAnywhere Solutions, Inc.

♦ To drop a message type (SQL)

• Execute a DROP REMOTE MESSAGE TYPE statement.

The DROP REMOTE MESSAGE TYPE statement has the following syntax:

DROP REMOTE MESSAGE TYPE type-name

where type-name is one of the message systems supported by SQL Remote.

See also
♦ “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
♦ “ALTER REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
♦ “DROP REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Setting message type control parameters

Each message link has several parameters that govern aspects of its behavior. The parameters differ from
message system to message system, but all are managed in the same way.

When you first use the Message Agent for a particular message link, it displays a dialog box showing a set
of parameters that control the behavior of the link. These parameters may be a user ID for the message
system, a host name where ftp messages are held, and so on. The parameters you enter are saved by the
Message Agent. You can also set these parameters explicitly.

Message link parameters stored in the database
The message control parameters are held in the database. You can set the options as follows:

♦ To set a message control parameter

• Execute the following statement:

SET REMOTE link-name OPTION
[username.]option-name = option-value

You can see the current message link parameters by querying the sys.sysremoteoptions view.

Holding the message link parameters on disk
Earlier versions of this software stored the message link parameters outside the database. You can still use
this method, but storing the parameters inside the database is recommended unless you have specific reasons
to choose otherwise.

The message link control parameters are stored in the following places:

♦ Windows In the registry, at the following location:

Using message types

Copyright © 2007, iAnywhere Solutions, Inc. 97

\\HKEY_CURRENT_USER
 \Software
 \Sybase
 \SQL Remote

The parameters for each message link go in a key under the SQL Remote key, with the name of the
message link (4, smtp, and so on).

♦ NetWare You should create a file named dbremote.ini in the sys:\system directory to hold the FILE
system directory setting. This file is not a Windows-format INI file: it must consist of a single line,
holding only the directory name.

For example, if the directory is user:\dbr43, then the dbremote.ini file would contain the following:

user:\dbr43
♦ Unix The FILE system directory setting is held in the SQLREMOTE environment variable.

The sqlremote environment variable holds a path that can be used as an alternative to one of the control
parameters for the file sharing system.

The parameters available for each message system are discussed in the following sections. Each section
describes a single message system.

When the Message Agent loads a message link, the link uses the settings of the current publisher or, if a
setting is not specified, of groups to which the publisher belongs. On Windows, the first time a version of
the Message Agent is run that supports storing the message link parameters in the database, it copies the link
options from the registry to the database.

The file message system

SQL Remote can be used even if you do not have a message system in place, by using the file message
system.

Addresses in the file message system
The file message system is a simple file-sharing system. A file address for a remote user is a subdirectory
into which all their messages are written. To retrieve messages from their "inbox", an application reads the
messages from the directory containing the user's files. Return messages are sent to the address (written to
the directory) of the consolidated database.

When running as an NT service make sure that the account under which the Message Agent is running has
permissions to read and write all necessary directories. This is often a problem when accessing network
drives.

Root directory for addresses
The file system addresses are typically subdirectories of a shared directory that is available to all SQL Remote
users, whether by modem or on a local area network. Each user should have a registry entry, initialization
file entry, or SQLREMOTE environment variable pointing to the shared directory.

You can also use the file system to put the messages in directories on the consolidated and remote machines.
A simple file transfer mechanism can then be used to exchange the files periodically to effect replication.

SQL Remote Administration

98 Copyright © 2007, iAnywhere Solutions, Inc.

FILE message control parameters
The FILE message system uses the following control parameters:

♦ Directory This is set to the directory under which the messages are stored. The setting is an alternative
to the SQLREMOTE environment variable.

♦ Debug This is set to either YES or NO, with the default being NO. When set to YES, all file system
calls made by the FILE link are displayed.

♦ Encode_dll If you have implemented a custom encoding scheme, you must set this to the full path of
the custom encoding DLL that you created.

See “Encoding and compressing messages” on page 116.

♦ invalid_extensions A comma-separated list of file extensions that you do not want dbremote to use
when generating files in the messaging system.

♦ Unlink_delay This is the number of seconds to wait before attempting to delete a file if the previous
attempt to delete the file failed. If no value is defined for unlink_delay, then the default behavior is to
pause for 1 second after the first failed attempt, 2 seconds after the second failed attempt, 3 seconds after
the third failed attempt, and 4 seconds after the fourth failed attempt.

On NetWare, you should create a file named dbremote.ini in the sys:\system directory to hold the directory
setting.

Windows CE and ActiveSync
For the file link, dbremote looks in \My Documents\Synchronized Files. On the desktop machine, the
SQLREMOTE environment variable or directory message link parameter for the FILE link should be set to
the following:

%SystemRoot%\Profiles\userid\Personal\ce-machine-name\ Synchronized Files

where userid and ce-machine-name are set to the appropriate values. With this setup, ActiveSync
automatically synchronizes the message files between the desktop and CE system.

Check Mobile Devices ► Tools ► ActiveSync Options to ensure that file synchronization is activated.

For information on setting message link parameters, see “The file message system” on page 98.

See also
♦ “The ftp message system” on page 99

The ftp message system

Addresses for ftp
In the ftp message system, messages are stored in directories under a root directory on an ftp host. The ftp
host and the root directory are specified by message system control parameters held in the registry or
initialization file, and the address of each user is the subdirectory where their messages are held.

Using message types

Copyright © 2007, iAnywhere Solutions, Inc. 99

For a list of operating systems for which ftp is supported, see the SQL Remote for SQL Anywhere table in
SQL Anywhere 10.0.1 Components by Platform.

FTP message control parameters
The ftp message system uses the following control parameters:

♦ encode_dll If you have implemented a custom encoding scheme, you must set this to the full path of
the custom encoding DLL that you created.

See “Encoding and compressing messages” on page 116.

♦ host The host name of the computer where the messages are stored. This can be a host name (such as
ftp.ianywhere.com) or an IP address (such as 192.138.151.66).

♦ user The user name for accessing the ftp host.

♦ password The password for accessing the ftp host.

♦ root_directory The root directory within the ftp host site, under which the messages are stored.

♦ port Usually not required. This is the IP port number used for the Ftp connection.

♦ debug This is set to either YES or NO, with the default being NO. When set to YES, debugging output
is displayed.

♦ active_mode This is set to either YES or NO, with the default being NO (passive mode).

♦ reconnect_retries The number of times the link should try to open a socket with the server before
failing. The default value is 4. The setting of this parameter only affects reconnects. The initial connection
made by the FTP link is not affected.

♦ reconnect_pause The time in seconds to pause between each connection attempt. The default setting
is 30 seconds. The setting of this parameter only affects reconnects. The initial connection made by the
FTP link is not affected.

♦ suppress_dialogs If set to true, the Connect dialog does not appear after failed attempts to connect
to the FTP server. Instead, an error is generated.

♦ invalid_extensions A comma-separated list of file extensions that you do not want dbremote to use
when generating files in the messaging system.

Troubleshooting ftp problems

Most problems with the FTP message link are network setup issues. This section contains a list of tests you
can try to troubleshoot problems.

Set the DEBUG message control parameter Looking over the debug output should indicate whether
you are connecting to the FTP server. If you are connecting, it will indicate which FTP commands are failing.

Ping the ftp server If the FTP link is not able to connect to the FTP server, try testing your systems
network configuration. If your system has the ping command, try typing the following command:

ping ftp-server-name

SQL Remote Administration

100 Copyright © 2007, iAnywhere Solutions, Inc.

You should see output indicating the IP address of the server and the ping (round trip) time to the server. If
you cannot ping the server, then you have a network configuration problem, and you should contact you
network administrator.

Check that passive mode works If the FTP link is connecting to the FTP server, but is unable to open
a data connection, make sure that an FTP client can use passive mode to transfer data with the server.

Passive mode is the preferred transfer mode and the default for the FTP message link. In passive mode all
data transfer connections are initiated by the client, in this case the message link. In Active mode the server
initiates all data connections. If your FTP server is sitting behind an incorrectly configured firewall you may
not be able to use the default passive transfer mode. In this situation the firewall blocks socket connections
to the FTP server on ports other than the FTP control port.

Using an FTP user program that allows you to set the transfer mode between active and passive, set the
transfer mode to passive and try to upload/download a file. If the client you are using cannot transfer the file
without using active mode then you should either reconfigure the firewall and FTP server to allow passive
mode transfers or set the active_mode message control parameter to YES. Active mode transfers may not
work in all network configurations. For example: if your client is sitting behind an IP masquerading gateway
incoming connections may fail depending on you gateway software.

Check permissions and directory structures If the FTP server is connecting and having problems
getting directory listings or manipulating files; make sure your permissions are set up correctly and the
directories that you need exist.

Log in to the FTP server using an FTP program. Change directories to the location stored in the root_directory
parameter. If the directories you need do not show up, the root_directory control parameter may be wrong
or the directories may not exist.

Test permissions by fetching a file in your message directory and uploading a file to the consolidated database
directory. If you get errors your FTP server permissions are set up incorrectly.

The SMTP message system

The Simple Mail Transfer Protocol (SMTP) is used in Internet email products.

With the SMTP system, SQL Remote sends messages using Internet mail. The messages are encoded to a
text format and sent in an email message to the target database. The messages are sent using an SMTP server,
and retrieved from a POP server: this is the way that many email programs send and receive messages.

For a list of operating systems for which SMTP is supported, see the SQL Remote for SQL Anywhere table
in SQL Anywhere 10.0.1 Components by Platform.

SMTP addresses and user IDs
To use SQL Remote and an SMTP message system, each database participating in the setup requires a SMTP
address, and a POP3 user ID and password. These are distinct identifiers: the SMTP address is the destination
of each message, and the POP3 user ID and password are the name and password entered by a user when
they connect to their mail box.

Using message types

Copyright © 2007, iAnywhere Solutions, Inc. 101

Separate email account recommended
It is recommended that a separate POP email account be used for SQL Remote messages.

Troubleshooting
If you cannot get the SMTP Link to work try connecting to the SMTP/POP3 server from the same machine
on which the Message Agent is running using the same account and password. Use an Internet email program
that supports SMTP/POP3 and make sure to disable the program once the SMTP message link is working.

SMTP message control parameters
Before the Message Agent connects to the message system to send or receive messages, the user must either
have a set of control parameters already set on their machine, or must fill in a window with the needed
information. This information is needed only on the first connection. It is saved and used as the default entries
on subsequent connects.

The SMTP message system uses the following control parameters:

♦ encode_dll If you have implemented a custom encoding scheme, you must set this to the full path of
the custom encoding DLL that you created.

See “Encoding and compressing messages” on page 116.

♦ local_host This is the name of the local computer. It is useful on machines where SQL Remote is
unable to determine the local host name. The local host name is needed to initiate a session with any
SMTP server. In most network environments, the local host name can be determined automatically and
this entry is not needed.

♦ TOP_supported SQL Remote uses a POP3 command called TOP when enumerating incoming
messages. The TOP command may not be supported by all POP servers. Setting this entry to NO will
use the RETR command, which is less efficient but will work with all POP servers. The default is YES.

♦ smtp_authenticate Determines whether the SMTP link authenticates the user. The default value is
YES. Set to NO for no SMTP authentication to be carried out.

♦ smtp_userid The user ID for SMTP authentication. By default this parameter takes the same value
as the pop3_userid parameter. The smtp_userid only needs to be set if the user ID is different to that
on the POP server.

♦ smtp_password The password for SMTP authentication. By default this parameter takes the same
value as the pop3_password parameter. The smtp_password only needs to be set if the user ID is
different to that on the POP server.

♦ smtp_host This is the name of the computer on which the SMTP server is running. It corresponds to
the SMTP host field in the SMTP/POP3 login dialog.

♦ pop3_host This is the name of the computer on which the POP host is running. It is commonly the
same as the SMTP host. It corresponds to the POP3 host field in the SMTP/POP3 login dialog.

SQL Remote Administration

102 Copyright © 2007, iAnywhere Solutions, Inc.

♦ pop3_userid This is used to retrieve mail. The POP user ID corresponds to the user ID field in the
SMTP/POP3 login dialog. You must obtain a user ID from your POP host administrator.

♦ pop3_password This is used to retrieve mail. It corresponds to the password field in the SMTP/POP3
login dialog. If all of these five fields are set, the login dialog is not displayed.

♦ Debug When set to YES, displays all SMTP and POP3 commands and responses. This is useful for
troubleshooting SMTP/POP support problems. Default is NO.

♦ Suppress_dialogs If set to true, the Connect dialog does not appear after failed attempts to connect
to the mail server. Instead, an error is generated.

Sharing SMTP/POP addresses

The database should have its own email account for SQL Remote messages, separate from personal email
messages intended for reading. This is because many email readers will collect email in the following manner:

1. Connect to the POP Host and download all messages.

2. Delete all messages from POP Host

3. Disconnect from POP Host.

4. Read mail from the local file or from memory

This causes a problem, as the email program downloads and deletes all of the SQL Remote email messages
as well as personal messages. If you are certain that your email program will not delete unread messages
from the POP Host then you may share an email address with the database as long as you take care not to
delete or alter the database messages.

These messages are easy to recognize, as they are filled with lines of seemingly random text.

The MAPI message system

Note
Support for MAPI is deprecated.

The Message Application Programming Interface (MAPI) is used in several popular email systems, such as
Microsoft Mail and later versions of Lotus cc:Mail.

For a list of operating systems for which MAPI is supported, see the SQL Remote for SQL Anywhere table
in SQL Anywhere 10.0.1 Components by Platform.

MAPI addresses and user IDs
To use SQL Remote and a MAPI message system, each database participating in the setup requires a MAPI
user ID and address. These are distinct identifiers: the MAPI address is the destination of each message, and
the MAPI user ID is the name entered by a user when they connect to their mail box.

Using message types

Copyright © 2007, iAnywhere Solutions, Inc. 103

MAPI message and the email inbox
Although SQL Remote messages may arrive in the same mailbox as email intended for reading, they do not
in general show up in your email inbox.

SQL Remote attempts to send application-defined messages, which MAPI identifies and hides when the
mailbox is opened. In this way, users can use the same email address and same connection to receive their
personal email and their database updates, yet the SQL Remote messages do not interfere with the mail
intended for reading.

If a message is routed via the Internet, or if certain security patches are applied to the operating system, the
special message type information can be lost. The message then does show up in the recipient's mailbox.

MAPI message control parameters
The MAPI message system uses the following control parameters:

♦ Debug When set to YES, displays all MAPI calls and the return codes. This is useful for
troubleshooting MAPI support problems. Default is NO.

♦ Encode_dll If you have implemented a custom encoding scheme, you must set this to the full path of
the custom encoding DLL that you created.

See “Encoding and compressing messages” on page 116.

♦ Force_Download (default YES) controls if the MAPI_FORCE_DOWNLOAD option is set when
calling MapiLogon. This might be useful when using remote mail software that dials when this option
is set.

♦ IPM_Receive This can be set to YES or NO (default YES). If set to NO, the MAPI link receives IPC
messages, which are not visible in the mailbox. If set to YES, the MAPI link receives IPM messages,
which are visible in the mailbox, and IPC messages, which are not visible in the mailbox. It is
recommended that this value remain at YES to ensure that both IPC and IPM messages are picked up
by SQL Remote.

♦ IPM_Send This can be set to YES or NO (default NO). If set to YES, the MAPI link sends IPM
messages, which are visible in the mailbox. If set to NO, the MAPI link attempts to send IPC messages,
which are not visible in the mailbox. If a message is routed via the Internet, or if certain security patches
are applied to the operating system, SQL Remote may be unable to send IPC messages.

♦ Profile Use the specified Microsoft Exchange profile. You should use this if you are running the
Message Agent as a service.

♦ Suppress_dialogs If set to true, the Connect dialog does not appear after failed attempts to connect
to the mail server. Instead, an error is generated.

The VIM message system

Note
Support for VIM is deprecated.

SQL Remote Administration

104 Copyright © 2007, iAnywhere Solutions, Inc.

The Vendor Independent Messaging system (VIM) is used in Lotus Notes and in some releases of Lotus
cc:Mail.

To use SQL Remote and a VIM message system, each database participating in the setup requires a VIM
user ID and address. These are distinct identifiers: the VIM address is the destination of each message, and
the VIM user ID is the name entered by a user when they connect to their mail box.

For a list of operating systems for which VIM is supported, see the SQL Remote for SQL Anywhere table
in SQL Anywhere 10.0.1 Components by Platform.

VIM message control parameters
The VIM message system uses the following control parameters:

♦ Path This corresponds to the Path field in the cc:Mail login dialog. It is not applicable to and is ignored
under Lotus Notes.

♦ Userid This corresponds to the User ID field in the cc:Mail login dialog.

♦ Password This corresponds to the Password field in the cc:Mail login dialog. If all of Path, Userid,
and Password are set, the login dialog is not displayed.

♦ Debug When set to YES, displays all VIM calls and the return codes. This is useful for troubleshooting
VIM support problems. Default is NO.

♦ Encode_dll If you have implemented a custom encoding scheme, you must set this to the full path of
the custom encoding DLL that you created.

See “Encoding and compressing messages” on page 116.

♦ Receive_All When set to YES, the Message Agent checks all messages to see if they are SQL Remote
messages. When set to NO (the default), the Message Agent looks only for messages of the application-
defined type SQLRemoteData. This leads to improved performance in Notes.

Setting Receive_All to YES is useful in setups where the message type is lost, reset, or never set. This
includes setups including cc:Mail messages, or over the Internet.

♦ Suppress_dialogs If set to true, the Connect dialog does not appear after failed attempts to connect
to the mail server. Instead, an error is generated.

♦ Send_VIM_Mail When set to YES, the Message Agent sends messages compatible with Adaptive
Server Anywhere releases before 5.5.01, and compatible with cc:Mail. If this is set to YES, you should
ensure that Receive_All is set to YES also.

Using message types

Copyright © 2007, iAnywhere Solutions, Inc. 105

Running the Message Agent
The SQL Remote Message Agent is a key component in SQL Remote replication. The Message Agent
handles both the sending and receiving of messages. It carries out the following functions:

♦ It processes incoming messages, and applies them in the proper order to the database.

♦ It scans the transaction log or stable queue at each publisher database, and translates the log entries into
messages for subscribers.

♦ It parcels the log entries up into messages no larger than a fixed maximum size (50,000 bytes by default),
and sends them to subscribers.

♦ It maintains the message tracking information in the system tables, and manages the guaranteed
transmission mechanism.

Executable names
On Windows operating systems, the Message Agent is named dbremote.exe. On Unix operating systems,
the name is dbremote. On Mac OS X, you can also use SyncConsole to start the Message Agent.

See “Starting the Message Agent on Mac OS X” on page 122.

Message Agent batch and continuous modes

The Message Agent can be run in one of two modes:

♦ Batch mode In batch mode, the Message Agent starts, receives and sends all messages that can be
received and sent, and then shuts down.

Batch mode is useful at occasionally-connected remote sites, where messages can only be exchanged
with the consolidated database when the connection is made: for example, when the remote site dials up
to the main network.

♦ Continuous mode In continuous mode, the Message Agent periodically sends messages, at times
specified in the properties of each remote user. When it is not sending messages, it receives messages
as they arrive.

Continuous mode is useful at consolidated sites, where messages may be coming in and going out at any
time, to spread out the workload and to ensure prompt replication.

The options available depend on the send frequency options selected for the remote users. Sending frequency
options are described in “Selecting a send frequency” on page 90.

♦ To run the Message Agent in continuous mode

1. Ensure that every user has a sending frequency specified. The sending frequency is specified by a SEND
AT or SEND EVERY option in the GRANT REMOTE statement.

2. Start the Message Agent without using the -b option.

SQL Remote Administration

106 Copyright © 2007, iAnywhere Solutions, Inc.

♦ To run the Message Agent in batch mode

• Either:

♦ Have at least one remote user who has neither a SEND AT nor a SEND EVERY option in their
remote properties, or

♦ Start the Message Agent using the -b option.

Connections used by the Message Agent

The Message Agent uses a number of connections to the database server. These are:

♦ One global connection, alive all the time the Message Agent is running.

♦ One connection for scanning the log. This connection is alive during the scan phase only.

♦ One connection for executing commands from the log-scanning thread. This connection is alive during
the scan phase only.

♦ One connection for processing synchronize subscription requests. This connection is alive during the
send phase only.

♦ One connection for each worker thread. These connections are alive during the receive phase only.

Replication system recovery procedures

SQL Remote replication places new requirements on data recovery practices at consolidated database sites.
Standard backup and recovery procedures enable recovery of data from system or media failure. In a
replication installation, even if such recovery is achieved, the recovered database can be out of synch with
remote databases. This can require a complete resynchronization of remote databases, which can be a
formidable task if the installation involves large numbers of databases.

In short, recovery of the consolidated database from a failure at the consolidated site is only part of the task
of recovering the entire replication installation.

Protection of the replication system against media failures has two aspects:

♦ Backup and log management Solid backup procedures and log management procedures for the
consolidated database server are an essential part of recovery plans. Backup procedures protect against
media failure on the database device. Using a transaction log mirror protects against media failure on
the transaction log device.
See “Transaction log and backup management” on page 129.

♦ Message Agent configuration The Message Agent command line options provide ways for you to
tune Message Agent behavior to match your backup and recovery requirements.

Message Agent configuration is discussed in the following pages.

Running the Message Agent

Copyright © 2007, iAnywhere Solutions, Inc. 107

Replicating only backed-up transactions
By default, the Message Agent processes all committed transactions. When the Message Agent is run with
the -u option, only transactions that have been backed up by the database backup commands are processed.

Transaction log backup is carried out using Sybase Central or the dbbackup utility, or off-line copying and
renaming of the log file.

By sending only backed-up transactions, the replication installation is protected against media failure on the
transaction log. Maintaining a mirrored transaction log also accomplishes this goal.

The -u option provides additional protection against total site failure, if backups are carried out to another
site.

Ensuring consistent Message Agent settings

Some Message Agent settings need to be the same throughout an installation, and so should be set before
deployment. This section lists the settings that need to be the same.

♦ Maximum message length The maximum message length for SQL Remote messages has a default
value of 50K. This is configurable, using the Message Agent -l option. However, the maximum message
length must be the same for each Message Agent in the installation, and may be restricted by operating
system memory allocation limits.

Received messages that are longer than the limit are deleted as corrupt messages.

For details of this setting, see “Message Agent” on page 146.

The Message Agent and replication security

Messages sent by the SQL Remote Message Agent have a very simple encryption that protects against casual
snooping. However, the encryption scheme is not intended to provide full protection against determined
efforts to decipher them.

See “The Message Agent and replication security” on page 123.

Troubleshooting errors at remote sites

There are obvious obstacles for an administrator who has access only to the consolidated site to troubleshoot
errors that occur at remote sites. To assist with this task, you can set up SQL Remote so that portions of the
output log from remote sites are delivered to the consolidated site and written to a file. This one file contains
logging information from some or all sites in the system.

To set up SQL Remote to collect log information, you must configure both the remote and the consolidated
sites.

SQL Remote Administration

108 Copyright © 2007, iAnywhere Solutions, Inc.

♦ To configure a remote database to send log information to the consolidated database

1. Set a link option to send log information when an error is encountered.

Execute the following command against the remote database:

SET REMOTE link-name OPTION
PUBLIC.output_log_send_on_error = 'Yes'

With this option set, any message that starts with the error indicator 'E' causes SQL Remote to send log
information to the consolidated site.

See “SET REMOTE OPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference].

2. Set a link option to limit the amount of information sent to the consolidated site. This step is optional.

Execute the following command against the remote database:

SET REMOTE link-name OPTION
PUBLIC.output_log_send_limit = 'nnn'

The value of this option is the number of bytes at the tail of the output log (that is, the most recent
entries) which are sent to the consolidated site. You can use nnnK to indicate kilobytes. The default
setting is '5K'.

If you supply a value that is too large to fit in the maximum message size, SQL Remote overrides the
option value and sends only what will fit in the message.

You can also send log information even in the absence of errors by setting the output_log_send_now option
to Yes. SQL Remote then sends the output log information on the next poll and resets the option to 'NO'
after the log is sent.

♦ To configure a consolidated site to receive log information

• Use either the -ro or the -rt Message Agent option.

See “Message Agent” on page 146.

Running the Message Agent

Copyright © 2007, iAnywhere Solutions, Inc. 109

Tuning Message Agent performance

Who needs to read this section?
If performance is not a problem at your site, you do not need to read this section.

There are several options you can use to tune the performance of the Message Agent. This section describes
those options.

Sending messages and receiving messages are two separate processes. The major performance issues for
these two processes are different.

♦ Replication throughput The major bottleneck for total throughput of SQL Remote sites is generally
receiving messages from many remote databases and applying them to the database at the consolidated
site. You can control this step by tuning the receive process of the Message Agent at the consolidated
site.

♦ Replication turnaround The time lag from when data is entered at one site to when it appears at other
sites is the turnaround time for replication. You can control this time lag.

Tuning throughput by controlling Message Agent threading

It is assumed in this section that you are tuning the performance of a Message Agent that is running in
continuous mode at a consolidated site.

Worker threads can be used by the Message Agent to apply incoming messages from remote users. This can
improve throughput by allowing messages to be applied in parallel rather than serially.

Setting the number of worker threads
The number of worker threads is set on the Message Agent command line, using the -w option. The default
is to use no worker threads, so that all messages are applied serially. The maximum number of worker threads
is 50.

Performance benefits from worker threads
The performance advantage will be most significant when the server is on a system with a striped drive array.

What messages are applied in parallel
When worker threads are being used, messages from different remote users are applied in parallel. Messages
from a single remote user are applied serially. For example, ten messages from a single remote user will be
applied by a single worker thread in the correct order.

Deadlock is handled by re-applying the rolled back transaction at a later time.

Reading messages from the message system is single-threaded. Messages are read and the header information
is examined (to determine the remote user and the correct order of application) before passing them off to
worker threads to be applied.

Building messages and sending messages is single-threaded.

SQL Remote Administration

110 Copyright © 2007, iAnywhere Solutions, Inc.

Tuning throughput by caching messages

The Message Agent caches incoming messages in a configurable area of memory as it reads them.

Specifying the message cache size
The size of the message cache is specified on the Message Agent command line, using the -m option.

The -m option specifies the maximum amount of memory to be used by the Message Agent for building
messages. The allowed size can be specified as n (in bytes), nK, or nM. The default is 2048K (2M).

Example
The following command line starts a Message Agent using twelve Megabytes of memory as a message cache:

dbremote -c "eng=..." -m 12M

How messages are cached
When transactions are large, or messages arrive out of order, they are stored in memory by the Message
Agent until the message is to be applied. This caching of messages prevents rereading of out-of-order
messages from the message system, which may lower performance on large installations. It is especially
important when messages are being read over a WAN (such as Remote Access Services or POP3 through a
modem). It also avoids contention between worker threads reading messages (a single threaded task) because
the message contents are cached.

When the memory usage specified using the -m option is exceeded, messages are flushed in a least-recently-
used fashion.

This option is provided primarily for customers considering a single consolidated database for thousands of
remote databases.

Tuning incoming message polling
When running a Message Agent in continuous mode, typically at a consolidated database site, you can control
how often it polls for incoming messages, and how "patient" it is in waiting for messages that arrive out of
order before requesting that the message be resent. Tuning these aspects of the behavior can have a significant
effect on performance in some circumstances.

Issues to consider
The issues to consider when tuning the message-receiving process are similar to those when tuning the
message-sending process.

♦ Regular messages Your choices dictate how often the Message Agent polls for incoming messages
from remote databases.

♦ Resend requests You can control how many polls to wait until an out-of-order message arrives,
before requesting that it be resent.

♦ Processing incoming messages If your polling period for incoming messages is too long,
compared to the frequency with which messages are arriving, you could end up with messages sitting in

Tuning Message Agent performance

Copyright © 2007, iAnywhere Solutions, Inc. 111

the queue, waiting to be processed. If your polling period is too short, you will waste resources polling
when no messages are in the queue.

See “Tuning the message sending process” on page 114.

Polling interval

By default, a Message Agent running in continuous mode polls one minute after finishing the previous poll,
to see whether new messages have arrived. You can configure the polling interval using the -rd option.

The default polling interval from the end of one poll to the start of another is one minute. You can poll more
frequently using a value in seconds, as in the following command line:

dbremote -rd 30s

Alternatively, you can poll less frequently, as in the following command line, which polls every five minutes:

dbremote -rd 5

Setting a very small interval may have some detrimental impact on overall system throughput, for the
following reasons:

♦ Each poll of the mail server (if you are using email) places a load on your message system. Too-frequent
polling may affect your message system and produce no benefits.

♦ If you do not modify the Message Agent patience before it assumes that an out of sequence message is
lost, and requests it be sent again, you can flood your system with resend requests.

In general, you should not use a very small polling interval unless you have a specific reason for requiring
a very quick response time for messages.

Setting larger intervals may provide a better overall throughput of messages in your system, at the cost of
waiting somewhat longer for each message to be applied. In many SQL Remote installations, optimizing
turnaround time is not the primary concern.

Requesting resends

If, when the Message Agent polls for incoming messages, one message is missing from a sequence, the
Message Agent does not immediately request that the message be resent. Instead, it has a default patience
of one poll.

If the next message expected is number 6 and message 7 is found, the Message Agent takes no action until
the next poll. Then, if no new message for that user is found, it issues a resend request.

You can change the number of polls for which the Message Agent waits before sending a request using the
-rp option. This option is often used in conjunction with the -rd option that sets the polling interval.

For example, if you have a very small polling interval, and a message system that does not preserver the
order in which messages arrive, it may be very common for out-of-sync messages to arrive only after two
or three polls have been completed. In such a case, you should instruct the Message Agent to be more patient

SQL Remote Administration

112 Copyright © 2007, iAnywhere Solutions, Inc.

before sending a resend request, by increasing the -rp value. If you do not do this, a large number of
unnecessary resend requests may be sent.

Example
Suppose there are two remote users, named user1 and user2, and suppose the Message Agent command
line is as follows:

dbremote -rd 30s -rp 3

In the following sequence of operations, messages are marked as userX.n so that user1.5 is the sixth message
from user1. The Message Agent expects messages to start at number 1 for both users.

At time 0 seconds:

1. The Message Agent reads user1.1, user2.4

2. The Message Agent applies user1.1

3. The Message Agent patience is now user1: N/A, user2: 3, as an out of sequence message has arrived
from user 2.

At time 30 seconds:

1. The Message Agent reads: no new messages

2. The Message Agent applies: none

3. The Message Agent patience is now user1: N/A, user2: 2

At time 60 seconds:

1. The Message Agent reads: user1.3

2. The Message Agent applies: no new messages

3. The Message Agent patience: user1: 3, user2: 1

At time 90 seconds:

1. The Message Agent reads: user1.4

2. The Message Agent applies: none

3. The Message Agent patience user1: 3, user2: 0

4. The Message Agent issues resend to user2.

When a user receives a new message, it resets the Message Agent patience even if that message is not the
one expected.

Tuning Message Agent performance

Copyright © 2007, iAnywhere Solutions, Inc. 113

Tuning the message sending process
The turnaround time for replication is governed by how often each sites sends messages and how often each
site polls for incoming messages. To achieve a small time lag between data entry and data replication, you
can set a small value for the -sd Message Agent option, which controls the frequency for polling to see if
more data needs to be sent.

Issues to consider
The issues to consider when tuning the message-sending process are similar to those when tuning the
incoming-message polling frequency:

♦ Regular messages Your choices dictate how often updates are sent to remote databases.

♦ Resend requests When a remote user requests that a message be resent, the Message Agent needs
to take special action that can interrupt regular message sending. You can control the urgency with which
these resend requests are processed.

♦ Number and size of messages If you send messages very frequently, there is more chance of small
messages being sent. Sending messages less frequently allows more instructions to be grouped in a single
message. If a large number of small messages is a concern for your message system, then you may have
to avoid using very small polling periods.

See “Tuning incoming message polling” on page 111.

Polling interval

You control the interval to wait between polls for more data from the transaction log to send using the -sd
option, which has a default of one minute. The following example sets the polling interval to 30 seconds:

dbremote -sd 30s ...

Alternatively, you can poll less frequently, as in the following command line, which polls every five minutes:

dbremote -sd 5

Setting a very small interval may have some detrimental impact on overall system throughput, for the
following reasons:

♦ Too-frequent polling produces many short messages. If the message load places a strain on your message
system, throughput could be affected.

Setting larger intervals may provide a better overall throughput of messages in your system, at the cost of
waiting somewhat longer for each message to be applied. In many SQL Remote installations, optimizing
turnaround time is not the primary concern.

Resending messages

When a user requests that a message be resent, the message has to be retrieved from early in the transaction
log. Going back in the transaction log to retrieve this message and send it causes the Message Agent to
interrupt the regular sending process. If you are tuning your SQL Remote installation for optimum

SQL Remote Administration

114 Copyright © 2007, iAnywhere Solutions, Inc.

performance, you must balance the urgency of sending requests for resent messages with the priority of
processing regular messages.

The -ru option controls the urgency of the resend requests. The value for the parameter is a time in minutes
(or in other units if you add s or h to the end of the number), with a default of zero.

To help the Message Agent delay processing resend requests until more have arrived before interrupting the
regular message sending activity, set this option to a longer time.

The following command line waits one hour until processing a resend request.

dbremote -ru 1h ...

If you do not specify the -ru option, then a default value is picked by the Message Agent, based on the send
interval of the users that have requested that data be resent. The elapsed time between receiving a resend
request for a user and rescanning the log does not exceed half of the send interval for that user.

Tuning Message Agent performance

Copyright © 2007, iAnywhere Solutions, Inc. 115

Encoding and compressing messages
As messages pass through email and other message systems, there is a danger of them becoming corrupted.
For example, some message systems use certain characters or character combinations as control characters.

Message size affects the efficiency with which messages pass through a system. Compressed messages can
be processed more efficiently by a message system than uncompressed messages. On the other hand, carrying
out compression can itself take a significant amount of time.

SQL Remote encoding and compression
SQL Remote has a message encoding and compression scheme built in to the Message Agent. The scheme
provides the following features:

♦ Compatibility The system can be set up to be compatible with previous versions of the software.

♦ Compression You can select a level of compression for your messages.

♦ Encoding SQL Remote encodes messages to ensure that they pass through message systems
uncorrupted. The encoding scheme can be customized to provide extra features.

Settings for compatibility
To be compatible with previous versions of the software, you should set the compression database option
to -1 (minus one) at each database running the Version 6 software. This setting ensures that messages are
sent out in a format compatible with older versions of the software.

Upgrading SQL Remote
If you upgrade the consolidated database Message Agent first, you should set its compression database option
to -1. As each remote site in your replication system is upgraded to Version 6, you can change its setting of
the compression database option to a value between 0 (no compression) and 9 (maximum compression).
This allows you to take advantage of compression features on messages being sent to the consolidated
database. Once all remote sites are upgraded, you can set the consolidated site Message Agent compression
option to a value other than -1.

In addition, setting the compression option to a value other than -1 allows you to take advantage of the
Version 6 message encoding improvements.

The encoding scheme

The default message-encoding behavior of SQL Remote is as follows:

♦ For message systems that can use binary message formats, no encoding is carried out.

♦ Some message systems, including SMTP, VIM, and MAPI, require text-based message formats. For
these systems, an encoding DLL (dbencod.dll) translates messages into a text format before sending.
The message format is unencoded at the receiving end using the same DLL.

♦ You can instruct SQL Remote to use a custom encoding scheme. The tools for building a custom encoding
scheme are described in the following section.

SQL Remote Administration

116 Copyright © 2007, iAnywhere Solutions, Inc.

♦ If the compression database option is set to -1, then a Version 5 compatible encoding is carried out for
all message systems.

Note
Support for VIM and MAPI is deprecated.

Creating custom encoding schemes

You can implement a custom encoding scheme by building a custom encoding DLL. You could use this
DLL to apply special features required for a particular messages system, or to collect statistics, such as how
many messages or how many bytes were sent to each user.

The header file dbrmt.h, installed into the h subdirectory of your installation directory, provides an
application programming interface for building such a scheme.

To instruct SQL Remote to use your DLL for a particular message system, you need to set a message control
parameter called encode_dll to a value that is the full path to the custom DLL you have created. For example:

SET REMOTE ftp OPTION "Public"."encode_dll" = 'c:\\sany10\\win32\\custom.dll';

Encoding and decoding must be compatible
If you implement a custom encoding, you must make sure that the DLL is present at the receiving end, and
that the DLL is in place to decode your messages properly.

Encoding and compressing messages

Copyright © 2007, iAnywhere Solutions, Inc. 117

The message tracking system
SQL Remote has a message tracking system to ensure that all replicated operations are applied in the correct
order, no operations are missed, and no operation is applied twice.

Message system failures may lead to replication messages not reaching their destination, or reaching it in a
corrupt state. Also, messages may arrive at their destination in a different order from that in which they were
sent. This section describes the SQL Remote system for detecting and correcting message system errors,
and for ensuring correct application of messages.

If you are using an email message system, you should confirm that email is working properly between the
two machines if SQL Remote messages are not being sent and received properly.

The SQL Remote message tracking system is based on status information maintained in the remoteuser
SQL Remote system table. The table is maintained by the Message Agent. The Message Agent at a subscriber
database sends confirmation to the publisher database to ensure that remoteuser is maintained properly at
each end of the subscription.

The remoteuser table is the sys.sysremoteuser system table.

Status information in the remoteuser table

The remoteuser SQL Remote system table contains a row for each subscriber, with status information for
messages sent to and received by that subscriber. At the consolidated database, remoteuser contains a row
for each remote user. At each remote database, remoteuser contains a single row maintaining information
for the consolidated database. (Recall that the consolidated database subscribes to publications from the
remote database.)

The remoteuser SQL Remote system table at each end of a subscription is maintained by the Message
Agent.

Tracking messages by transaction log offsets

The message-tracking status information takes the form of offsets in the transaction logs of the publisher
and subscriber databases. Each COMMIT is marked in the transaction log by a well-defined offset. The order
of transactions can be determined by comparing their offset values.

Message ordering
When messages are sent, they are ordered by the offset of the last COMMIT of the preceding message. If a
transaction spans several messages, there is a serial number within the transaction to order the messages
correctly. The default maximum message size is 50,000 bytes, but you can use the Message Agent -l option
to change this setting.

Sending messages
The log_sent column holds the local transaction log offset for the latest message sent to the subscriber.
When the Message Agent sends a message, it sets the log_sent value to the offset of the last COMMIT in
the message. Once the message has been received and applied at the subscribed database, confirmation is

SQL Remote Administration

118 Copyright © 2007, iAnywhere Solutions, Inc.

sent back to the publisher. When the publisher Message Agent receives the confirmation, it sets the
confirm_sent column for that subscriber with the local transaction log offset. Both log_sent and
confirm_sent are offsets in the local database transaction log, and confirm_sent cannot be a later offset
than log_sent.

Receiving messages
When the Message Agent at a subscriber database receives and applies a replication update, it updates the
log_received column with the offset of the last COMMIT in the message. The log_received column at any
subscriber database therefore contains a transaction log offset in the publisher database's transaction log.
After the operations have been received and applied, the Message Agent sends confirmation back to the
publisher database and also sets the confirm_received value in the local SYSREMOTEUSER table. The
confirm_received column at any subscriber database contains a transaction log offset in the publisher
database's transaction log.

Subscriptions are two-way
SQL Remote subscriptions are two-way operations: each remote database is a subscriber to publications of
the consolidated database and the consolidated database subscribes to a matching publication from each
remote database. Therefore, the remoteuser SQL Remote system tables at the consolidated and remote
database hold complementary information.

The Message Agent applies transactions and updates the log_received value atomically. If a message
contains several transactions, and a failure occurs while a message is being applied, the log_received value
corresponds exactly to what has been applied and committed.

Resending messages
The remoteuser SQL Remote table contains two other columns that handle resending messages. The
resend_count and rereceive_count columns are retry counts that are incremented when messages get lost
or deleted for some reason.

In general, the log_send column has the same value as the log_sent column. However, if the log_send has
a value that is greater than log_sent, the Message Agent sends messages to the subscriber immediately on
its next run.

Handling lost or corrupt messages

When messages are received at a subscriber database, the Message Agent applies them in the correct order
(determined from the log offsets) and sends confirmation to the publisher. If a message is missing, the
Message Agent increments the local value of rereceive_count, and requests that it be resent. Other messages
present or en route are not applied.

The request from a subscriber to resend a message increments the resend_count value at the publisher
database, and also sets the publisher's log_sent value to the value of confirm_sent. This resetting of the
log_sent value causes operations to be resent.

Users cannot reset log_sent
The log_sent value cannot be reset by a user, as it is in a system table.

The message tracking system

Copyright © 2007, iAnywhere Solutions, Inc. 119

Message identification
Each message is identified by three values:

♦ Its resend_count.

♦ The transaction log offset of the last COMMIT in the previous message.

♦ A serial number within transactions, for transactions that span messages.

Messages with a resend_count value smaller than rereceive_count are not applied; they are deleted. This
ensures that operations are not applied more than once.

SQL Remote Administration

120 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 6

Administering SQL Remote

Contents
Running the Message Agent ... 122
Error reporting and handling .. 125
Transaction log and backup management .. 129
Using passthrough mode ... 140

This chapter details setup and management issues for SQL Remote administrators. SQL Remote uses SQL
Anywhere as the consolidated database.

Copyright © 2007, iAnywhere Solutions, Inc. 121

Running the Message Agent
This section describes how to run the Message Agent.

Starting the Message Agent
The Message Agent has a set of options that control its behavior. The only option that is required for the
Message Agent to run is the connection parameters option (-c). See “Connection parameters” [SQL Anywhere
Server - Database Administration].

Verbose keyword Short form Argument

DatabaseFile DBF string

DatabaseName DBN string

DatabaseSwitches DBS string

EngineName ENG string

Password PWD string

Start Start string

Userid UID string

Starting the Message Agent on Mac OS X

SQL Anywhere includes an application called SyncConsole that can be used to start the SQL Remote
Message Agent on Mac OS X. You can also start the Message Agent on Mac OS X using the dbremote
utility.

♦ To start SyncConsole

1. In the Finder, go to /Applications/SQLAnywhere10.

2. Double-click SyncConsole.

3. Choose File ► New ► SQL Remote.

A client options dialog appears.

4. Enter the connection information for the SQL Remote Message Agent.

For example, the following connection parameter uses an ODBC data source for the SQL Anywhere
demo database:

DSN="SQL Anywhere 10 Demo"

Administering SQL Remote

122 Copyright © 2007, iAnywhere Solutions, Inc.

For a complete list of dbremote options you can enter in the Options field, see “Message
Agent” on page 146.

Running the Message Agent as a service

If you are running the Message Agent in continuous mode (not batch mode) you may wish to keep the
Message Agent running all the time that the server is running.

You can do this by running the Message Agent as a Windows service. A service can be configured to keep
running even when the current user logs out, and to start as soon as the operating system is started.

For a full description of running programs as services, see “Running the Database Server” [SQL Anywhere
Server - Database Administration].

The Message Agent and replication security

In the tutorials in the previous chapter, the Message Agent was run using a user ID with DBA permissions.
The operations in the messages are carried out from the user ID specified in the Message Agent connection
string; by using the user ID DBA, you can be sure that the user has permissions to make all the changes.

In many situations, distributing the DBA user ID and password to all remote database users is an unacceptable
practice for security and data privacy reasons. SQL Remote provides a solution that enables the Message
Agent to have full access to the database in order to make any changes contained in the messages without
creating security problems.

A special permission, REMOTE DBA, has the following properties:

♦ No distinct permissions when not connected from the Message Agent A user ID granted
REMOTE DBA authority has no extra privileges on any connection apart from the Message Agent.
Therefore, even if the user ID and password for a REMOTE DBA user is widely distributed, there is no
security problem. As long as the user ID has no permissions beyond CONNECT granted on the database,
no one can use this user ID to access data in the database.

♦ Full DBA permissions from the Message Agent When connecting from the Message Agent, a
user ID with REMOTE DBA authority has full DBA permissions on the database.

Using REMOTE DBA permission
A suggested practice is to grant REMOTE DBA authority at the consolidated database to the publisher and
to each remote user. When the remote database is extracted, the remote user becomes the publisher of the
remote database, and is granted the same permissions they were granted on the consolidated database,
including the REMOTE DBA authority which enables them to use this user ID in the Message Agent
connection string. Adopting this procedure means that there are no extra user IDs to administer, and each
remote user needs to know only one user ID to connect to the database, whether from the Message Agent
(which then has full DBA authority) or from any other client application (in which case the REMOTE DBA
authority grants them no extra permissions).

Running the Message Agent

Copyright © 2007, iAnywhere Solutions, Inc. 123

Granting REMOTE DBA permission
You can grant REMOTE DBA permissions to a user ID named dbremote as follows:

GRANT REMOTE DBA
TO dbremote
IDENTIFIED BY dbremote

In SQL Anywhere, you can add the REMOTE DBA authority to a remote user by checking the appropriate
option on the Authorities tab of the remote user's property sheet.

Administering SQL Remote

124 Copyright © 2007, iAnywhere Solutions, Inc.

Error reporting and handling
This section describes how errors are reported and handled by the Message Agent.

Default error handling

The default action taken by the Message Agent when an error occurs is to record the fact in its log output.
The Message Agent sends log output to a window or a log file recording its operation. By default, log output
is sent to the window only; the -o option sends output to a log file as well.

The Message Agent may print more information in the output log than in the window. The Message Agent
log includes the following:

♦ Listing of messages applied.

♦ Listing of failed SQL statements.

♦ Listing of other errors.

UPDATE conflicts are not errors
UPDATE conflicts are not errors, and so are not reported in the Message Agent output.

For more information on the log file, see “Message Agent” on page 146.

Ignoring errors
There may be exceptional cases where you wish to allow an error encountered by the Message Agent when
applying SQL statements to go unreported. This may arise when you know the conditions under which the
error occurs and are sure that it does not produce inconsistent data and that its consequences can safely be
ignored.

To allow errors to go unreported, you can create a BEFORE trigger on the action that causes the known
error. The trigger should signal the REMOTE_STATEMENT_FAILED SQLSTATE (5RW09) or
SQLCODE (-288) value.

For example, if you wish to quietly fail INSERT statements on a table that fail because of a missing referenced
column, you could create a BEFORE INSERT trigger that signals the REMOTE_STATEMENT_FAILED
SQLSTATE when the referenced column does not exist. The INSERT statement fails, but the failure is not
reported in the Message Agent log.

Implementing error handling procedures

SQL Remote allows you to carry out some other process in addition to logging a message if an error occurs.
The replication_error database option allows you to specify a stored procedure to be called by the Message
Agent when an error occurs. By default no procedure is called.

Error reporting and handling

Copyright © 2007, iAnywhere Solutions, Inc. 125

The procedure must have a single argument of type CHAR, VARCHAR, or LONG VARCHAR. The
procedure is called twice: once with the error message and once with the SQL statement that causes the error.

While the option allows you to track and monitor errors in replication, you must still design them out of your
setup: this option is not intended to resolve such errors.

For example, the procedure could insert the errors into a table with the current time and remote user ID, and
this information can then replicate back to the consolidated database. An application at the consolidated
database can create a report or send email to an administrator when errors show up.

For information on setting the replication_error option, see “SQL Remote options” on page 160.

Example: emailing notification of errors

You may wish to receive some notification at the consolidated database when the Message Agent encounters
errors. This section demonstrates a method to send Email messages to an administrator when an error occurs.

A stored procedure
The stored procedure for this example is called sp_LogReplicationError, and is owned by the user cons.
To cause this procedure to be called in the event of an error, set the replication_error database option using
Interactive SQL or Sybase Central:

SET OPTION PUBLIC.replication_error =
 'cons.sp_LogReplicationError'

The following stored procedure implements this notification:

CREATE PROCEDURE cons.sp_LogReplicationError
 (IN error_text LONG VARCHAR)
BEGIN
 DECLARE current_remote_user CHAR(255);
 SET current_remote_user = CURRENT REMOTE USER;
 // Log the error
 INSERT INTO cons.replication_audit
 (remoteuser, errormsg)
 VALUES
 (current_remote_user, error_text);
 COMMIT WORK;
 //Now notify the DBA by email that an error has occurred
 // on the consolidated database. The email should contain the error
 // strings that the Message Agent is passing to the procedure.
 IF CURRENT PUBLISHER = 'cons' THEN
 CALL sp_notify_DBA(error_text);
 END IF
END;

The stored procedure calls another stored procedure to manage the sending of Email:

CREATE PROCEDURE sp_notify_DBA(in msg long varchar)
BEGIN
 DECLARE rc INTEGER;
 rc=call xp_startmail(mail_user='davidf');
 //If successful logon to mail
 IF rc=0 THEN
 rc=call xp_sendmail(

Administering SQL Remote

126 Copyright © 2007, iAnywhere Solutions, Inc.

 recipient='Doe, John; John, Elton',
 subject='SQL Remote Error',
 "message"=msg);
 //If mail sent successfully, stop
 IF rc=0 THEN
 call xp_stopmail()
 END IF
 END IF
END;

An audit table
An audit table could be defined as follows:

CREATE TABLE replication_audit (
 id INTEGER DEFAULT AUTOINCREMENT,
 pub CHAR(30) DEFAULT CURRENT PUBLISHER,
 remoteuser CHAR(30),
 errormsg LONG VARCHAR,
 timestamp DATETIME DEFAULT CURRENT TIMESTAMP,
 PRIMARY KEY (id,pub)
);

The columns have the following meaning:

Column Description

pub Current publisher of the database (lets you know at what database it was inserted)

remoteuser Remote user applying the message (lets you know what database it came from)

errormsg Error message passed to the replication_error procedure

Here is a sample insert into the table from the above error:

INSERT INTO cons.replication_audit
 (id,
 pub,
 remoteuser,
 errormsg,
 "timestamp")
VALUES
 (1,
 'cons',
 'sales',
 'primary key for table ''reptable'' is not unique (-193)',
 '1997/apr/21 16:03:13.836')
COMMIT WORK

Since SQL Anywhere supports calling external DLLs from stored procedures you can also design a paging
system, instead of using Email.

An example of an error
For example, if a row is inserted at the consolidated using the same primary key as one inserted at the remote,
the Message Agent displays the following errors:

Received message from "cons" (0-0000000000-0)

Error reporting and handling

Copyright © 2007, iAnywhere Solutions, Inc. 127

SQL statement failed: (-193) primary key for table 'reptable' is not
unique
INSERT INTO cons.reptable(id,text,last_contact)
VALUES (2,'dave','1997/apr/21 16:02:38.325')
COMMIT WORK
The messages that arrived in Doe, John and Elton, John's email each had a subject of SQL Remote Error:

primary key for table 'reptable' is not unique (-193)
INSERT INTO cons.reptable(id,text,last_contact) VALUES
(2,'dave','1997/apr/21 16:02:52.605')

Administering SQL Remote

128 Copyright © 2007, iAnywhere Solutions, Inc.

Transaction log and backup management
The importance of good backup practices

Replication depends on access to operations in the transaction log, and access to old transaction logs is
sometimes required. This section describes how to set up backup procedures at the consolidated and remote
databases to ensure proper access to old transaction logs.

It is crucial to have good backup practices at SQL Remote consolidated database sites. A lost transaction
log could easily mean having to re-extract remote users. At the consolidated database site, a transaction log
mirror is recommended.

For information on transaction log mirrors and other backup procedure information, see “Backup and Data
Recovery” [SQL Anywhere Server - Database Administration].

Ensuring access to old transactions
All transaction logs must be guaranteed available until they are no longer needed by the replication system.

In many setups, users of remote databases may receive updates from the office server every day or so. If
some messages get lost or deleted, and have to be resent by the message-tracking system, it is possible that
changes made several days ago will be required. If a remote user takes a vacation, and messages have been
lost in the meantime, changes weeks old may be required. If the transaction log is backed up daily, the log
with the changes will no longer be running on the server.

Because the transaction log continually grows in size, space can become a concern. You can use an event
handler on transaction log size to rename the log when it reaches a given size. Then you can use the
delete_old_logs option to clean up log files that are no longer needed.

For more information about controlling transaction log size, see “BACKUP statement” [SQL Anywhere
Server - SQL Reference].

Setting the transaction log directory
When the Message Agent needs to scan transaction logs other than the current log, it looks through all the
transaction log files kept in a designated transaction log directory. A setting on the Message Agent
command line tells the Message Agent which directory this is.

Example
For example, the following command line tells the Message Agent to look in the directory e:\archive to find
old transaction logs. The command must be entered all on one line.

dbremote -c "eng=server_name;uid=DBA;pwd=sql" e:\archive

Log names are not important
The Message Agent opens all the files in the transaction log directory to determine which files are logs, so
the actual names of the log files are not important.

This section describes how you can set up a backup procedure to ensure that such a directory is kept in proper
shape.

Transaction log and backup management

Copyright © 2007, iAnywhere Solutions, Inc. 129

Backup utility options
The SQL Anywhere backup utility has several options, accessible through Sybase Central wizard selections
or through dbbackup options, that control its behavior.

This section describes two approaches to using the backup utility in SQL Remote consolidated database
backups. Backups must ensure that a set of transaction logs suitable for use by the Message Agent is always
available.

Using the live directory as the transaction log directory

It is recommended that you use the option to rename and restart the transaction log when backing up the
consolidated database and remote database transaction logs. For the dbbackup utility, this is the -r option.

The figure below illustrates a database named consol.db, with a transaction log named consol.log in the same
directory. For the sake of simplicity, this example assumes that the log is in the same directory as the database,
although this would not generally be safe practice in a production environment. The directory is named c:
\live.

C:\Live

971201AA.log

971201AB.log

consol.log
consol.db

A backup command line
The following command line backs up the database using the rename and restart option:

dbbackup -r -c "uid=DBA;pwd=sql" c:\archive

The connection string options would be different for each database.

Effects of the backup
If you back up the transaction log to a directory c:\archive using the rename and restart option, the Backup
utility carries out the following tasks:

1. Backs up the transaction log file, creating a backup file c:\archive\consol.log.

2. Renames the existing transaction log file to 971201xx.log, where xx are sequential characters ranging
from AA to ZZ.

3. Starts a new transaction log, as consol.log.

Administering SQL Remote

130 Copyright © 2007, iAnywhere Solutions, Inc.

After several backups, the live directory contains a set of sequential transaction logs.

C:\Live C:\Archive

consol.log

971201AA.log

971201AB.log

971201AC.log

consol.log

consol.db

consol.db

A Message Agent command line
You can run the Message Agent with access to these log files using the following command line:

dbremote -c "dbn=hq;..." c:\live

Using the backup directory as the transaction log directory

An alternative procedure is to use the backup directory as the transaction log directory.

Again, the figure below illustrates a database named consol.db, with a transaction log named consol.log in
the same directory. For the sake of simplicity, this example assumes that the log is in the same directory as
the database, although this would not generally be safe practice in a production environment. The directory
is named c:\live.

C:\Live

971201AA.log

971201AB.log

consol.log
consol.db

A backup command line
The following command line backs up the database using the rename and restart option, and also uses an
option to rename the transaction log backup file:

dbbackup -r -n -c "uid=DBA;pwd=sql" c:\archive

Transaction log and backup management

Copyright © 2007, iAnywhere Solutions, Inc. 131

The connection string options would be different for each database.

Effects of the backup
If you back up the transaction log to a directory c:\archive using the rename and restart option and the log
renaming option, the Backup utility carries out the following tasks:

1. Renames the existing transaction log file to 971201xx.log, where xx are sequential characters ranging
from AA to ZZ.

2. Backs up the transaction log file to the backup directory, creating a backup file named 971201xx.log

3. Starts a new transaction log, as consol.log.

After several backups, the live directory and also the archive directory contain a set of sequential transaction
logs.

C:\Live C:\Archive

971201AA.log

971201AB.log

971201AC.log

consol.log

971201AA.log

971201AB.log

971201AC.log

consol.db consol.db

A Message Agent command line
You can run the Message Agent with access to these log files using the following command line:

dbremote -c "dbn=hq;..." c:\archive

Old log names different before 8.0.1
Prior to release 8.0.1 of Adaptive Server Anywhere, the old log files were named yymmdd01.log,
yymmdd02.log, and so on. The name change was introduced to allow more old logs to be stored. As the
Message Agent scans all the files in the specified directory, regardless of their names, the name change
should not affect existing applications.

Managing old transaction logs

All transaction logs must be guaranteed available until they are no longer needed by the replication system:
at that point, they can be discarded.

Administering SQL Remote

132 Copyright © 2007, iAnywhere Solutions, Inc.

The replication system no longer needs the logs when all remote databases have received and successfully
applied the messages contained in the log files. Remote databases confirm the successful receipt of messages
from the consolidated database, and the confirmation sets a value in the consolidated database SQL Remote
tables. The old transaction logs at the consolidated database are no longer needed by SQL Remote when this
receipt confirmation has been received from all remote databases.

See “The message tracking system” on page 118.

Using the delete_old_logs option
You can use the delete_old_logs database option at the consolidated database to manage old transaction logs
automatically.

The delete_old_logs database option is set by default to Off. If it is set to on, the old transaction logs are
deleted automatically by the Message Agent when they are no longer needed. A log is no longer needed
when all subscribers have confirmed receiving all changes recorded in that log file.

You can set the delete_old_logs option either for the PUBLIC group or just for the user contained in the
Message Agent connection string.

Example
The following statement sets the public delete_old_logs option to delete logs that were created more than
10 days ago:

SET OPTION PUBLIC.delete_old_logs = '10 days'

Recovery from database media failure for consolidated databases
This section describes how to recover from a media failure on the database device at the consolidated
database.

The procedures to follow are easiest to describe if there is only one transaction log file. While this might not
be common for consolidated databases, it is described first, followed by a more common, but complicated,
situation with a set of transaction log files.

Recovery with a single transaction log

The following steps assume that there is a single transaction log file, which has existed since the database
was created. They also assume that previous backups of the database file have been made and are available,
for example on tape.

♦ To recover the database

1. Make a copy of the database and log file.

2. Restore the database (.db) file, not the log file, from tape into a temporary directory.

3. Start the database using the existing transaction log and the -a option, to apply the transactions and
bring the database file up to date.

Transaction log and backup management

Copyright © 2007, iAnywhere Solutions, Inc. 133

4. Start the database in your normal way.

Any new activity is appended to the current transaction log.

Transaction log
(intact)

Database file
(corrupt)

Media failure on
the database file

Transaction log
(intact)

Old database file
(intact)

Restore backed
up database file

Transaction log
(intact)

Database file
(restored)

Start database
with transaction
log

X

Example
This example illustrates recovery using a mirrored transaction log.

Suppose you have a consolidated database file named consol.db in a directory c:\dbdir, and a transaction
log file c:\logdir\consol.log that is mirrored to d:\mirdir\consol.mlg.

♦ To recover from media failure on the C drive

1. Back up the mirrored transaction log d:\mirdir\consol.mlg.

2. Replace the failed hardware and re-install all affected software.

3. Create a temporary directory to perform the recovery in (for example, c:\recover).

4. Restore the most recent backup of the database file, consol.db, to c:\recover\consol.db.

5. Copy the mirror transaction log, d:\mirdir\consol.mlg, to the recovery directory with a .log extension,
giving c:\recover\consol.log.

Administering SQL Remote

134 Copyright © 2007, iAnywhere Solutions, Inc.

6. Start the database using the following command:

dbeng10 -a c:\recover\consol.log C:\recover\consol.db
7. Shut down the database server.

8. Back up the recovered database and transaction log from c:\recover.

9. Copy the files from c:\recover to the appropriate production directories:

♦ Copy c:\recover\consol.db to c:\dbdir\consol.db.

♦ Copy c:\recover\consol.log to c:\logdir\consol.log, and to d:\mirdir\consol.mlg.

10. Restart your system normally.

Recovery with multiple transaction logs

If you have a set of transaction logs, the procedure is different than if you only have an online transaction
log. You can choose to apply transaction logs individually using the -a option, or you can allow the database
server to determine the correct order of the transaction logs and apply them all using the -ad option.

Applying transaction logs individually
The following steps describe how to apply each transaction log to the database individually when recovering.
The procedure assumes that previous backups of the database file have been made and are available, for
example on tape.

♦ To recover the database using the -a option

1. Make a copy of the database and log file.

2. Restore the database (.db) file, not the log file, from tape into a temporary directory.

3. In the temporary directory, start the database, applying the old logs using the -a option, applying the
named transaction logs in the correct order.

4. Start the database using the current transaction log and the -a option to apply the transactions and bring
the database file up to date.

5. Start the database in your normal way.

Any new activity is appended to the current transaction log.

Example
Suppose you have a consolidated database file named c:\dbdir\cons.db. The transaction log file c:\dbdir
\cons.log is mirrored to d:\mirdir\cons.mlg.

Assume that you perform full backups weekly, and you perform incremental backups daily using the
following command:

dbbackup -c "uid=DBA;pwd=sql" -r -t e:\backdir

Transaction log and backup management

Copyright © 2007, iAnywhere Solutions, Inc. 135

This command backs up the transaction log cons.log to the directory e:\backdir. The transaction log file is
then renamed to datexx.log, where date is the current date and xx is the next set of letters in sequence, and
a new transaction log is started. The directory e:\backdir is then backed up using a third-party utility.

In this scenario you would be running the Message Agent with the optional directory to point to the renamed
transaction log files. The Message Agent command line would be

dbremote -c "uid=DBA;pwd=sql" c:\dbdir

On the third day following the weekly backup the database file gets corrupted because of a bad disk block.

♦ To recover from media failure on the C drive

1. Back up the mirrored transaction log d:\mirdir\cons.mlg.

2. Create a temporary directory to perform the recovery in. In this example, the directory is called c:
\recover.

3. Restore the most recent backup of the database file, cons.db to c:\recover\cons.db.

4. Apply the renamed transaction logs in order, as follows

dbeng10 -a c:\dbdir\date00.log c:\recover\cons.db
dbeng10 -a c:\dbdir\date01.log c:\recover\cons.db

5. Copy the current transaction log, c:\dbdir\cons.log to the recovery directory, giving c:\recover
\cons.log.

6. Start the database using the following command:

dbeng10 c:\recover\cons.db
7. Shut down the database server.

8. Back up the recovered database and transaction log from c:\recover.

9. Copy the files from c:\recover to the appropriate production directories:

♦ Copy c:\recover\cons.db to c:\dbdir\cons.db.

♦ Copy c:\recover\cons.log to c:\dbdir\cons.log, and to d:\mirdir\cons.mlg.

10. Restart your system as normal.

Applying multiple transaction logs
The following steps describe how to start the database server so it automatically applies all the transaction
logs to the database in the correct order. When you specify the -ad option, the database server looks in the
specified directory for the transaction logs for the database. It then determines the correct order to apply the
logs based on the log offsets.

The following procedure assumes that previous backups of the database file have been made and are
available, for example on tape.

Administering SQL Remote

136 Copyright © 2007, iAnywhere Solutions, Inc.

♦ To recover the database using the -ad option

1. Make a copy of the database and log file.

2. Restore the database (.db) file, not the log file, from tape into a temporary directory.

3. In the temporary directory, start the database, applying the transaction logs using the -ad option.

4. Start the database in your normal way.

Any new activity is appended to the current transaction log.

Example
Suppose you have a consolidated database file named c:\dbdir\cons.db. The transaction log file c:\dbdir
\cons.log is mirrored to d:\mirdir\cons.mlg.

Assume that you perform full backups weekly using the following command:

dbbackup -c "uid=DBA;pwd=sql" -r e:\backdir

Assume that you also perform incremental backups daily using the following command:

dbbackup -c "uid=DBA;pwd=sql" -r -t e:\backdir

This command backs up the transaction log cons.log to the directory e:\backdir. The transaction log file is
then renamed to datexx.log, where date is the current date and xx is the next set of letters in sequence, and
a new transaction log is started. The directory e:\backdir is then backed up using a third-party utility.

In this scenario you would be running the Message Agent with the optional directory to point to the renamed
transaction log files. The Message Agent command line would be

dbremote -c "uid=DBA;pwd=sql" c:\dbdir

On the third day following the weekly backup, the database file gets corrupted because of a bad disk block.

♦ To recover from media failure on the C drive

1. Replace the c:\ drive.

2. Back up the mirrored transaction log d:\mirdir\cons.mlg.

3. Create a temporary directory to perform the recovery in. In this example, it is called c:\recover.

4. Restore the most recent backup of the database file, cons.db to c:\recover\cons.db.

5. Copy the backed up transaction logs to c:\dbdir.

6. Apply the renamed transaction logs:

dbeng10 c:\recover\cons.db -ad c:\dbdir
7. Copy the current transaction log, c:\dbdir\cons.log to the recovery directory, giving c:\recover

\cons.log.

8. Start the database using the following command:

Transaction log and backup management

Copyright © 2007, iAnywhere Solutions, Inc. 137

dbeng10 c:\recover\cons.db
9. Shut down the database server.

10. Back up the recovered database and transaction log from c:\recover.

11. Copy the files from c:\recover to the appropriate production directories:

♦ Copy c:\recover\cons.db to c:\dbdir\cons.db.

♦ Copy c:\recover\cons.log to c:\dbdir\cons.log, and to d:\mirdir\cons.mlg.

12. Restart your system as normal.

Backup procedures at remote databases

Backup procedures are not as crucial at remote databases as at the consolidated database. You may choose
to rely on replication to the consolidated database as a data backup method. In the event of a media failure,
the remote database would have to be re-extracted from the consolidated database, and any operations that
have not been replicated would be lost. (You could use the Log Translation utility to attempt to recover lost
operations. See “Log Translation utility (dbtran)” [SQL Anywhere Server - Database Administration]).

Even if you do choose to rely on replication to protect remote database data, backups still need to be done
periodically at remote databases to prevent the transaction log from growing too large. You should use the
same option (rename and restart the log) as at the consolidated database, running the Message Agent so that
it has access to the renamed log files. If you set the delete_old_logs option on at the remote database, the
old log files will be deleted automatically by the Message Agent when they are no longer needed.

Automatic transaction log renaming
You can use the -x Message Agent option to eliminate the need to rename the transaction log on the remote
computer when the database server is shut down. The -x option renames transaction log after it has been
scanned for outgoing messages.

Upgrading consolidated databases

This section describes issues in upgrading a consolidated database in a SQL Remote environment. The same
considerations apply to SQL Anywhere databases that are primary sites in a Sybase Replication Server
installation.

For information about upgrading SQL Remote consolidated databases to version 10, see “Upgrading SQL
Remote” [SQL Anywhere 10 - Changes and Upgrading].

Installing new software does not always make new features available. In many cases, new features require
the Upgrade utility to be run on databases. The Upgrade utility adds any information to the system catalog
required for new features to be available. When you run the Upgrade utility, it tells you to archive the
transaction log. The reason for this is that a new transaction log is created by the Upgrade utility, with a new
file format.

Administering SQL Remote

138 Copyright © 2007, iAnywhere Solutions, Inc.

When using SQL Remote or Replication Server, the transaction log must be kept for the Message Agent and
the Replication Agent, respectively. After running the Upgrade utility, you should shut down the engine,
rename the log, and leave it for the Message Agent to delete. The log should also be archived for backup
purposes.

See “Upgrade utility (dbupgrad)” [SQL Anywhere Server - Database Administration].

Unloading and reloading a database participating in replication

If a database is participating in replication, particular care needs to be taken if you want to unload and reload
the databases.

For instructions for unloading and reloading databases involved in SQL Remote replication, see “Upgrading
SQL Remote” [SQL Anywhere 10 - Changes and Upgrading].

Replication is based on the transaction log. When a database is unloaded and reloaded, the old transaction
log is no longer available. For this reason, good backup practices are especially important when participating
in replication.

For the steps involved in unloading a databases involved in replication, see “Rebuilding databases involved
in synchronization or replication” [SQL Anywhere Server - SQL Usage].

Transaction log and backup management

Copyright © 2007, iAnywhere Solutions, Inc. 139

Using passthrough mode
The publisher of the consolidated database can directly intervene at remote sites using a passthrough mode,
which enables standard SQL statements to be passed through to a remote site. By default, passthrough mode
statements are executed at the local (consolidated) database as well, but an optional keyword prevents the
statements from being executed locally.

Caution
Always test your passthrough operations on a test database with a remote database subscribed. Never run
untested passthrough scripts against a production database.

Starting and stopping passthrough
Passthrough mode is started and stopped using the PASSTHROUGH statement. Any statement entered
between the starting PASSTHROUGH statement and the PASSTHROUGH STOP statement which
terminates passthrough mode is checked for syntax errors, executed at the current database, and also passed
to the identified subscriber and executed at the subscriber database. The statements between a starting and
stopping passthrough statement are called thepassthrough session.

The following statement starts a passthrough session which passes the statements to a list of two named
subscribers, without being executed at the local database:

PASSTHROUGH ONLY
FOR userid_1, userid_2;

Directing passthrough statements
The following statement starts a passthrough session that passes the statements to all subscribers to the
specified publication:

PASSTHROUGH ONLY
FOR SUBSCRIPTION TO [owner].pubname [(string)] ;

Passthrough mode is additive. In the following example, statement_1 is sent to user_1, and statement_2
is sent to both user_1 and user_2.

PASSTHROUGH ONLY FOR user_1 ;
statement_1 ;
PASSTHROUGH ONLY FOR user_2 ;
statement_2 ;

The following statement terminates a passthrough session:

PASSTHROUGH STOP ;

PASSTHROUGH STOP terminates passthrough mode for all remote users.

Order of application of passthrough statements
Passthrough statements are replicated in sequence with normal replication messages, in the order in which
the statements are recorded in the log.

Passthrough is commonly used to send data definition language statements. In this case, replicated DML
statements use the before schema before the passthrough and the after schema following the passthrough.

Administering SQL Remote

140 Copyright © 2007, iAnywhere Solutions, Inc.

Notes on using passthrough mode
♦ You should always test your passthrough operations on a test database with a remote database subscribed.

You should never run untested passthrough scripts against a production database.

♦ You should always qualify object names with the owner name. PASSTHROUGH statements are not
executed at remote databases from the same user ID. Consequently, object names without the owner
name qualifier may not be resolved correctly.

Uses and limitations of passthrough mode
Passthrough mode is a powerful tool, and should be used with care. Some statements, especially data
definition statements, could cause a running SQL Remote setup to come tumbling down. SQL Remote relies
on each database in a setup having the same objects: if a table is altered at some sites but not at others,
attempts to replicate data changes will fail.

Also, it is important to remember that in the default setting passthrough mode also executes statements at
the local database. To send statements to a remote database without executing them locally you must supply
the ONLY keyword. When a passthrough session contains calls to stored procedures, the procedures must
exist in the server that is issuing the passthrough commands, even if they are not being executed locally at
the server. The following set of statements drops a table not only at a remote database, but also at the
consolidated database.

-- Drop a table at the remote database
-- and at the local database
PASSTHROUGH TO Joe_Remote ;
DROP TABLE CrucialData ;
PASSTHROUGH STOP ;

The syntax to drop a table at the remote database only is as follows:

-- Drop a table at the remote database only
PASSTHROUGH ONLY TO Joe_Remote ;
DROP TABLE CrucialData ;
PASSTHROUGH STOP ;

The following are tasks that can be carried out on a running SQL Remote setup:

♦ Add new users.

♦ Resynchronize users.

♦ Drop users from the setup.

♦ Change the address, message type, or frequency for a remote user.

♦ Add a column to a table.

Many other schema changes are likely to cause serious problems if executed on a running SQL Remote
setup.

Using passthrough mode

Copyright © 2007, iAnywhere Solutions, Inc. 141

Passthrough works on only one level of a hierarchy
In a multi-tier SQL Remote installation, it becomes important that passthrough statements work on the level
of databases immediately beneath the current level. In a multi-tier installation, passthrough statements must
be entered at each consolidated database, for the level beneath it.

Operations not replicated in passthrough mode
There are special considerations for some statements in passthrough mode.

Calling procedures
When a stored procedure is called in passthrough mode using a CALL or EXEC statement, the CALL
statement itself is replicated and none of the statements inside the procedure are replicated. It is assumed
that the procedure on the replicate side has the correct effect.

Control of flow statements and cursor operations
Control-flow statements such as IF and LOOP, as well as any cursor operations, are not replicated in
passthrough mode. Any statements within the loop or control structure are replicated.

Operations on cursors are not replicated. Inserting rows through a cursor, updating rows in a cursor, or
deleting rows through a cursor are not replicated in passthrough mode.

Static embedded SQL SET OPTION statements are not replicated. The following statement is not replicated
in passthrough mode:

EXEC SQL SET OPTION . . .

However, the following dynamic SQL statement is replicated:

EXEC SQL EXECUTE IMMEDIATE "SET OPTION . . . "

Batches
Batch statements (a group of statements surrounded with a BEGIN and END) are not replicated in
passthrough mode. You receive an error message if you try to use batch statements in passthrough mode.

Administering SQL Remote

142 Copyright © 2007, iAnywhere Solutions, Inc.

Part IV. Reference

This part presents reference material for SQL Remote.

CHAPTER 7

SQL Remote Utilities and Options Reference

Contents
Message Agent .. 146
Database Extraction utility ... 153
SQL Remote options ... 160
SQL Remote event-hook procedures .. 162

Copyright © 2007, iAnywhere Solutions, Inc. 145

Message Agent
Purpose

To send and apply SQL Remote messages, and to maintain the message tracking system to ensure message
delivery.

Syntax
dbremote [options] [directory]

Options

Option Description

@data Use this option to read in options from the specified environment
variable or configuration file. If both exist with the same name, the
environment variable is used.

The environment variable may contain any set of options. For ex-
ample, the first of the following pair of statements sets an environ-
ment variable holding a set of options for a database server that starts
with a cache size of 4 MB, receives messages only, and connects to
a database named field on a server named myserver. The set state-
ment should be entered all on one line:

set envvar=-m 4096 -r
 -c
"eng=myserver;dbn=field;UID=sa;PWD=sysadmin"
dbremote @envvar

The configuration file may contain line breaks, and may contain any
set of options. For example, the following command file holds a set
of options for a Message Agent that starts with a cache size of 4 MB,
sends messages only, and connects to a database named field on a
server named myserver:

-m 4096
-s
-c "eng=myserver;dbn=field;UID=sa;PWD=sysadmin"

If this configuration file is saved as c:\config.txt, it can be used in a
command as follows:

dbremote @c:\config.txt

–a Process the received messages (those in the inbox) without applying
them to the database. Used together with -v (for verbose output) and
-p (so the messages are not purged), this option can help detect prob-
lems with incoming messages. Used without -p, this option purges
the inbox without applying the messages, which may be useful if a
subscription is being restarted.

–b Run in batch mode. In this mode, the Message Agent processes in-
coming messages, scans the transaction log once and processes
outgoing messages, and then stops.

SQL Remote Utilities and Options Reference

146 Copyright © 2007, iAnywhere Solutions, Inc.

Option Description

–c "keyword=value; …" Specify connection parameters. For SQL Anywhere, if this option is
not specified, the environment variable SQLCONNECT is used.

For example, the following statement runs dbremote on a database
file named c:\mydata.db, connecting with user ID DBA and password
sql:

dbremote -c "UID=DBA;PWD=sql;DBF=c:\mydata.db"

The Message Agent must be run by a user with REMOTE DBA au-
thority or DBA authority.

For information on REMOTE DBA authority, see “The Message
Agent and replication security” on page 123.

The Message Agent supports the full range of SQL Anywhere con-
nection parameters.

–dl Display messages in the Message Agent window or at the command
prompt and also in the log file if specified.

–ek key This option allows you to specify the encryption key for strongly
encrypted databases directly at the command prompt. If you have a
strongly encrypted database, you must provide the encryption key to
use the database or transaction log in any way, including offline
transaction logs. For strongly encrypted databases, you must specify
either -ek or -ep, but not both. The command will fail if you do not
specify a key for a strongly encrypted database.

–ep This option allows you to specify that you want to be prompted for
the encryption key. This option causes a dialog box to appear, in
which you enter the encryption key. It provides an extra measure of
security by never allowing the encryption key to be seen in clear text.
For strongly encrypted databases, you must specify either -ek or -ep,
but not both. The command will fail if you do not specify a key for
a strongly encrypted database.

"language_name,charset_name[,sort_order]"

By default, the Message Agent uses the default locale, which is de-
fined in the file sybase\locales\locales.dat.

–g n Instructs the Message Agent to group transactions containing less
than n operations together with transactions that follow. The default
is twenty operations. Increasing the value of n can speed up process-
ing of incoming messages, by doing less commits. However, it can
also cause deadlock and blocking by increasing the size of transac-
tions.

If neither -r nor -s is specified, the Message Agent executes all three
phases. Otherwise, only the indicated phases are executed.

Message Agent

Copyright © 2007, iAnywhere Solutions, Inc. 147

Option Description

–l length Specifies the maximum length of each message to be sent, in bytes.
Longer transactions are split into more than one message. The default
is 50000 bytes and the minimum length is 10000.

Caution
The maximum message length must be the same at all sites in an
installation.

For platforms with restricted memory allocation, the value must be
less than the maximum memory allocation of the operating system.

–m size Specifies a maximum amount of memory to be used by the Message
Agent for building messages and caching incoming messages. The
allowed size can be specified as n (in bytes), nK, or nM. The default
is 2048 KB (2 MB).

When all remote databases are receiving unique subsets of the oper-
ations being replicated, a separate message for each remote database
is built up concurrently. Only one message is built for a group of
remote users that are receiving the same operations. When the mem-
ory being used exceeds the -m value, messages are sent before
reaching their maximum size (as specified by the -l option).

When messages arrive, they are stored in memory by the Message
Agent until they are applied. This caching of messages prevents
rereading of messages that are out of order from the message system,
which may lower performance on large installations. When the mem-
ory usage specified using the -m option is exceeded, messages are
flushed in a least-recently used fashion.

-ml directory Specify the location of offline mirror logs. This option makes it pos-
sible for dbremote to delete old mirror log files when either of the
following two circumstances occur:

♦ the offline mirror log is located in a different directory from the
mirror transaction log

♦ dbremote is run on a different machine from the remote database
server

In a typical setup, the active mirror log and renamed mirror transac-
tion logs are located in the same directory, and dbremote is run on
the same machine as the remote database, so this option is not re-
quired and old mirror log files are automatically deleted. Transaction
logs in this directory are only affected if the delete_old_logs database
option is set to On or DELAY.

–o file Output messages to file. Append output to a log file. Default is to
send output to the screen.

SQL Remote Utilities and Options Reference

148 Copyright © 2007, iAnywhere Solutions, Inc.

Option Description

–os size Maximum file size for logging output messages. Specifies the max-
imum file size for logging output messages. The allowed size can be
specified as n (bytes), nK (KB), or nM (MB). By default there is no
limit, and the minimum limit is 10000 bytes.

Before SQL Remote logs output messages to a file, it checks the
current file size. If the log message will make the file size exceed the
specified size, SQL Remote renames the output file to
yymmddxx.dbr, where xx are sequential characters ranging from AA
to ZZ, and yymmdd represents the current year, month, and date.

If the Message Agent us running in continuous mode for a long time,
this option allows you to manually delete old log files and free up
disk space.

–ot file Truncate the log file and then append output messages to it. Default
is to send output to the screen.

–p Do not purge messages. Process the messages without purging them.

–q For Windowing operating systems only, starts the Message Agent
with a minimized window.

-qc Close window on completion.

–r Receive messages. If none of -r, -I, or -s is specified, the Message
Agent executes all three phases. Otherwise, only the indicated phases
are executed.

The Message Agent runs in continuous mode if called with -r. To
have the Message Agent shut down after receiving messages, use the
-b option in addition to -r.

–rd minutes Polling frequency for incoming messages. By default, the Message
Agent polls for incoming messages every minute. This option (rd
stands for receive delay) allows the polling frequency to be config-
ured, which is useful when polling is expensive.

You can use a suffix of s after the number to indicate seconds, which
may be useful if you want frequent polling. For example:

dbremote -rd 30s

polls every thirty seconds.

See “Tuning incoming message polling” on page 111.

-ro filename Log remote output to file. This option is for use at consolidated sites.
When remote databases are configured to send output log informa-
tion to the consolidated database, this option writes the information
to a file. The option is provided to help administrators troubleshoot
errors at remote sites.

See “Troubleshooting errors at remote sites” on page 108.

Message Agent

Copyright © 2007, iAnywhere Solutions, Inc. 149

Option Description

–rp number Number of receive polls before message is assumed lost. When run-
ning in continuous mode, the Message Agent polls at certain intervals
for messages. After polling a set number of times (by default, one),
if a message is missing, the Message Agent assumes it has got lost
and requests that it be resent. On slow message systems, this can
result in many unnecessary resend requests. You can set the number
of polls before a resend request is issued using this option, to cut
down on the number of resend requests.

For more information on configuring this option, see “Tuning in-
coming message polling” on page 111.

-rt filename Truncate, and log remote output to file. This option is for use at con-
solidated sites. It is identical to the -ro option except that the file is
truncated on startup.

–ru time Waiting period to re-scan log on receipt of a resend.

Control the resend urgency. This is the time between detection of a
resend request and when the Message Agent starts fulfilling the re-
quest. Use this option to help the Message Agent collect resend
requests from multiple users before rescanning the log. The time unit
can be any of {s = seconds; m = minutes; h = hours; d = days}

–s Send messages. If none of -r, -I, or -s is specified, the Message Agent
executes all three phases. Otherwise, only the indicated phases are
executed.

–sd time Control the send delay which is the time to wait between polls for
more transaction log data to send.

–t Replicate all triggers. All trigger actions are replicated. If you do use
this option, you must ensure that the trigger actions are not carried
out twice at remote databases, once by the trigger being fired at the
remote site, and once by the explicit application of the replicated
actions from the consolidated database.

To ensure that trigger actions are not carried out twice, you can wrap
an IF CURRENT REMOTE USER IS NULL … END IF statement
around the body of the triggers. This option is available for SQL
Anywhere only.

–u Process only transactions that have been backed up. This option pre-
vents the Message Agent from processing transactions since the latest
backup. Using this option, outgoing transactions and confirmation of
incoming transactions are not sent until they have been backed up.

This means that only transactions from renamed logs are processed.

SQL Remote Utilities and Options Reference

150 Copyright © 2007, iAnywhere Solutions, Inc.

Option Description

–ud On Unix platforms, you can run the Message Agent as a daemon by
supplying the -ud option. If you run the Message Agent as a daemon,
you must also supply the -o or -ot option, to log output information.

If you run the Message Agent as a daemon and are using FTP or
SMTP message links, you must store the message link parameters in
the database, because the Message Agent does not prompt the user
for these options when running as a daemon.

For information on message link parameters, see “Setting message
type control parameters” on page 97.

-ux On Solaris and Linux, open the console window.

When -ux is specified, dbremote must be able to find a usable display.
If it cannot find one, for example because the DISPLAY environment
variable is not set or because the X window server is not running,
dbremote fails to start. On Windows, the console opens automati-
cally.

–v Verbose output. This option displays the SQL statements contained
in the messages to the screen and, if the -o or -ot option is used, to a
log file.

–w n Number of worker threads to apply incoming messages (Not Net-
Ware or Windows CE).

The number of worker threads used to apply incoming messages. The
default is zero, which means all messages are applied by the main
(and only) thread. A value of 1 (one) would have one thread receiving
messages from the message system and one thread applying mes-
sages to the database.

The -w option makes it possible to increase the throughput of in-
coming messages with hardware upgrades. Putting the consolidated
database on a device that can perform many concurrent operations (a
RAID array with a striped logical drive) will improve throughput of
incoming messages. Multiple processors in the computer running the
Message Agent could also improve throughput of incoming mes-
sages.

The -w option will not improve performance significantly on hard-
ware that cannot perform many concurrent operations.

Incoming messages from a single remote database will never be ap-
plied on multiple threads. Messages from a single remote database
are always applied serially in the correct order.

Message Agent

Copyright © 2007, iAnywhere Solutions, Inc. 151

Option Description

–x [size] Rename and restart the transaction log after it has been scanned for
outgoing messages. In some circumstances, replicating data to a con-
solidated database can take the place of backing up remote databases,
or renaming the transaction log when the database server is shut
down. This option is available for SQL Anywhere only.

If the optional size qualifier is supplied, the transaction log is re-
named only if it is larger than the specified size. The allowed size
can be specified as n (in bytes), nK, or nM. The default is 0.

directory The directory in which old transaction logs are held.

Description
The Message Agent sends and applies messages for SQL Remote replication, and maintains the message
tracking system to ensure message delivery.

The name of the Message Agent executable is dbremote.

You can also run the Message Agent from your own application by calling into the DBTools library. For
more information, see the file dbrmt.h in the h subdirectory of your SQL Remote installation directory.

The user ID in the Message Agent command must have either REMOTE DBA or DBA authority.

The optional directory parameter specifies a directory in which old transaction logs are held, so that the
Message Agent has access to events from before the current log was started.

The Message Agent uses a number of connections to the database. See “Connections used by the Message
Agent” on page 107.

For information on REMOTE DBA authority, see “The Message Agent and replication
security” on page 123.

Message system control parameters
SQL Remote uses several registry settings to control aspects of message link behavior.

The message link control parameters are stored in the following places:

♦ Windows In the registry, at the following location:

\\HKEY_CURRENT_USER
 \Software
 \Sybase
 \SQL Remote

♦ NetWare You should create a file named dbremote.ini in the sys:\system directory to hold the FILE
system directory setting.

For a listing of registry settings, see the section for each message system under “Using message
types” on page 94.

SQL Remote Utilities and Options Reference

152 Copyright © 2007, iAnywhere Solutions, Inc.

Database Extraction utility
You can access the remote database extraction utility in the following ways:

♦ From Sybase Central, for interactive use.

♦ From the system command prompt, using the dbxtract utility. This is useful for incorporating into batch
or command files.

By default, the extraction utility runs at isolation level zero. If you are extracting a database from an active
server, you should run it at isolation level 3 to ensure that data in the extracted database is consistent with
data on the server. Running at isolation level 3 may hamper others' turnaround time on the server because
of the large number of locks required. It is recommended that you run the extraction utility when the server
is not busy, or run it against a copy of the database

See:

♦ “Extraction utility” on page 154
♦ “Designing an efficient extraction procedure” on page 81

Objects owned by dbo
The extraction utility does not unload the objects created for the dbo user ID during database creation.
Changes made to these objects, such as redefining a system procedure, are lost when the data is unloaded.
Any objects created by the dbo user ID since the initialization of the database are unloaded by the Extraction
utility, and so these objects are preserved.

Extracting a remote database in Sybase Central

Running the extraction utility from Sybase Central carries out the following tasks related to creating and
synchronizing SQL Remote subscriptions:

♦ Creates a command file to build a remote database containing a copy of the data in a specified publication.

♦ Creates the necessary SQL Remote objects, such as message types, publisher and remote user IDs,
publication and subscription, for the remote database to receive messages from and send messages to
the consolidated database.

♦ Starts the subscription at both the consolidated and remote databases.

Note
Only tables for users selected in the Filter Objects by Owner dialog appear in the Extract Database wizard.
If you want to view tables belonging to a particular database user, right-click the database you are unloading,
choose Filter Objects by Owner from the popup menu, and then select the desired user in the resulting dialog.

Database Extraction utility

Copyright © 2007, iAnywhere Solutions, Inc. 153

♦ To extract a remote database from a running database (Sybase Central)

1. Connect to the database.

2. From the Tools menu, choose SQL Anywhere 10 ► Extract Database.

The Extract Database wizard appears.

3. Follow the instructions in the wizard.

Extraction utility

To extract a remote SQL Anywhere database from a consolidated SQL Anywhere database.

Syntax

dbxtract [options] [directory] subscriber

Extraction utility options

Option Description

@data Read in options from a configuration file. See “@data server op-
tion” [SQL Anywhere Server - Database Administration]

Use this option to read in options from the specified environment vari-
able or configuration file. If both exist with the same name, the envi-
ronment variable is used.

See “Using configuration files” [SQL Anywhere Server - Database Ad-
ministration].

If you want to protect passwords or other information in the configura-
tion file, you can use the File Hiding utility to obfuscate the contents of
the configuration file.

See “File Hiding utility (dbfhide)” [SQL Anywhere Server - Database
Administration].

-ac "keyword=value; …" Connect to the database specified in the connect string to do the reload.

You can combine the operation of unloading a database and reloading
the results into an existing database using this option.

For example, the following command (entered all on one line) loads a
copy of the data for the field_user subscriber into an existing database
file named c:\newdata.db:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\olddata.db"
-ac "UID=DBA;PWD=sql;DBF=c:\newdata.db" field_user

If you use this option, no copy of the data is created on disk, so you do
not specify an unload directory in the command. This provides greater
security for your data, but at some cost for performance.

SQL Remote Utilities and Options Reference

154 Copyright © 2007, iAnywhere Solutions, Inc.

Option Description

-al filename Specify the log file name for the new database.

-an database Create a database file with the same settings as the database being un-
loaded and automatically reload it.

You can combine the operations of unloading a database, creating a new
database, and loading the data using this option.

For example, the following command (entered all on one line) creates a
new database file named c:\mydatacopy.db and copies the schema and
data for the field_user subscriber of c:\mydata.db into it:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\mydata.db"
-an c:\mydatacopy.db field_user

If you use this option, no copy of the data is created on disk, so you do
not specify an unload directory in the command. This provides greater
security for your data, but at some cost for performance.

-b Do not start subscriptions. If this option is specified, subscriptions at the
consolidated database (for the remote database) and at the remote
database (for the consolidated database) must be started explicitly using
the START SUBSCRIPTION statement for replication to begin. See
“START SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere
Server - SQL Reference].

-c "keyword=value; …" Supply database connection parameters, in a string.

♦ connection parameters The user ID should have DBA authority
to ensure that the user has permissions on all the tables in the
database.

For example, the following statement (entered all on one line) ex-
tracts a database for remote user ID joe_remote from the sample
database running on the sample_server server, connecting as user ID
DBA with password sql. The data is unloaded into the c:\extract
directory.

dbxtract -c "ENG=sample_server;DBN=demo;
UID=DBA;PWD=sql" c:\extract joe_remote

If connection parameters are not specified, connection parameters
from the SQLCONNECT environment variable are used, if set.

-d Unload data only. If this option is specified, the schema definition is not
unloaded, and publications and subscriptions are not created at the re-
mote database. This option is for use when a remote database already
exists with the proper schema, and needs only to be filled with data.

Database Extraction utility

Copyright © 2007, iAnywhere Solutions, Inc. 155

Option Description

-ea alg Specify the encryption algorithm for the new database. This option al-
lows you to choose a strong encryption algorithm to encrypt your new
database. You can choose either AES (the default) or AES_FIPS for the
FIPS-approved algorithm. AES_FIPS uses a separate library and is not
compatible with AES. Algorithm names are case insensitive. If you
specify the -ea option, you must also specify -ep or -ek. See “Strong
encryption” [SQL Anywhere Server - Database Administration].

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate li-
cense. All strong encryption technologies are subject to export regula-
tions.
See “Separately licensed components” [SQL Anywhere 10 - Introduc-
tion].

-ek key Specify the encryption key for the new database. This option allows you
to create a strongly encrypted database by specifying an encryption key
directly in the command. The algorithm used to encrypt the database is
AES or AES_FIPS as specified by the -ea option. If you specify the -ek
option without specifying -ea, the AES algorithm is used.

Caution
Protect your key! Be sure to store a copy of your key in a safe location.
A lost key will result in a completely inaccessible database, from which
there is no recovery.

-ep Prompt for the encryption key for the new database. This option specifies
that you want to create a strongly encrypted database by inputting the
encryption key in a dialog. This provides an extra measure of security
by never allowing the encryption key to be seen in clear text.

You must input the encryption key twice to confirm that it was entered
correctly. If the keys don't match, the initialization fails. See “Strong
encryption” [SQL Anywhere Server - Database Administration].

-f Extract fully qualified publications. In most cases, you do not need to
extract fully qualified publication definitions for the remote database,
since it typically replicates all rows back to the consolidated database.

However, you may want fully qualified publications for multi-tier setups
or for setups where the remote database has rows that are not in the
consolidated database.

SQL Remote Utilities and Options Reference

156 Copyright © 2007, iAnywhere Solutions, Inc.

Option Description

-ii Perform internal unload and internal reload. Using this option forces the
reload script to use the internal UNLOAD and LOAD TABLE state-
ments rather than the Interactive SQL OUTPUT and INPUT statements
to unload and load data, respectively.

This combination of operations is the default behavior.

External operations take the path of the data files relative to the current
working directory of dbxtract, while internal statements take the path
relative to the server.

-ix Perform internal unload and external reload. Using this option forces the
reload script to use the internal UNLOAD statement to unload data, and
the Interactive SQL INPUT statement to load the data into the new
database.

External operations take the path of the data files relative to the current
working directory of dbxtract, while internal statements take the path
relative to the server.

-l level Perform all extraction operations at specified isolation level. The default
setting is an isolation level of zero. If you are extracting a database from
an active server, you should run it at isolation level 3 to ensure that data
in the extracted database is consistent with data on the server. Increasing
the isolation level may result in large numbers of locks being used by
the Extraction utility, and may restrict database use by other users. See
“Extraction utility” on page 154.

-n Extract the schema definition only. With this definition, none of the data
is unloaded. The reload file contains SQL statements to build the
database structure only. You can use the SYNCHRONIZE SUBSCRIP-
TION statement to load the data over the messaging system. Publica-
tions, subscriptions, PUBLISH, and SUBSCRIBE permissions are part
of the schema.

-o file Output messages to a file.

-p character Specify an escape character. The default escape character (\) can be re-
placed by another character using this option.

-q Operate quietly: do not display messages or show windows. When this
option is specified, -y must also be specified or the operation fails.

This option is not available from other environments. This is available
only from the command line utility.

-r file Specify the name of the generated reload Interactive SQL command file.

The default name for the reload command file is reload.sql in the current
directory. You can specify a different file name with this option.

-u Do not order data during the unload. By default the data in each table is
ordered by primary key. Unloads are faster with the -u option, but load-
ing the data into the remote database is slower.

Database Extraction utility

Copyright © 2007, iAnywhere Solutions, Inc. 157

Option Description

-v Display Verbose messages. The name of the table being unloaded and
the number of rows unloaded appear, as well as the SELECT statement
used.

-xf Exclude foreign keys. You can use this option if the remote database
contains a subset of the consolidated database schema, and some foreign
key references are not present in the remote database.

-xh Exclude procedure hooks.

-xi Perform an external unload and internal reload. The default behavior for
unloading the database is to use the UNLOAD statement, which is ex-
ecuted by the database server. If you choose an external unload, dbxtract
uses the OUTPUT statement instead. The OUTPUT statement is exe-
cuted on the client.

External operations take the path of the data files relative to the current
working directory of dbxtract, while internal statements take the path
relative to the server.

-xp Do not extract stored procedures from the database.

-xt Do not extract triggers from the database.

-xv Do not extract views from the database.

-xx Perform an external unload and an external load. Use the OUTPUT
statement to unload the data, and the INPUT statement to load the data
into the new database.

The default unload behavior is to use the UNLOAD statement, and the
default loading behavior is to use the LOAD TABLE statement. The
internal UNLOAD and LOAD TABLE statements are faster than OUT-
PUT and INPUT.

External operations take the path of the data files relative to the current
working directory of dbxtract, while internal statements take the path
relative to the server.

-y Overwrite the command file without confirmation. Without this option,
you are prompted to confirm the replacement of an existing command
file.

directory Specify the directory the files are written to. This is not needed if you
specify -an or -ac .

subscriber Specify subscriber for whom the database is being extracted.

Remarks
The Extraction utility creates a command file and a set of associated data files. The command file can be
run against a newly-initialized database to create the database objects and load the data for the remote
database.

SQL Remote Utilities and Options Reference

158 Copyright © 2007, iAnywhere Solutions, Inc.

By default, the command file is named reload.sql.

If the remote user is a group, then all the user IDs that are members of that group are extracted. This allows
multiple users on a remote database with different user IDs, without requiring a custom extraction process.

Database Extraction utility

Copyright © 2007, iAnywhere Solutions, Inc. 159

SQL Remote options
Function

Replication options are database options included to provide control over replication behavior.

Syntax
SET [TEMPORARY] OPTION
[userid. | PUBLIC.]option-name = [option-value]

Parameters

Argument Description

option-name The name of the option being changed.

option-value A string containing the setting for the option.

Description
These options are used by the Message Agent, and should be set for the user ID specified in the Message
Agent command. They can also be set for general public use.

The following options are available.

Option Values Default

“blob_threshold option [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

Integer (in bytes) 256

“compression option [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

Integer, from -1 to 9 6

“delete_old_logs option [MobiLink
client] [SQL Remote] [Replication
Agent]” [SQL Anywhere Server -
Database Administration]

On, Off, Delay, n days Off

“external_remote_options [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

On, Off Off

“qualify_owners option [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

On, Off On

“quote_all_identifiers option [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

On, Off Off

SQL Remote Utilities and Options Reference

160 Copyright © 2007, iAnywhere Solutions, Inc.

Option Values Default

“replication_error option [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

Stored procedure name (no procedure)

“replication_error_piece option [SQL
Remote]” [SQL Anywhere Server -
Database Administration]

Stored procedure name (no procedure)

“save_remote_passwords option [SQL
Remote]” [SQL Anywhere Server -
Database Administration]

On, Off On

“sr_date_format option [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

date-string YYYY/MM/DD

“sr_time_format option [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

time-string HH:NN:SS.SSSSSS

“sr_timestamp_format [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

timestamp-string YYYY/MM/DD
HH:NN:SS.SSSSSS

“subscribe_by_remote option [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

On, Off On

“verify_all_columns option [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

On, Off Off

“verify_threshold option [SQL Re-
mote]” [SQL Anywhere Server -
Database Administration]

Integer (in bytes) 1000

SQL Remote options

Copyright © 2007, iAnywhere Solutions, Inc. 161

SQL Remote event-hook procedures
The following stored procedure names and arguments provide the interface for customizing synchronization
at SQL Remote databases.

Notes
Unless otherwise stated, the following apply to event-hook procedures:

♦ The stored procedures must have DBA authority.

♦ The procedure must not commit or rollback operations, or perform any action that performs an implicit
commit. The actions of the procedure are automatically committed by the calling application.

♦ You can troubleshoot the hooks by turning on the Message Agent verbose mode.

The #hook_dict table
The #hook_dict table is created immediately before a hook is called using the following CREATE statement:

CREATE table #hook_dict(
name VARCHAR(128) NOT NULL UNIQUE,
value VARCHAR(255) NOT NULL)

The Message Agent uses the #hook_dict table to pass values to hook functions; hook functions use the
#hook_dict table to pass values back to the Message Agent.

sp_hook_dbremote_begin

Function
Use this stored procedure to add custom actions at the beginning of the replication process.

Rows in #hook_dict table

Name Values Description

send true or false Indicates if the process is performing the send phase of replica-
tion.

receive true or false Indicates if the process is performing the receive phase of repli-
cation

Description
If a procedure of this name exists, it is called when the Message Agent starts.

SQL Remote Utilities and Options Reference

162 Copyright © 2007, iAnywhere Solutions, Inc.

sp_hook_dbremote_end

Function
Use this stored procedure to add custom actions just before the Message Agent exits.

Rows in #hook_dict table

Name Values Description

send true or false Indicates if the process is performing the send phase of replica-
tion.

receive true or false Indicates if the process is performing the receive phase of repli-
cation

exit code integer A non-zero exit code indicates an error.

Description
If a procedure of this name exists, it is called as the last event before the Message Agent shuts down.

sp_hook_dbremote_shutdown

Function
Use this stored procedure to initiate a Message Agent shutdown.

Rows in #hook_dict table

Name Values Description

send true or false Indicates if the process is performing the send phase of replica-
tion.

receive true or false Indicates if the process is performing the receive phase of repli-
cation

shutdown true or false This row is false when the procedure is called. If the procedure
updates the row to true the Message Agent is shut down.

Description
If a procedure of this name exists, it is called when the Message Agent is neither sending nor receiving
messages, and permits a hook-initiated shutdown of the Message Agent.

sp_hook_dbremote_receive_begin

Function
Use this stored procedure to perform actions before the start of the receive phase of replication.

SQL Remote event-hook procedures

Copyright © 2007, iAnywhere Solutions, Inc. 163

Rows in #hook_dict
None

sp_hook_dbremote_receive_end

Function
Use this stored procedure to perform actions after the end of the receive phase of replication.

Rows in #hook_dict
None

sp_hook_dbremote_send_begin

Function
Use this stored procedure to perform actions before the start of the send phase of replication.

Rows in #hook_dict
None

sp_hook_dbremote_send_end

Function
Use this stored procedure to perform actions after the end of the send phase of replication.

Rows in #hook_dict
None

sp_hook_dbremote_message_sent

Function
Use this stored procedure to perform actions after any message is sent.

Rows in #hook_dict

Name Values

remote user The message destination

SQL Remote Utilities and Options Reference

164 Copyright © 2007, iAnywhere Solutions, Inc.

sp_hook_dbremote_message_missing

Function
Use this stored procedure to perform actions when the Message Agent has determined that one or more
messages is missing from a remote user.

Rows in #hook_dict

Name Values

remote user The name of the remote user who will have to resend messages.

sp_hook_dbremote_message_apply_begin

Function
Use this stored procedure to perform actions just before the Message Agent applies a set of messages from
a user.

Rows in #hook_dict

Name Values

remote user The name of the remote user who sent the messages about to be applied.

sp_hook_dbremote_message_apply_end

Function
Use this stored procedure to perform actions just after the Message Agent has applied a set of messages from
a user.

Rows in #hook_dict

Name Values

remote user The name of the remote user who sent the messages that have been applied.

SQL Remote event-hook procedures

Copyright © 2007, iAnywhere Solutions, Inc. 165

166

CHAPTER 8

SQL Remote System Objects

Contents
SQL Remote system tables ... 168

Copyright © 2007, iAnywhere Solutions, Inc. 167

SQL Remote system tables
SQL Remote system information is held in the SQL Anywhere catalog. A more comprehensible version of
this information is held in a set of system views. Following are the veiws you can use to access SQL Remote
data:

♦ “SYSARTICLE system view” [SQL Anywhere Server - SQL Reference]

♦ “SYSARTICLECOL system view” [SQL Anywhere Server - SQL Reference]

♦ “SYSPUBLICATION system view” [SQL Anywhere Server - SQL Reference]

♦ “SYSREMOTEOPTION system view” [SQL Anywhere Server - SQL Reference]

♦ “SYSREMOTEOPTIONTYPE system view” [SQL Anywhere Server - SQL Reference]

♦ “SYSREMOTETYPE system view” [SQL Anywhere Server - SQL Reference]

♦ “SYSREMOTEUSER system view” [SQL Anywhere Server - SQL Reference]

♦ “SYSSUBSCRIPTION system view” [SQL Anywhere Server - SQL Reference]

SQL Remote System Objects

168 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 9

SQL Remote SQL Statements

Contents
SQL Remote statements ... 170

Copyright © 2007, iAnywhere Solutions, Inc. 169

SQL Remote statements
Following are the SQL statements used for executing SQL Remote commands:

♦ “ALTER REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

♦ “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

♦ “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

♦ “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “CREATE TRIGGER statement” [SQL Anywhere Server - SQL Reference]
♦ “DROP PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
♦ “DROP REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
♦ “DROP SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “GRANT CONSOLIDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “GRANT PUBLISH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “GRANT REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “GRANT REMOTE DBA statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
♦ “PASSTHROUGH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “REMOTE RESET statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “REVOKE CONSOLIDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “REVOKE PUBLISH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “REVOKE REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “REVOKE REMOTE DBA statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “SET REMOTE OPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “START SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “STOP SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
♦ “SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
♦ “UPDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

SQL Remote SQL Statements

170 Copyright © 2007, iAnywhere Solutions, Inc.

Index
Symbols
#hook_dict table

SQL Remote dbremote, 162
SQL Remote unique primary keys, 62

-a option
SQL Remote [dbremote], 146

-ac option
SQL Remote extraction [dbxtract] utility, 154

-al option
SQL Remote extraction [dbxtract] utility, 154

-an option
SQL Remote extraction [dbxtract] utility, 154

-b option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-c option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-d option
SQL Remote extraction [dbxtract] utility, 154

-dl option
SQL Remote [dbremote], 146

-ea option
SQL Remote extraction [dbxtract] utility, 154

-ek option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-ep option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-f option
SQL Remote extraction [dbxtract] utility, 154

-g option
SQL Remote [dbremote], 146

-ii option
SQL Remote extraction [dbxtract] utility, 154

-ix option
SQL Remote extraction [dbxtract] utility, 154

-l option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154
SQL Remote Message Agent, 108

-m option
SQL Remote [dbremote], 146

-ml option
SQL Remote [dbremote], 146

-n option
SQL Remote extraction [dbxtract] utility, 154

-o option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-os option
SQL Remote [dbremote], 146

-ot option
SQL Remote [dbremote], 146

-p option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-q option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-qc option
SQL Remote [dbremote], 146

-r option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-rd option
SQL Remote [dbremote], 146

-ro option
SQL Remote [dbremote], 146

-rp option
SQL Remote [dbremote], 146

-rt option
SQL Remote [dbremote], 146

-ru option
SQL Remote [dbremote], 146

-s option
SQL Remote [dbremote], 146

-sd option
SQL Remote [dbremote], 146

-t option
SQL Remote [dbremote], 146

-u option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-ud option
SQL Remote [dbremote], 146

-ux option
SQL Remote [dbremote], 146

-v option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

Copyright © 2007, iAnywhere Solutions, Inc. 171

-w option
SQL Remote [dbremote], 146

-x option
SQL Remote [dbremote], 146

-xf option
SQL Remote extraction [dbxtract] utility, 154

-xh option
SQL Remote extraction [dbxtract] utility, 154

-xi option
SQL Remote extraction [dbxtract] utility, 154

-xp option
SQL Remote extraction [dbxtract] utility, 154

-xt option
SQL Remote extraction [dbxtract] utility, 154

-xv option
SQL Remote extraction [dbxtract] utility, 154

-xx option
SQL Remote extraction [dbxtract] utility, 154

-y option
SQL Remote extraction [dbxtract] utility, 154

@data option
SQL Remote [db remote], 146
SQL Remote extraction [dbxtract] utility, 154

A
about SQL Remote, 4
ActiveSync

SQL Remote synchronization for Windows CE, 99
addresses

SQL Remote file sharing, 99
SQL Remote FTP, 100

administering
SQL Remote, 121

administering SQL Remote
about, 121

articles
SQL Remote creation, 29

B
backups

SQL Remote recovery procedures, 107
SQL Remote remote databases, 138
SQL Remote transaction log management, 129

batch mode
SQL Remote Message Agent, 106

bugs
providing feedback, xiii

C
cache

SQL Remote, 111
ccMail

SQL Remote, 94
conflict detection

SQL Remote, 18
conflict resolution

SQL Remote approaches, 53
SQL Remote triggers, 54

conflicts
SQL Remote locking, 37
SQL Remote management, 53
SQL Remote not errors in, 125
SQL Remote reporting , 59
SQL Remote, about, 24

connections
SQL Remote Message Agent, 107

CONSOLIDATE permission
SQL Remote, 87

CONSOLIDATE permissions
SQL Remote granting, 91

consolidate permissions
CONSOLIDATE permission, 87

consolidated databases
SQL Remote, 7

Contacts SQL Remote example
about, 40

continuous mode
SQL Remote Message Agent, 106

conventions
documentation, viii
file names in documentation, x

create article wizard
SQL Remote adding articles in , 34

create publication wizard
SQL Remote, 29

create SQL Remote message type wizard
adding message types in Sybase Central, 95

create SQL Remote subscription wizard
using, 69

CREATE SUBSCRIPTION statement
SQL Remote, 69

D
daemon

SQL Remote dbremote, 146

Index

172 Copyright © 2007, iAnywhere Solutions, Inc.

SQL Remote Message Agent, 146
data movement technologies

SQL Remote replication, 4
data recovery

SQL Remote, 107
database extraction utility

SQL Remote, 154
SQL Remote about, 153
SQL Remote syntax, 154
SQL Remote using Sybase Central, 153

dbo user
SQL Remote system objects, 153

dbremote
options, 146
SQL Remote #hook_dict table, 162
SQL Remote about, 106
SQL Remote introduction, 6
SQL Remote security, 123
starting on Mac OS X, 122
syntax, 146

dbunload utility
SQL Remote, 139

dbxtract utility
SQL Remote, 79, 154
SQL Remote about, 77
SQL Remote options, 154
SQL Remote sp_hook_dbxtract_begin procedure,
62
SQL Remote syntax, 154

debug control parameter
SQL Remote FILE message type, 99
SQL Remote FTP message type, 100
SQL Remote MAPI message type, 104
SQL Remote SMTP message type, 102
SQL Remote VIM message type, 105

delete_old_logs option
SQL Remote transaction log management, 132

Deleting Corrupt Message error
SQL Remote, 116

deploying
SQL Remote databases, 74

design
SQL Remote, 28
SQL Remote many-to-many relationships, 46
SQL Remote principles, 16

design overview
SQL Remote, 16

developer community

newsgroups, xiii
directory control parameter

SQL Remote FILE message type, 99
directory option

SQL Remote [dbremote], 146
SQL Remote [dbxtract], 154

documentation
conventions, viii
SQL Anywhere, vi

dropping
SQL Remote message types, 97
SQL Remote publications, 35

E
encode_dll control parameter

SQL Remote FILE message type, 99
SQL Remote FTP message type, 100

encoding
SQL Remote custom, 117

encoding and compressing messages
SQL Remote, 116

encoding scheme
SQL Remote, 116

encryption
SQL Remote, 108

environment variables
SQLREMOTE, 97

errors
SQL Remote default handling, 125
SQL Remote reporting by Message Agent, 125

event hooks
sp_hook_dbremote_begin stored procedure, 162
sp_hook_dbremote_end SQL Remote stored
procedure, 163
sp_hook_dbremote_message_sent stored procedure,
164
SQL Remote , 162
SQL Remote
sp_hook_dbremote_message_apply_begin stored
procedure, 165
SQL Remote
sp_hook_dbremote_message_apply_end stored
procedure, 165
SQL Remote sp_hook_dbremote_message_missing
stored procedure, 165
SQL Remote sp_hook_dbremote_receive_begin
stored procedure, 163

Copyright © 2007, iAnywhere Solutions, Inc. 173

SQL Remote sp_hook_dbremote_receive_end
stored procedure, 164
SQL Remote sp_hook_dbremote_send_begin stored
procedure, 164
SQL Remote sp_hook_dbremote_send_end stored
procedure, 164
SQL Remote sp_hook_dbremote_shutdown stored
procedure, 163

extract database wizard
SQL Remote extracting remote databases in Sybase
Central, 154

extracting
SQL Remote and mixed operating systems, 77
SQL Remote deploying databases, 74
SQL Remote reload files, 79
SQL Remote synchronizing databases, 77

extraction utility
SQL Remote [dbxtract], 154
SQL Remote options, 154
SQL Remote synchronizing databases, 77
SQL Remote syntax, 154
SQL Remote using, 79

F
feedback

documentation, xiii
providing, xiii

FILE message type
SQL Remote, 98
SQL Remote control parameters, 99
SQL Remote using, 94

finding out more and providing feed back
technical support, xiii

Force_Download control parameter
SQL Remote MAPI message type, 104

frequency
SQL Remote, 90

ftp message system
about, 99

FTP message type
SQL Remote, 99
SQL Remote control parameters, 100
SQL Remote troubleshooting, 100
SQL Remote using, 94

G
getting help

technical support, xiii
global autoincrement

SQL Remote, 61
global_database_id option

SQL Remote, 62
GRANT PUBLISH statement

SQL Remote, 87

H
handling lost or corrupt messages

SQL Remote, 119
help

technical support, xiii
hooks

SQL Remote , 162
host control parameter

SQL Remote FTP message type, 100
how statements are replicated

SQL Remote, 17

I
iAnywhere developer community

newsgroups, xiii
icons

used in manuals, xi
install-dir

documentation usage, x
invalid_extensions parameter

SQL Remote FILE message type, 99
SQL Remote FTP message type, 100

IPM_Receive control parameter
SQL Remote MAPI message type, 104

IPM_Send control parameter
SQL Remote MAPI message type, 104

L
locking

SQL Remote, 37
log management

SQL Remote, 107
Lotus Notes

SQL Remote supported message types, 94
SQL Remote VIM message system, 104

M
Mac OS X

running dbremote, 122

Index

174 Copyright © 2007, iAnywhere Solutions, Inc.

many-to-many relationships
SQL Remote publication design, 46

MAPI message type
SQL Remote, 94, 103
SQL Remote control parameters, 104

media failures
SQL Remote, 107

Message Agent
SQL Remote about, 106
SQL Remote administration, 86
SQL Remote backup procedures, 138
SQL Remote batch mode, 106
SQL Remote connections, 107
SQL Remote continuous mode, 106
SQL Remote daemon, 146
SQL Remote introduction, 6
SQL Remote message tracking system, 118
SQL Remote options, 146
SQL Remote output , 125
SQL Remote performance, 110
SQL Remote reporting errors, 125
SQL Remote running, 122
SQL Remote running as a service, 123
SQL Remote security, 108, 123
SQL Remote settings, 108
SQL Remote subscription processing, 23
SQL Remote syntax, 146
SQL Remote transaction log management about,
129
SQL Remote transaction log offsets, 118
SQL Remote trigger replication, 19
SQL Remote tuning throughput, 110

message tracking
SQL Remote administration, 86

message type control parameters
SQL Remote, 97

message types
SQL Remote dropping, 97
SQL Remote file sharing, 99
SQL Remote FTP, 99
SQL Remote MAPI, 104
SQL Remote SMTP, 102
SQL Remote using, 94
SQL Remote using commands, 96
SQL Remote using Sybase Central, 95
SQL Remote VIM, 104
SQL Remote working with, 94

messages

SQL Remote caching, 111
SQL Remote synchronizing databases, 84

Microsoft Exchange
SQL Remote profile, 104

multi-tier installations
SQL Remote permissions, 92

N
NetWare

SQL Remote, 99
SQL Remote supported message types, 94

newsgroups
technical support, xiii

Notes, v
(see also Lotus Notes)
SQL Remote, 94
SQL Remote VIM message system, 104

O
online books

PDF, vi
options

SQL Remote, 160
output_log_send_limit remote option

SQL Remote troubleshooting, 108
output_log_send_now remote option

SQL Remote troubleshooting, 108
output_log_send_on_error remote option

SQL Remote troubleshooting, 108

P
partitioning

SQL Remote, 29
passthrough mode

SQL Remote, 140
PASSTHROUGH statement

SQL Remote, 140
password control parameter

SQL Remote FTP message type, 100
SQL Remote VIM message type, 105

Path control parameter
SQL Remote VIM message type, 105

PDF
documentation, vi

performance
SQL Remote Message Agent, 110
SQL Remote publications, 38

Copyright © 2007, iAnywhere Solutions, Inc. 175

permissions
SQL Remote granting CONSOLIDATE, 91
SQL Remote management, 87
SQL Remote multi-tier installations, 92
SQL Remote revoking CONSOLIDATE, 91
SQL Remote revoking REMOTE, 91

policy example
SQL Remote publications, 46

pop3_host control parameter
SQL Remote SMTP message type, 102

pop3_password control parameter
SQL Remote SMTP message type, 102

pop3_userid control parameter
SQL Remote SMTP message type, 102

port control parameter
SQL Remote FTP message type, 100

primary key pools
SQL Remote, 64

primary keys
SQL Remote, 59
SQL Remote primary key pools, 64
SQL Remote unique values, 61

principles of SQL Remote design
about, 15

publication design
SQL Remote, 28

publications
SQL Remote alteration, 34
SQL Remote creation, 29
SQL Remote design, 37
SQL Remote dropping, 35
SQL Remote locking, 37
SQL Remote many-to-many relationships, 46
SQL Remote replication, 7
SQL Remote transactions, 37

PUBLISH permission
SQL Remote, 87

publish permissions
PUBLISH permission, 87

pusblishing
SQL Remote, 29

R
receive_all control parameter

SQL Remote VIM message type, 105
reconnect_pause parameter

SQL Remote FTP message type, 100

reconnect_retries parameter
SQL Remote FTP message type, 100

recovery
SQL Remote, 107

referential integrity
SQL Remote, 59

reload files
SQL Remote database extraction, 79

REMOTE permission
SQL Remote, 87

remote permissions
REMOTE permission, 87
SQL Remote management, 87

remoteuser SQL Remote table
message tracking in SQL Remote, 118
SQL Remote using, 118

replication, v
(see also SQL Remote)
publication design, 37
SQL Remote backup procedures, 129
SQL Remote backups, 138
SQL Remote BLOBs, 21
SQL Remote conflicts, 24
SQL Remote data definition statements, 20
SQL Remote data recovery, 107
SQL Remote data types, 21
SQL Remote dbremote, 146
SQL Remote Message Agent, 146
SQL Remote mixed operating systems, 77
SQL Remote passthrough mode, 140
SQL Remote primary key errors, 59
SQL Remote primary keys, 61
SQL Remote procedures, 19
SQL Remote publications, 7
SQL Remote referential integrity errors , 59
SQL Remote subscriptions, 7
SQL Remote transaction log management , 129,
138
SQL Remote triggers, 19
SQL Remote triggers designing, 59
SQL Remote upgrading databases, 138
SQL statements, 140

replication conflicts
SQL Remote, 24
SQL Remote management, 53

replication errors
SQL Remote, 24

replication errors and conflicts

Index

176 Copyright © 2007, iAnywhere Solutions, Inc.

SQL Remote, 24
replication_error option

SQL Remote error handling procedures, 125
tracking SQL errors, 25

reporting
SQL Remote conflicts , 59

reporting errors
SQL Remote Message Agent, 125

resend requests
SQL Remote, 112

REVOKE PUBLISH statement
SQL Remote, 87

REVOKE statement
SQL Remote, 91

revoking consolidate permissions
SQL Remote, 91

revoking remote permissions
SQL Remote, 91

root control parameter
SQL Remote FTP message type, 100

running
SQL Remote Message Agent, 122

S
samples

SQL Remote policy example, 46
samples-dir

documentation usage, x
selecting a send frequency

SQL Remote, 90
SEND AT

SQL Remote frequency setting, 90
SEND EVERY

SQL Remote frequency setting, 90
send frequency

SQL Remote Message Agent, 106
SQL Remote selection, 90

send_vim_mail control parameter
SQL Remote VIM message type, 105

services
SQL Remote Message Agent, 123

SMTP message type
SQL Remote, 101
SQL Remote control parameter, 102
SQL Remote using, 94

SMTP/POP
SQL Remote addresses, 103

smtp_authenticate control parameter
SQL Remote SMTP message type, 102

smtp_host control parameter
SQL Remote SMTP message type, 102

smtp_password control parameter
SQL Remote SMTP message type, 102

smtp_userid control parameter
SQL Remote SMTP message type, 102

sp_hook_dbremote_begin stored procedure
SQL Remote syntax, 162

sp_hook_dbremote_end stored procedure
SQL Remote syntax, 163

sp_hook_dbremote_message_apply_begin stored
procedure

SQL Remote syntax, 165
sp_hook_dbremote_message_apply_end stored
procedure

SQL Remote syntax, 165
sp_hook_dbremote_message_missing stored
procedure

SQL syntax, 165
sp_hook_dbremote_message_sent stored procedure

SQL Remote syntax, 164
sp_hook_dbremote_receive_begin stored procedure

SQL Remote syntax, 163
sp_hook_dbremote_receive_end stored procedure

SQL Remote syntax, 164
sp_hook_dbremote_send_begin stored procedure

SQL Remote syntax, 164
sp_hook_dbremote_send_end stored procedure

SQL Remote syntax, 164
sp_hook_dbremote_shutdown stored procedure

SQL Remote syntax, 163
sp_hook_dbxtract_begin procedure

SQL Remote, 62
SQL Anywhere

documentation, vi
SQL Remote, v

(see also replication)
about, 4
ActiveSync and Windows CE, 99
administering, 121
administration overview, 86
backup procedures, 129
backup procedures at remote databases, 138
components, 5
concepts, 3
conflict detection, 18

Copyright © 2007, iAnywhere Solutions, Inc. 177

dbxtract utility, 154
deployment overview, 74
design overview, 28
design principles, 16
event hooks, 162
Message Agent introduction, 6
Message Agent performance, 110
message tracking and delivery, 118
mobile workforces, 9
publications, 7
replicating data types, 21
replicating dates, 22
replicating DDL statements, 20
replicating deletes, 17
replicating inserts, 17
replicating procedures, 19
replicating times, 22
replicating triggers, 19
replicating updates, 17
replication system recovery procedures, 107
resolving date conflicts, 56
running as a service, 123
SQL Anywhere system tables, 168
SQL Remote message delivery, 118
SQL statements, 170
subscribers, 9
subscriptions, 7
supported message systems, 94
system objects, 168
transaction log management, 129
unloading databases, 139
upgrading consolidated databases, 138
utilities and options reference, 145
Windows CE and ActiveSync, 99

SQL Remote administration
about, 85

SQL Remote components
about, 5

SQL Remote concepts
about, 3

SQL Remote options
about, 160

SQL statements
SQL Remote list, 170

SQLANY.INI
SQL Remote, 97

SQLREMOTE environment variable
alternative to, 99

setting message control parameters, 97
stable queue

SQL Remote cleaning, 146
subscriber option

SQL Remote [dbxtract], 154
subscription expressions

SQL Remote cost of evaluating, 23
SQL Remote using, 32

subscriptions
SQL Remote creation, 69
SQL Remote replication, 7

support
newsgroups, xiii

suppress_dialogs control parameter
SQL Remote MAPI message type, 104
SQL Remote SMTP message type, 102
SQL Remote VIM message type, 105

suppress_dialogs parameter
SQL Remote FTP message type, 100

SyncConsole
starting dbremote, 122

synchronizing data over a message system
SQL Remote, 84

system objects
SQL Remote, 168
SQL Remote dbo user, 153

system tables
SQL Remote, 168

T
technical support

newsgroups, xiii
territory realignment

SQL Remote foreign keys, 42
SQL Remote many-to-many relationships, 49
SQL Remote UPDATES, 17

testing
SQL Remote deployments, 75

tracking SQL errors
SQL Remote, 25

transaction log
SQL Remote Message Agent, 146
SQL Remote offsets, 118
SQL Remote publications, 23

transaction log mirror
SQL Remote, 129

triggers

Index

178 Copyright © 2007, iAnywhere Solutions, Inc.

SQL Remote, 59
SQL Remote designing, 43

troubleshooting
newsgroups, xiii
SQL Remote errors, 108

typical SQL Remote setups
about, 10

U
unique column values

SQL Remote, 61
Unix

SQL Remote supported message types, 94
unlink_delay control parameter

SQL Remote FILE message type, 99
unloading

SQL Remote consolidated databases, 139
UPDATE conflicts

SQL Remote, 53
UPDATE statement

SQL Remote territory realignment, 17
upgrading

SQL Remote consolidated databases, 138
user control parameter

SQL Remote FTP message type, 100
Userid control parameter

SQL Remote VIM message type, 105

V
VIM message type

SQL Remote, 94, 104
SQL Remote control parameters, 105

W
Windows

SQL Remote supported message types, 94
Windows CE

SQL Remote, 99
wizards

SQL Remote extract database, 154

Copyright © 2007, iAnywhere Solutions, Inc. 179

180

	SQL Remote™
	Contents
	About This Manual
	SQL Anywhere documentation
	Documentation conventions
	Finding out more and providing feedback

	Part I. Introduction to SQL Remote
	SQL Remote Concepts
	Introducing SQL Remote
	SQL Remote components
	SQL Remote Publications and subscriptions
	SQL Remote features
	Typical SQL Remote setups
	Server-to-laptop replication for mobile workforces
	Server-to-server replication among offices

	Part II. Replication Design for SQL Remote
	Principles of SQL Remote Design
	SQL Remote publication design overview
	Using compatible sort orders and character sets

	How statements are replicated
	Replication of inserts and deletes
	Replication of updates
	Replication of procedures
	Replication of triggers
	Replication of data definition statements

	How data types are replicated
	Replication of BLOBs
	Replication of dates and times

	Who gets what?
	Replication errors and conflicts
	Replication errors
	Replication conflicts
	Tracking SQL errors

	SQL Remote Installation Design
	Design overview
	Publishing data
	Publishing whole tables
	Publishing only some columns in a table
	Publishing only some rows in a table
	Publishing only some rows using a WHERE clause
	Publishing only some rows using a subscription expression
	Altering existing publications
	Dropping publications
	Notes on publications

	Publication design
	Design issues overview
	Conditions for valid articles
	Design tips for performance

	Partitioning tables that do not contain the subscription expression
	The Contacts example
	Partitioning the Customers table in the Contacts example
	Partitioning the Contacts table in the Contacts example
	Territory realignment in the Contacts example

	Sharing rows among several subscriptions
	The Policy example
	The publication

	Territory realignment with a many-to-many relationship
	Using the subscribe_by_remote option with many-to-many relationships

	Managing conflicts
	How SQL Remote handles conflicts
	Implementing conflict resolution
	Using conflict resolution triggers
	Conflict resolution examples
	Resolving date conflicts
	Resolving inventory conflicts
	Reporting conflicts

	Designing to avoid referential integrity errors
	Designing triggers to avoid errors

	Ensuring unique primary keys
	Using global autoincrement default column values
	Declaring default global autoincrement
	Setting the global_database_id value
	Setting unique database identification numbers when extracting databases
	How default values are chosen

	Using primary key pools
	The primary key pool table
	Replicating the primary key pool
	Replenishing the key pool
	Using primary keys from the key pool

	Creating subscriptions

	Part III. SQL Remote Administration
	Deploying and Synchronizing Databases with SQL Remote
	Deployment overview
	Test before deployment
	Changes to avoid on a running system

	Synchronizing databases
	Mixed operating systems and database extraction
	Notes on synchronization and extraction

	Using the Extraction utility (dbxtract)
	Creating a database from the reload files
	Before extracting a database
	Using the Extraction utility from Sybase Central
	Designing an efficient extraction procedure
	Extracting groups
	Limits to using the Extraction utility

	Synchronizing data over a message system

	SQL Remote Administration
	Management overview
	Managing SQL Remote permissions
	Granting and revoking PUBLISH permissions
	Granting and revoking REMOTE and CONSOLIDATE permissions
	Granting REMOTE permissions
	Selecting a send frequency
	Granting CONSOLIDATE permissions
	Revoking REMOTE and CONSOLIDATE permissions

	Assigning permissions in multi-tier installations

	Using message types
	Working with message types
	Using Sybase Central to work with message types
	Using commands to work with message types

	Setting message type control parameters
	The file message system
	The ftp message system
	Troubleshooting ftp problems

	The SMTP message system
	Sharing SMTP/POP addresses

	The MAPI message system
	The VIM message system

	Running the Message Agent
	Message Agent batch and continuous modes
	Connections used by the Message Agent
	Replication system recovery procedures
	Ensuring consistent Message Agent settings
	The Message Agent and replication security
	Troubleshooting errors at remote sites

	Tuning Message Agent performance
	Tuning throughput by controlling Message Agent threading
	Tuning throughput by caching messages
	Tuning incoming message polling
	Polling interval
	Requesting resends

	Tuning the message sending process
	Polling interval
	Resending messages

	Encoding and compressing messages
	The encoding scheme
	Creating custom encoding schemes

	The message tracking system
	Status information in the remoteuser table
	Tracking messages by transaction log offsets
	Handling lost or corrupt messages

	Administering SQL Remote
	Running the Message Agent
	Starting the Message Agent
	Starting the Message Agent on Mac OS X

	Running the Message Agent as a service
	The Message Agent and replication security

	Error reporting and handling
	Default error handling
	Ignoring errors
	Implementing error handling procedures
	Example: emailing notification of errors

	Transaction log and backup management
	Setting the transaction log directory
	Backup utility options
	Using the live directory as the transaction log directory
	Using the backup directory as the transaction log directory

	Managing old transaction logs
	Recovery from database media failure for consolidated databases
	Recovery with a single transaction log
	Recovery with multiple transaction logs
	Applying transaction logs individually
	Applying multiple transaction logs

	Backup procedures at remote databases
	Upgrading consolidated databases
	Unloading and reloading a database participating in replication

	Using passthrough mode
	Uses and limitations of passthrough mode
	Operations not replicated in passthrough mode

	Part IV. Reference
	SQL Remote Utilities and Options Reference
	Message Agent
	Database Extraction utility
	Extracting a remote database in Sybase Central
	Extraction utility

	SQL Remote options
	SQL Remote event-hook procedures
	sp_hook_dbremote_begin
	sp_hook_dbremote_end
	sp_hook_dbremote_shutdown
	sp_hook_dbremote_receive_begin
	sp_hook_dbremote_receive_end
	sp_hook_dbremote_send_begin
	sp_hook_dbremote_send_end
	sp_hook_dbremote_message_sent
	sp_hook_dbremote_message_missing
	sp_hook_dbremote_message_apply_begin
	sp_hook_dbremote_message_apply_end

	SQL Remote System Objects
	SQL Remote system tables

	SQL Remote SQL Statements
	SQL Remote statements

	Index

