
SQL Anywhere® Server
Programming

Published: March 2007

Copyright and trademarks
Copyright © 2007 iAnywhere Solutions, Inc. Portions copyright © 2007 Sybase, Inc. All rights reserved.

iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

iAnywhere grants you permission to use this document for your own informational, educational, and other non-commercial purposes; provided
that (1) you include this and all other copyright and proprietary notices in the document in all copies; (2) you do not attempt to "pass-off" the
document as your own; and (3) you do not modify the document. You may not publish or distribute the document or any portion thereof without
the express prior written consent of iAnywhere.

This document is not a commitment on the part of iAnywhere to do or refrain from any activity, and iAnywhere may change the content of
this document at its sole discretion without notice. Except as otherwise provided in a written agreement between you and iAnywhere, this
document is provided “as is”, and iAnywhere assumes no liability for its use or any inaccuracies it may contain.

iAnywhere®, Sybase®, and the marks listed at http://www.ianywhere.com/trademarks are trademarks of Sybase, Inc. or its subsidiaries. ®
indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.ianywhere.com/trademarks

Contents

About This Manual .. xi

SQL Anywhere documentation .. xii
Documentation conventions .. xv
Finding out more and providing feedback ... xix

I. Introduction to Programming with SQL Anywhere 1

SQL Anywhere Data Access Programming Interfaces .. 3
SQL Anywhere .NET API ... 4
SQL Anywhere OLE DB and ADO APIs .. 5
ODBC API .. 6
JDBC API ... 7
SQL Anywhere embedded SQL .. 8
Sybase Open Client API .. 9
Perl DBD::SQLAnywhere API .. 10
SQL Anywhere PHP API ... 11
SQL Anywhere web services ... 12

SQL Anywhere Explorer ... 13
Introduction to the SQL Anywhere Explorer .. 14
Using the SQL Anywhere Explorer .. 15

Using SQL in Applications ... 19
Executing SQL statements in applications .. 20
Preparing statements ... 22
Introduction to cursors ... 25
Working with cursors ... 28
Choosing cursor types ... 35
SQL Anywhere cursors .. 37
Describing result sets .. 53
Controlling transactions in applications ... 55

Three-Tier Computing and Distributed Transactions .. 59
Introduction to three-tier computing and distributed transactions 60
Three-tier computing architecture .. 61
Using distributed transactions .. 64

Copyright © 2007, iAnywhere Solutions, Inc. iii

Using EAServer with SQL Anywhere ... 66

II. Java in the database .. 69

Java in the Database ... 71
Introduction to Java in the database .. 72
Java in the database Q & A ... 73
Java error handling .. 77
The runtime environment for Java in the database ... 78

Tutorial: Using Java in the Database ... 83
Introduction to Java in the Database tutorial ... 84
Installing Java classes into a database ... 91
Special features of Java classes in the database .. 95
Starting and stopping the Java VM .. 99
Unsupported Java classes ... 100

III. SQL Anywhere Data Access APIs ... 101

SQL Anywhere .NET Data Provider ... 103
SQL Anywhere .NET Data Provider features .. 104
Running the sample projects ... 105
Using the .NET Data Provider in a Visual Studio .NET project 106
Connecting to a database .. 108
Accessing and manipulating data .. 111
Using stored procedures .. 128
Transaction processing .. 130
Error handling and the SQL Anywhere .NET Data Provider 132
Deploying the SQL Anywhere .NET Data Provider ... 133
.NET 2.0 tracing support .. 135

Tutorial: Using the SQL Anywhere .NET Data Provider 139
Introduction to the .NET data provider tutorial ... 140
Using the Simple code sample .. 141
Using the Table Viewer code sample .. 145

SQL Anywhere .NET 2.0 API Reference .. 149
SABulkCopy class ... 151
SABulkCopyColumnMapping class ... 163

SQL Anywhere® Server - Programming

iv Copyright © 2007, iAnywhere Solutions, Inc.

SABulkCopyColumnMappingCollection class ... 170
SABulkCopyOptions enumeration ... 179
SACommand class .. 180
SACommandBuilder class ... 203
SACommLinksOptionsBuilder class .. 213
SAConnection class ... 221
SAConnectionStringBuilder class .. 238
SAConnectionStringBuilderBase class .. 259
SADataAdapter class ... 266
SADataReader class ... 277
SADataSourceEnumerator class ... 308
SADbType enumeration .. 310
SADefault class ... 315
SAError class ... 317
SAErrorCollection class ... 320
SAException class ... 323
SAFactory class ... 327
SAInfoMessageEventArgs class .. 334
SAInfoMessageEventHandler delegate ... 338
SAIsolationLevel enumeration ... 339
SAMessageType enumeration .. 341
SAMetaDataCollectionNames class .. 342
SAParameter class .. 352
SAParameterCollection class .. 366
SAPermission class ... 384
SAPermissionAttribute class .. 387
SARowsCopiedEventArgs class .. 390
SARowsCopiedEventHandler delegate ... 393
SARowUpdatedEventArgs class ... 394
SARowUpdatedEventHandler delegate ... 397
SARowUpdatingEventArgs class ... 398
SARowUpdatingEventHandler delegate .. 401
SASpxOptionsBuilder class ... 402
SATcpOptionsBuilder class ... 408
SATransaction class .. 419

SQL Anywhere® Server - Programming

Copyright © 2007, iAnywhere Solutions, Inc. v

SQL Anywhere OLE DB and ADO APIs ... 425
Introduction to OLE DB .. 426
ADO programming with SQL Anywhere .. 427
Setting up a Microsoft Linked Server using OLE DB ... 433
Supported OLE DB interfaces ... 434

SQL Anywhere ODBC API .. 439
Introduction to ODBC ... 440
Building ODBC applications ... 442
ODBC samples .. 446
ODBC handles ... 448
Choosing an ODBC connection function ... 451
Executing SQL statements .. 454
Working with result sets ... 458
Calling stored procedures .. 464
Handling errors .. 466

SQL Anywhere JDBC API ... 469
Introduction to JDBC .. 470
Using the iAnywhere JDBC driver ... 473
Using the jConnect JDBC driver .. 475
Connecting from a JDBC client application ... 479
Using JDBC to access data ... 485
Using JDBC escape syntax ... 492

SQL Anywhere Embedded SQL ... 495
Introduction to embedded SQL .. 496
Sample embedded SQL programs .. 502
Embedded SQL data types .. 507
Using host variables .. 511
The SQL Communication Area (SQLCA) .. 519
Static and dynamic SQL .. 525
The SQL descriptor area (SQLDA) .. 529
Fetching data ... 537
Sending and retrieving long values .. 545
Using simple stored procedures .. 549
Embedded SQL programming techniques ... 552
SQL preprocessor .. 553

SQL Anywhere® Server - Programming

vi Copyright © 2007, iAnywhere Solutions, Inc.

Library function reference .. 557
Embedded SQL command summary ... 578

SQL Anywhere Perl DBD::SQLAnywhere API .. 581
Introduction to DBD::SQLAnywhere .. 582
Installing DBD::SQLAnywhere on Windows .. 583
Installing DBD::SQLAnywhere on Unix .. 585
Writing Perl scripts that use DBD::SQLAnywhere ... 587

SQL Anywhere PHP API .. 591
Introduction to the SQL Anywhere PHP module .. 592
Installing and configuring SQL Anywhere PHP ... 593
Running PHP test scripts in your web pages ... 598
Writing PHP scripts .. 600
SQL Anywhere PHP API reference ... 606

Sybase Open Client API .. 621
Open Client architecture .. 622
What you need to build Open Client applications .. 623
Data type mappings ... 624
Using SQL in Open Client applications .. 626
Known Open Client limitations of SQL Anywhere .. 629

SQL Anywhere Web Services ... 631
Introduction to web services .. 632
Quick start to web services .. 633
Creating web services ... 636
Starting a database server that listens for web requests 639
Understanding how URLs are interpreted ... 642
Creating SOAP and DISH web services .. 646
Tutorial: Accessing web services from Microsoft .NET 649
Tutorial: Accessing web services from Java JAX-RPC 652
Using procedures that provide HTML documents ... 657
Working with data types ... 660
Tutorial: Using data types with Microsoft .NET .. 665
Creating web service client functions and procedures 670
Working with return values and result sets .. 675
Selecting from result sets .. 677
Using parameters .. 678

SQL Anywhere® Server - Programming

Copyright © 2007, iAnywhere Solutions, Inc. vii

Working with structured data types .. 681
Working with variables ... 686
Working with HTTP headers .. 688
Using SOAP services .. 690
Working with SOAP headers ... 693
Working with MIME types .. 700
Using HTTP sessions .. 703
Using automatic character set conversion ... 709
Handling errors .. 710

IV. Using ADO and Visual Basic with SQL Anywhere 713

Tutorial: Develop a Simple Application in Visual Basic 715
Introduction to Visual Basic tutorial .. 716

V. SQL Anywhere Database Tools Interface .. 719

Database Tools Interface .. 721
Introduction to the database tools interface ... 722
Using the database tools interface .. 724
DBTools functions .. 731
DBTools structures .. 740
DBTools enumeration types .. 777

Exit Codes .. 783
Software component exit codes ... 784

VI. Deploying SQL Anywhere .. 785

Deploying Databases and Applications .. 787
Introduction to deployment .. 788
Understanding installation directories and file names 790
Using the Deployment wizard .. 793
Using a silent installation for deployment .. 795
Deploying client applications ... 798
Deploying administration tools ... 816
Deploying SQL script files .. 837

SQL Anywhere® Server - Programming

viii Copyright © 2007, iAnywhere Solutions, Inc.

Deploying database servers .. 838
Deploying security ... 842
Deploying embedded database applications ... 843

Index .. 847

SQL Anywhere® Server - Programming

Copyright © 2007, iAnywhere Solutions, Inc. ix

x

About This Manual
Subject

This book describes how to build and deploy database applications using the C, C++, and Java programming
languages, as well as Visual Studio .NET. Users of tools such as Visual Basic and PowerBuilder can use the
programming interfaces provided by those tools.

Audience
This manual is intended for application developers writing programs that work directly with one of the SQL
Anywhere interfaces.

You do not need to read this manual if you are using a development tool such as PowerBuilder or Visual
Basic, each of which has its own database interface on top of ODBC.

Copyright © 2007, iAnywhere Solutions, Inc. xi

SQL Anywhere documentation
This book is part of the SQL Anywhere documentation set. This section describes the books in the
documentation set and how you can use them.

The SQL Anywhere documentation
The complete SQL Anywhere documentation is available in two forms: an online form that combines all
books, and as separate PDF files for each book. Both forms of the documentation contain identical
information and consist of the following books:

♦ SQL Anywhere 10 - Introduction This book introduces SQL Anywhere 10—a product that provides
data management and data exchange technologies, enabling the rapid development of database-powered
applications for server, desktop, mobile, and remote office environments.

♦ SQL Anywhere 10 - Changes and Upgrading This book describes new features in SQL Anywhere
10 and in previous versions of the software, as well as upgrade instructions.

♦ SQL Anywhere Server - Database Administration This book covers material related to running,
managing, and configuring SQL Anywhere databases. It describes database connections, the database
server, database files, backup procedures, security, high availability, and replication with Replication
Server, as well as administration utilities and options.

♦ SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

♦ SQL Anywhere Server - SQL Reference This book provides a complete reference for the SQL
language used by SQL Anywhere. It also describes the SQL Anywhere system views and procedures.

♦ SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, and Java programming languages, as well as Visual Studio .NET. Users
of tools such as Visual Basic and PowerBuilder can use the programming interfaces provided by these
tools.

♦ SQL Anywhere 10 - Error Messages This book provides a complete listing of SQL Anywhere error
messages together with diagnostic information.

♦ MobiLink - Getting Started This manual introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

♦ MobiLink - Server Administration This manual describes how to set up and administer MobiLink
server-side utilities and functionality.

♦ MobiLink - Client Administration This manual describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases.

♦ MobiLink - Server-Initiated Synchronization This manual describes MobiLink server-initiated
synchronization, a feature of MobiLink that allows you to initiate synchronization or other remote actions
from the consolidated database.

About This Manual

xii Copyright © 2007, iAnywhere Solutions, Inc.

♦ QAnywhere This manual describes QAnywhere, which is a messaging platform for mobile and
wireless clients as well as traditional desktop and laptop clients.

♦ SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

♦ SQL Anywhere 10 - Context-Sensitive Help This manual contains the context-sensitive help for
the Connect dialog, the Query Editor, the MobiLink Monitor, MobiLink Model mode, the SQL Anywhere
Console utility, the Index Consultant, and Interactive SQL.

♦ UltraLite - Database Management and Reference This manual introduces the UltraLite database
system for small devices.

♦ UltraLite - AppForge Programming This manual describes UltraLite for AppForge. With UltraLite
for AppForge you can develop and deploy database applications to handheld, mobile, or embedded
devices, running Palm OS, Symbian OS, or Windows CE.

♦ UltraLite - .NET Programming This manual describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

♦ UltraLite - M-Business Anywhere Programming This manual describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows CE, or Windows
XP.

♦ UltraLite - C and C++ Programming This manual describes UltraLite C and C++ programming
interfaces. With UltraLite, you can develop and deploy database applications to handheld, mobile, or
embedded devices.

Documentation formats
SQL Anywhere provides documentation in the following formats:

♦ Online documentation The online documentation contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product, and is the most complete and
up-to-date source of documentation.

To access the online documentation on Windows operating systems, choose Start ► Programs ► SQL
Anywhere 10 ► Online Books. You can navigate the online documentation using the HTML Help table
of contents, index, and search facility in the left pane, as well as using the links and menus in the right
pane.

To access the online documentation on Unix operating systems, see the HTML documentation under
your SQL Anywhere installation or on your installation CD.

♦ PDF files The complete set of SQL Anywhere books is provided as a set of Adobe Portable Document
Format (pdf) files, viewable with Adobe Reader.

SQL Anywhere documentation

Copyright © 2007, iAnywhere Solutions, Inc. xiii

On Windows, the PDF books are accessible from the online documentation via the PDF link at the top
of each page, or from the Windows Start menu (Start ► Programs ► SQL Anywhere 10 ► Online
Books - PDF Format).

On Unix, the PDF books are available on your installation CD.

About This Manual

xiv Copyright © 2007, iAnywhere Solutions, Inc.

Documentation conventions
This section lists the typographic and graphical conventions used in this documentation.

Syntax conventions
The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in uppercase, like the words ALTER TABLE in the following
example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers or expressions are shown like
the words owner and table-name in the following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of the list followed by an ellipsis
(three dots), like column-constraint in the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. In this example, if more than one is specified, they must be
separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The square brackets should not be
typed.

♦ Options When none or only one of a list of items can be chosen, vertical bars separate the items and
the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the alternatives are enclosed in curly
braces and a bar is used to separate the options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The brackets and braces should not
be typed.

Operating system conventions
♦ Windows The Microsoft Windows family of operating systems for desktop and laptop computers.

The Windows family includes Windows Vista and Windows XP.

Documentation conventions

Copyright © 2007, iAnywhere Solutions, Inc. xv

♦ Windows CE Platforms built from the Microsoft Windows CE modular operating system, including
the Windows Mobile and Windows Embedded CE platforms.

Windows Mobile is built on Windows CE. It provides a Windows user interface and additional
functionality, such as small versions of applications like Word and Excel. Windows Mobile is most
commonly seen on mobile devices.

Limitations or variations in SQL Anywhere are commonly based on the underlying operating system
(Windows CE), and seldom on the particular variant used (Windows Mobile).

♦ Unix Unless specified, Unix refers to both Linux and Unix platforms.

File name conventions

The documentation generally adopts Windows conventions when describing operating system dependent
tasks and features such as paths and file names. In most cases, there is a simple transformation to the syntax
used on other operating systems.

♦ Directories and path names The documentation typically lists directory paths using Windows
conventions, including colons for drives and backslashes as a directory separator. For example,

MobiLink\redirector

On Unix, Linux, and Mac OS X, you should use forward slashes instead. For example,

MobiLink/redirector

If SQL Anywhere is used in a multi-platform environment you must be aware of path name differences
between platforms.

♦ Executable files The documentation shows executable file names using Windows conventions, with
the suffix .exe. On Unix, Linux, and Mac OS X, executable file names have no suffix. On NetWare,
executable file names use the suffix .nlm.

For example, on Windows, the network database server is dbsrv10.exe. On Unix, Linux, and Mac OS
X, it is dbsrv10. On NetWare, it is dbsrv10.nlm.

♦ install-dir The installation process allows you to choose where to install SQL Anywhere, and the
documentation refers to this location using the convention install-dir.

After installation is complete, the environment variable SQLANY10 specifies the location of the
installation directory containing the SQL Anywhere components (install-dir). SQLANYSH10 specifies
the location of the directory containing components shared by SQL Anywhere with other Sybase
applications.

For more information on the default location of install-dir, by operating system, see “SQLANY10
environment variable” [SQL Anywhere Server - Database Administration].

♦ samples-dir The installation process allows you to choose where to install the samples that are
included with SQL Anywhere, and the documentation refers to this location using the convention
samples-dir.

About This Manual

xvi Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

After installation is complete, the environment variable SQLANYSAMP10 specifies the location of the
directory containing the samples (samples-dir). From the Windows Start menu, choosing
Programs ► SQL Anywhere 10 ► Sample Applications and Projects opens a Windows Explorer window
in this directory.

For more information on the default location of samples-dir, by operating system, see “Samples
directory” [SQL Anywhere Server - Database Administration].

♦ Environment variables The documentation refers to setting environment variables. On Windows,
environment variables are referred to using the syntax %envvar%. On Unix, Linux, and Mac OS X,
environment variables are referred to using the syntax $envvar or ${envvar}.

Unix, Linux, and Mac OS X environment variables are stored in shell and login startup files, such
as .cshrc or .tcshrc.

Graphic icons

The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as SQL Anywhere.

♦ An UltraLite application.

♦ A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

Documentation conventions

Copyright © 2007, iAnywhere Solutions, Inc. xvii

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

♦ Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

♦ A Sybase Replication Server

♦ A programming interface.

Interface

About This Manual

xviii Copyright © 2007, iAnywhere Solutions, Inc.

Finding out more and providing feedback
Finding out more

Additional information and resources, including a code exchange, are available at the iAnywhere Developer
Network at http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide detailed information about your problem,
including the build number of your version of SQL Anywhere. You can find this information by entering
dbeng10 -v at a command prompt.

The newsgroups are located on the forums.sybase.com news server. The newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.
iAnywhere Technical Advisors as well as other staff assist on the newsgroup service when they have time
available. They offer their help on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback
We would like to receive your opinions, suggestions, and feedback on this documentation.

You can email comments and suggestions to the SQL Anywhere documentation team at
iasdoc@ianywhere.com. Although we do not reply to emails sent to that address, we read all suggestions
with interest.

In addition, you can provide feedback on the documentation and the software through the newsgroups listed
above.

Finding out more and providing feedback

Copyright © 2007, iAnywhere Solutions, Inc. xix

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

xx

Part I. Introduction to Programming
with SQL Anywhere

This part introduces you to programming with SQL Anywhere.

CHAPTER 1

SQL Anywhere Data Access Programming
Interfaces

Contents
SQL Anywhere .NET API .. 4
SQL Anywhere OLE DB and ADO APIs .. 5
ODBC API ... 6
JDBC API .. 7
SQL Anywhere embedded SQL .. 8
Sybase Open Client API .. 9
Perl DBD::SQLAnywhere API .. 10
SQL Anywhere PHP API ... 11
SQL Anywhere web services ... 12

Copyright © 2007, iAnywhere Solutions, Inc. 3

SQL Anywhere .NET API
ADO.NET is the latest data access API from Microsoft in the line of ODBC, OLE DB, and ADO. It is the
preferred data access component for the Microsoft .NET Framework and allows you to access relational
database systems.

The SQL Anywhere .NET Data Provider implements the iAnywhere.Data.SQLAnywhere namespace and
allows you to write programs in any of the .NET supported languages, such as C# and Visual Basic .NET,
and access data from SQL Anywhere databases.

For general information about .NET data access, see http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/dnbda/html/daag.asp.

ADO.NET applications
You can develop Internet and intranet applications using object-oriented languages, and then connect these
applications to SQL Anywhere using the ADO.NET data provider.

Combine this provider with built-in XML and web services features, .NET scripting capability for MobiLink
synchronization, and an UltraLite .NET component for development of handheld database applications, and
SQL Anywhere is ready to fully integrate with the .NET framework.

.NET

C# J# VB.NET

ADO.NET

See also
♦ “SQL Anywhere .NET Data Provider” on page 103
♦ “SQL Anywhere .NET 2.0 API Reference” on page 149
♦ “Tutorial: Using the SQL Anywhere .NET Data Provider” on page 139

SQL Anywhere Data Access Programming Interfaces

4 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daag.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daag.asp

SQL Anywhere OLE DB and ADO APIs
SQL Anywhere includes an OLE DB provider for OLE DB and ADO programmers.

OLE DB is a set of Component Object Model (COM) interfaces developed by Microsoft, which provide
applications with uniform access to data stored in diverse information sources and that also provide the
ability to implement additional database services. These interfaces support the amount of DBMS
functionality appropriate to the data store, enabling it to share its data.

ADO is an object model for programmatically accessing, editing, and updating a wide variety of data sources
through OLE DB system interfaces. ADO is also developed by Microsoft. Most developers using the OLE
DB programming interface do so by writing to the ADO API rather than directly to the OLE DB API.

Do not confuse the ADO interface with ADO.NET. ADO.NET is a separate interface. For more information,
see “SQL Anywhere .NET API” on page 4.

Refer to the Microsoft Developer Network for documentation on OLE DB and ADO programming. For SQL
Anywhere-specific information on OLE DB and ADO development, see “SQL Anywhere OLE DB and
ADO APIs” on page 425.

SQL Anywhere OLE DB and ADO APIs

Copyright © 2007, iAnywhere Solutions, Inc. 5

ODBC API
ODBC (Open Database Connectivity) is a standard call level interface (CLI) developed by Microsoft. It is
based on the SQL Access Group CLI specification. ODBC applications can run against any data source that
provides an ODBC driver. ODBC is a good choice for a programming interface if you want your application
to be portable to other data sources that have ODBC drivers.

ODBC is a low-level interface. Almost all the SQL Anywhere functionality is available with this interface.
ODBC is available as a DLL under Windows operating systems with the exception of Windows CE. It is
provided as a library for Unix.

The primary documentation for ODBC is the Microsoft ODBC Software Development Kit.

ODBC applications
You can develop applications using a variety of development tools and programming languages, as shown
in the figure below, and accessing the SQL Anywhere database server using the ODBC API.

C/C++

ODBC

JavaDelphi PowerBuilder

JDBC

iAnywhere
JDBC

DBExpress

Borland
SQL Anywhere

DBExpress

For example, of the applications supplied with SQL Anywhere, InfoMaker and PowerDesigner Physical
Data Model use ODBC to connect to the database.

See also
♦ “SQL Anywhere ODBC API” on page 439

SQL Anywhere Data Access Programming Interfaces

6 Copyright © 2007, iAnywhere Solutions, Inc.

JDBC API
JDBC is a call-level interface for Java applications. Developed by Sun Microsystems, JDBC provides Java
programmers with a uniform interface to a wide range of relational databases, and provides a common base
on which higher level tools and interfaces can be built. JDBC is now a standard part of Java and is included
in the JDK.

SQL Anywhere includes a pure Java JDBC driver, named Sybase jConnect. It also includes the iAnywhere
JDBC driver, which is a type 2 driver. Both are described in “SQL Anywhere JDBC API” on page 469.

For information about choosing a driver, see “Choosing a JDBC driver” on page 470.

In addition to using JDBC as a client-side application programming interface, you can also use JDBC inside
the database server to access data by using Java in the database.

JDBC applications
You can develop Java applications that use the JDBC API to connect to SQL Anywhere. Several of the
applications supplied with SQL Anywhere use JDBC, such as the debugger, Sybase Central, and Interactive
SQL.

Debugger

Sybase Central Java

JDBC

ISQL

Java and JDBC are also important programming languages for developing UltraLite applications.

See also
♦ “Choosing a JDBC driver” on page 470
♦ “SQL Anywhere JDBC API” on page 469

JDBC API

Copyright © 2007, iAnywhere Solutions, Inc. 7

SQL Anywhere embedded SQL
Embedded SQL is a system in which SQL commands are embedded right in a C or C++ source file. A
preprocessor translates these statements into calls to a runtime library. Embedded SQL is an ISO/ANSI and
IBM standard.

Embedded SQL is portable to other databases and other environments, and is functionally equivalent in all
operating environments. It is a comprehensive, low-level interface that provides all of the functionality
available in the product. Embedded SQL requires knowledge of C or C++ programming languages.

Embedded SQL applications
You can develop C or C++ applications that access the SQL Anywhere server using the SQL Anywhere
embedded SQL interface. The command line database tools are examples of applications developed in this
manner.

C/C++

ESQL

DBTools

Web Server

PHP DBD::SQL
Anywhere

DBLIB

See also
♦ “SQL Anywhere Embedded SQL” on page 495

SQL Anywhere Data Access Programming Interfaces

8 Copyright © 2007, iAnywhere Solutions, Inc.

Sybase Open Client API
Sybase Open Client provides customer applications, third-party products, and other Sybase products with
the interfaces needed to communicate with SQL Anywhere and other Open Servers.

When to use Open Client
You should consider using the Open Client interface if you are concerned with Adaptive Server Enterprise
compatibility or if you are using other Sybase products that support the Open Client interface, such as
Replication Server.

Open Client applications
You can develop applications in C or C++, and then connect those applications to SQL Anywhere using the
Open Client API. Other Sybase applications, such as OmniConnect or Replication Server, use Open Client.
The Open Client API is also supported by Sybase Adaptive Server Enterprise.

C/C++ OmniConnect

Open
Client

Sybase
Replication Server

See also
♦ “SQL Anywhere as an Open Server” [SQL Anywhere Server - Database Administration]

Sybase Open Client API

Copyright © 2007, iAnywhere Solutions, Inc. 9

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Perl DBD::SQLAnywhere API
DBD::SQLAnywhere is the SQL Anywhere database driver for DBI, which is a data access API for the Perl
language. The DBI API Specification defines a set of functions, variables and conventions that provide a
consistent database interface independent of the actual database being used. Using DBI and
DBD::SQLAnywhere, your Perl scripts have direct access to Sybase SQL Anywhere database servers.

See also
♦ “SQL Anywhere Perl DBD::SQLAnywhere API” on page 581

SQL Anywhere Data Access Programming Interfaces

10 Copyright © 2007, iAnywhere Solutions, Inc.

SQL Anywhere PHP API
PHP provides the ability to retrieve information from many popular databases. SQL Anywhere includes a
module that provides access to SQL Anywhere databases from PHP. You can use the PHP language to
retrieve information from SQL Anywhere databases and provide dynamic web content on your own web
sites.

The SQL Anywhere PHP module provides a native means of accessing your databases from PHP. You might
prefer it to other PHP data access techniques because it is simple, and it helps to avoid system resource leaks
that can occur with other techniques.

See also
♦ “SQL Anywhere PHP API” on page 591

SQL Anywhere PHP API

Copyright © 2007, iAnywhere Solutions, Inc. 11

SQL Anywhere web services
SQL Anywhere web services provide client applications an alternative to data access APIs such as JDBC
and ODBC. Web services can be accessed from client applications written in a variety of languages and
running on a variety of platforms. Even common scripting languages such as Perl and Python can provide
access to web services.

See also
♦ “SQL Anywhere Web Services” on page 631

SQL Anywhere Data Access Programming Interfaces

12 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 2

SQL Anywhere Explorer

Contents
Introduction to the SQL Anywhere Explorer .. 14
Using the SQL Anywhere Explorer .. 15

Copyright © 2007, iAnywhere Solutions, Inc. 13

Introduction to the SQL Anywhere Explorer
The SQL Anywhere Explorer is a component that lets you connect to SQL Anywhere and UltraLite databases
from Visual Studio .NET.

For information about using the SQL Anywhere Explorer for UltraLite, see “SQL Anywhere Explorer for
UltraLite” [UltraLite - .NET Programming].

SQL Anywhere Explorer

14 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/uldnen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/uldnen10.pdf

Using the SQL Anywhere Explorer
In Visual Studio .NET 2003 and 2005, you can use the SQL Anywhere Explorer to create connections to
SQL Anywhere databases. Once you connect to a database, you can:

♦ view the tables, views, and procedures in the database

♦ view the data stored in tables and views

♦ design programs to open connections with the SQL Anywhere database, or to retrieve and manipulate
data

♦ drag and drop database objects onto C# or Visual Basic code or forms so that the IDE automatically
generates code that references the selected object

You can also open Sybase Central and Interactive SQL from Visual Studio .NET by choosing the
corresponding command from the Tools menu.

Installation note

If you install SQL Anywhere software on a Windows computer that already has Visual Studio installed, the
installation process detects the presence of Visual Studio and performs the necessary integration steps. If
you install Visual Studio after installing SQL Anywhere, or install a new version of Visual Studio, the process
to integrate SQL Anywhere with Visual Studio must be performed manually as follows:

♦ Ensure Visual Studio is not running.

♦ For Visual Studio .NET 2003, run install-dir\Assembly\v1\setupVSPackage.exe.

For Visual Studio 2005, run install-dir\Assembly\v2\setupVSPackage.exe.

Working with database connections in Visual Studio .NET

Use the SQL Anywhere Explorer to display the SQL Anywhere database connections under the Data
Connections node. You must create a data connection to view the data in the tables and views.

You can list database tables, views, stored procedures, and functions in the SQL Anywhere Explorer and
expand individual tables to list their columns. The properties for an object selected in the SQL Anywhere
Explorer window appear in the Visual Studio Properties pane.

♦ To add a SQL Anywhere database connection in Visual Studio .NET

1. Open the SQL Anywhere Explorer by choosing View ► SQL Anywhere Explorer.

2. In the SQL Anywhere Explorer window, right-click Data Connections, and then choose Add
Connection.

The Add Connection dialog appears.

Using the SQL Anywhere Explorer

Copyright © 2007, iAnywhere Solutions, Inc. 15

3. Select SQL Anywhere, and then click OK.

The Connection Properties dialog appears.

4. Enter the appropriate values to connect to your database.

5. Click OK.

A connection is made to the database, and the connection is added to the Data Connections list.

♦ To remove a SQL Anywhere database connection from Visual Studio .NET

1. Open the SQL Anywhere Explorer by choosing View ► SQL Anywhere Explorer.

2. In the SQL Anywhere Explorer window, right-click the data connections you want to remove, and then
choose Delete.

The connection is removed from the SQL Anywhere Explorer window.

Configuring the SQL Anywhere Explorer

The Visual Studio options dialog includes settings that you can use to configure the SQL Anywhere Explorer.

♦ To access SQL Anywhere Explorer options

1. From the Visual Studio Tools menu, choose Options.

The Options dialog appears.

2. In the left pane of the Options dialog, expand SQL Anywhere.

3. Click General to configure the SQL Anywhere Explorer general options as required.

Limit query results sent to Output window Specify the number of rows that appear in the Output
window. The default value is 500.

Sort objects Choose to sort objects in the SQL Anywhere Explorer window by object name or by
object owner name.

Generate UI code when dropping a table or view onto the Designer Generate the code for
tables or views that you drag and drop onto the Windows Forms Designer.

Generate Insert, Update, and Delete commands for adapters Generate INSERT, UPDATE,
and DELETE commands for the data adapter when you drag and drop a table or view onto a C# or
Visual Basic document.

Generate table mappings for data adapters Generate table mappings for the data adapter when
you drag and drop a table onto a C# or Visual Basic document.

Adding database objects using the SQL Anywhere Explorer

SQL Anywhere Explorer

16 Copyright © 2007, iAnywhere Solutions, Inc.

In Visual Studio .NET, when you drag certain database objects from the SQL Anywhere Explorer and drop
them onto Visual Studio .NET designers, the IDE automatically creates new components that reference the
selected objects. You can configure the settings for drag and drop operations by choosing Tools ► Options
in Visual Studio .NET.

For example, if you drag a stored procedure from the SQL Anywhere Explorer onto a Windows form, the
IDE automatically creates a Command object preconfigured to call that stored procedure.

The following table lists the objects you can drag from the SQL Anywhere Explorer, and describes the
components created when you drop them onto a Visual Studio .NET Forms Designer or Code Editor.

Item Result

Data connection Creates a data connection.

Table Creates an adapter.

View Creates an adapter.

Stored procedure or
function

Creates a command.

♦ To create a new data component using the SQL Anywhere Explorer

1. Open the form or class that you want to add a data component to.

2. In the SQL Anywhere Explorer, select the object you want to use.

3. Drag the object from the SQL Anywhere Explorer to the Forms Designer or Code Editor.

Working with tables using the SQL Anywhere Explorer

The SQL Anywhere Explorer enables you to view the properties and data for tables and views in a SQL
Anywhere database from within Visual Studio .NET.

♦ To view a table or view data in Visual Studio .NET

1. Connect to a SQL Anywhere database using the SQL Anywhere Explorer.

2. In the SQL Anywhere Explorer dialog, expand your database, and then expand Tables or Views,
depending on the object you want to view.

3. Right-click a table or view, and then choose Retrieve Data.

The data in the selected table or view appears in the Output window in Visual Studio .NET.

Using the SQL Anywhere Explorer

Copyright © 2007, iAnywhere Solutions, Inc. 17

Working with procedures and functions using the SQL Anywhere Explorer

If changes are made to a stored procedure, you can refresh the procedure from the SQL Anywhere Explorer
to get the latest changes to columns or parameters.

♦ To refresh a procedure in Visual Studio .NET

1. Connect to a SQL Anywhere database.

2. Right-click the procedure and choose Refresh.

The parameters and columns are updated if any changes have been made to the procedure in the
database.

SQL Anywhere Explorer

18 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 3

Using SQL in Applications

Contents
Executing SQL statements in applications .. 20
Preparing statements .. 22
Introduction to cursors ... 25
Working with cursors ... 28
Choosing cursor types ... 35
SQL Anywhere cursors .. 37
Describing result sets .. 53
Controlling transactions in applications ... 55

Copyright © 2007, iAnywhere Solutions, Inc. 19

Executing SQL statements in applications
The way you include SQL statements in your application depends on the application development tool and
programming interface you use.

♦ ADO.NET You can execute SQL statements using a variety of ADO.NET objects. The SACommand
object is one example:

SACommand cmd = new SACommand(
 "DELETE FROM Employees WHERE EmployeeID = 105", conn);
cmd.ExecuteNonQuery();

See “SQL Anywhere .NET Data Provider” on page 103.

♦ ODBC If you are writing directly to the ODBC programming interface, your SQL statements appear
in function calls. For example, the following C function call executes a DELETE statement:

SQLExecDirect(stmt,
 "DELETE FROM Employees
 WHERE EmployeeID = 105",
 SQL_NTS);

See “SQL Anywhere ODBC API” on page 439.

♦ JDBC If you are using the JDBC programming interface, you can execute SQL statements by invoking
methods of the statement object. For example,

stmt.executeUpdate(
 "DELETE FROM Employees
 WHERE EmployeeID = 105");

See “SQL Anywhere JDBC API” on page 469.

♦ Embedded SQL If you are using embedded SQL, you prefix your C language SQL statements with
the keyword EXEC SQL. The code is then run through a preprocessor before compiling. For example,

EXEC SQL EXECUTE IMMEDIATE
 'DELETE FROM Employees
 WHERE EmployeeID = 105';

See “SQL Anywhere Embedded SQL” on page 495.

♦ Sybase Open Client If you use the Sybase Open Client interface, your SQL statements appear in
function calls. For example, the following pair of calls executes a DELETE statement:

ret = ct_command(cmd, CS_LANG_CMD,
 "DELETE FROM Employees
 WHERE EmployeeID=105"
 CS_NULLTERM,
 CS_UNUSED);
ret = ct_send(cmd);

See “Sybase Open Client API” on page 621.

Using SQL in Applications

20 Copyright © 2007, iAnywhere Solutions, Inc.

♦ Application development tools Application development tools such as the members of the Sybase
Enterprise Application Studio family provide their own SQL objects, which use either ODBC
(PowerBuilder) or JDBC (Power J) under the covers.

For more detailed information on how to include SQL in your application, see your development tool
documentation. If you are using ODBC or JDBC, consult the software development kit for those interfaces.

Applications inside the database server
In many ways, stored procedures and triggers act as applications or parts of applications running inside the
database server. You can use many of the techniques here in stored procedures also.

For more information about stored procedures and triggers, see “Using Procedures, Triggers, and
Batches” [SQL Anywhere Server - SQL Usage].

Java classes in the database can use the JDBC interface in the same way as Java applications outside the
server. This chapter discusses some aspects of JDBC. For more information about using JDBC, see “SQL
Anywhere JDBC API” on page 469.

Executing SQL statements in applications

Copyright © 2007, iAnywhere Solutions, Inc. 21

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf

Preparing statements
Each time a statement is sent to a database, the database server must perform the following steps:

♦ It must parse the statement and transform it into an internal form. This is sometimes called preparing
the statement.

♦ It must verify the correctness of all references to database objects by checking, for example, that columns
named in a query actually exist.

♦ The query optimizer generates an access plan if the statement involves joins or subqueries.

♦ It executes the statement after all these steps have been carried out.

Reusing prepared statements can improve performance
If you find yourself using the same statement repeatedly, for example inserting many rows into a table,
repeatedly preparing the statement causes a significant and unnecessary overhead. To remove this overhead,
some database programming interfaces provide ways of using prepared statements. A prepared
statement is a statement containing a series of placeholders. When you want to execute the statement, all
you have to do is assign values to the placeholders, rather than prepare the entire statement over again.

Using prepared statements is particularly useful when carrying out many similar actions, such as inserting
many rows.

Generally, using prepared statements requires the following steps:

1. Prepare the statement In this step you generally provide the statement with some placeholder
character instead of the values.

2. Repeatedly execute the prepared statement In this step you supply values to be used each time
the statement is executed. The statement does not have to be prepared each time.

3. Drop the statement In this step you free the resources associated with the prepared statement. Some
programming interfaces handle this step automatically.

Do not prepare statements that are used only once
In general, you should not prepare statements if they are only executed once. There is a slight performance
penalty for separate preparation and execution, and it introduces unnecessary complexity into your
application.

In some interfaces, however, you do need to prepare a statement to associate it with a cursor.

For information about cursors, see “Introduction to cursors” on page 25.

The calls for preparing and executing statements are not a part of SQL, and they differ from interface to
interface. Each of the SQL Anywhere programming interfaces provides a method for using prepared
statements.

Using SQL in Applications

22 Copyright © 2007, iAnywhere Solutions, Inc.

How to use prepared statements

This section provides a brief overview of how to use prepared statements. The general procedure is the same,
but the details vary from interface to interface. Comparing how to use prepared statements in different
interfaces illustrates this point.

♦ To use a prepared statement (generic)

1. Prepare the statement.

2. Bind the parameters that will hold values in the statement.

3. Assign values to the bound parameters in the statement.

4. Execute the statement.

5. Repeat steps 3 and 4 as needed.

6. Drop the statement when finished. This step is not required in JDBC, as Java's garbage collection
mechanisms handle this for you.

♦ To use a prepared statement (ADO.NET)

1. Create an SACommand object holding the statement.

SACommand cmd = new SACommand(
 "SELECT * FROM Employees WHERE Surname=?", conn);

2. Declare data types for any parameters in the statement.

Use the SACommand.CreateParameter method.

3. Prepare the statement using the Prepare method.

cmd.Prepare();
4. Execute the statement.

SADataReader reader = cmd.ExecuteReader();

For an example of preparing statements using ADO.NET, see the source code in samples-dir
\SQLAnywhere\ADO.NET\SimpleWin32.

♦ To use a prepared statement (ODBC)

1. Prepare the statement using SQLPrepare.

2. Bind the statement parameters using SQLBindParameter.

3. Execute the statement using SQLExecute.

4. Drop the statement using SQLFreeStmt.

Preparing statements

Copyright © 2007, iAnywhere Solutions, Inc. 23

For an example of preparing statements using ODBC, see the source code in samples-dir\SQLAnywhere
\ODBCPrepare.

For more information about ODBC prepared statements, see “Executing prepared
statements” on page 456 and the ODBC SDK documentation.

♦ To use a prepared statement (JDBC)

1. Prepare the statement using the prepareStatement method of the connection object. This returns a
prepared statement object.

2. Set the statement parameters using the appropriate setType methods of the prepared statement object.
Here, Type is the data type assigned.

3. Execute the statement using the appropriate method of the prepared statement object. For inserts,
updates, and deletes this is the executeUpdate method.

For an example of preparing statements using JDBC, see the source code file samples-dir\SQLAnywhere
\JDBC\JDBCExample.java.

For more information on using prepared statements in JDBC, see “Using prepared statements for more
efficient access” on page 487.

♦ To use a prepared statement (embedded SQL)

1. Prepare the statement using the EXEC SQL PREPARE command.

2. Assign values to the parameters in the statement.

3. Execute the statement using the EXEC SQL EXECUTE command.

4. Free the resources associated with the statement using the EXEC SQL DROP command.

For more information about embedded SQL prepared statements, see “PREPARE statement
[ESQL]” [SQL Anywhere Server - SQL Reference].

♦ To use a prepared statement (Open Client)

1. Prepare the statement using the ct_dynamic function, with a CS_PREPARE type parameter.

2. Set statement parameters using ct_param.

3. Execute the statement using ct_dynamic with a CS_EXECUTE type parameter.

4. Free the resources associated with the statement using ct_dynamic with a CS_DEALLOC type
parameter.

For more information on using prepared statements in Open Client, see “Using SQL in Open Client
applications” on page 626.

Using SQL in Applications

24 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Introduction to cursors
When you execute a query in an application, the result set consists of a number of rows. In general, you do
not know how many rows the application is going to receive before you execute the query. Cursors provide
a way of handling query result sets in applications.

The way you use cursors and the kinds of cursors available to you depend on the programming interface you
use. For a list of cursor types available from each interface, see “Availability of cursors” on page 35.

With cursors, you can perform the following tasks within any programming interface:

♦ Loop over the results of a query.

♦ Perform inserts, updates, and deletes on the underlying data at any point within a result set.

In addition, some programming interfaces allow you to use special features to tune the way result sets return
to your application, providing substantial performance benefits for your application.

For more information on the kinds of cursors available through different programming interfaces, see
“Availability of cursors” on page 35.

What are cursors?
A cursor is a name associated with a result set. The result set is obtained from a SELECT statement or stored
procedure call.

A cursor is a handle on the result set. At any time, the cursor has a well-defined position within the result
set. With a cursor you can examine and possibly manipulate the data one row at a time. SQL Anywhere
cursors support forward and backward movement through the query results.

Cursor positions
Cursors can be positioned in the following places:

♦ Before the first row of the result set.

♦ On a row in the result set.

♦ After the last row of the result set.

Introduction to cursors

Copyright © 2007, iAnywhere Solutions, Inc. 25

0

1

2

3

n – 2

n – 1

n

n + 1

–n – 1

–n

–n + 1

–n + 2

–3

–2

–1

0After last row

Before first row

Absolute row
from start

Absolute row
from end

The cursor position and result set are maintained in the database server. Rows are fetched by the client for
display and processing either one at a time or a few at a time. The entire result set does not need to be
delivered to the client.

Benefits of using cursors

You do not need to use cursors in database applications, but they do provide a number of benefits. These
benefits follow from the fact that if you do not use a cursor, the entire result set must be transferred to the
client for processing and display:

♦ Client-side memory For large results, holding the entire result set on the client can lead to demanding
memory requirements.

♦ Response time Cursors can provide the first few rows before the whole result set is assembled. If
you do not use cursors, the entire result set must be delivered before any rows are displayed by your
application.

♦ Concurrency control If you make updates to your data and do not use cursors in your application,
you must send separate SQL statements to the database server to apply the changes. This raises the
possibility of concurrency problems if the result set has changed since it was queried by the client. In
turn, this raises the possibility of lost updates.

Using SQL in Applications

26 Copyright © 2007, iAnywhere Solutions, Inc.

Cursors act as pointers to the underlying data, and so impose proper concurrency constraints on any
changes you make.

Introduction to cursors

Copyright © 2007, iAnywhere Solutions, Inc. 27

Working with cursors
This section describes how to perform different kinds of operations using cursors.

Using cursors

Using a cursor in embedded SQL is different than using a cursor in other interfaces.

♦ To use a cursor (ADO.NET, ODBC, JDBC, and Open Client)

1. Prepare and execute a statement.

Execute a statement using the usual method for the interface. You can prepare and then execute the
statement, or you can execute the statement directly.

With ADO.NET, only the SACommand.ExecuteReader command returns a cursor. It provides a read-
only, forward-only cursor.

2. Test to see if the statement returns a result set.

A cursor is implicitly opened when a statement that creates a result set is executed. When the cursor is
opened, it is positioned before the first row of the result set.

3. Fetch results.

Although simple fetch operations move the cursor to the next row in the result set, SQL Anywhere
permits more complicated movement around the result set.

4. Close the cursor.

When you have finished with the cursor, close it to free associated resources.

5. Free the statement.

If you used a prepared statement, free it to reclaim memory.

♦ To use a cursor (embedded SQL)

1. Prepare a statement.

Cursors generally use a statement handle rather than a string. You need to prepare a statement to have
a handle available.

For information on preparing a statement, see “Preparing statements” on page 22.

2. Declare the cursor.

Each cursor refers to a single SELECT or CALL statement. When you declare a cursor, you state the
name of the cursor and the statement it refers to.

For more information, see “DECLARE CURSOR statement [ESQL] [SP]” [SQL Anywhere Server -
SQL Reference].

Using SQL in Applications

28 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

3. Open the cursor.

For more information, see “OPEN statement [ESQL] [SP]” [SQL Anywhere Server - SQL Reference].

In the case of a CALL statement, opening the cursor executes the procedure up to the point where the
first row is about to be obtained.

4. Fetch results.

Although simple fetch operations move the cursor to the next row in the result set, SQL Anywhere
permits more complicated movement around the result set. How you declare the cursor determines
which fetch operations are available to you.

For more information, see “FETCH statement [ESQL] [SP]” [SQL Anywhere Server - SQL
Reference], and “Fetching data” on page 537.

5. Close the cursor.

When you have finished with the cursor, close it. This frees any resources associated with the cursor.

For more information, see “CLOSE statement [ESQL] [SP]” [SQL Anywhere Server - SQL
Reference].

6. Drop the statement.

To free the memory associated with the statement, you must drop the statement.

For more information, see “DROP STATEMENT statement [ESQL]” [SQL Anywhere Server - SQL
Reference].

For more information about using cursors in embedded SQL, see “Fetching data” on page 537.

Prefetching rows
In some cases, the interface library may undertake performance optimizations under the covers (such as
prefetching results), so these steps in the client application may not correspond exactly to software operations.

Cursor positioning

When a cursor is opened, it is positioned before the first row. You can move the cursor position to an absolute
position from the start or the end of the query results, or to a position relative to the current cursor position.
The specifics of how you change cursor position, and what operations are possible, are governed by the
programming interface.

The number of row positions you can fetch in a cursor is governed by the size of an integer. You can fetch
rows numbered up to number 2147483646, which is one less than the value that can be held in an integer.
When using negative numbers (rows from the end) you can fetch down to one more than the largest negative
value that can be held in an integer.

You can use special positioned update and delete operations to update or delete the row at the current position
of the cursor. If the cursor is positioned before the first row or after the last row, a No current row of
cursor error is returned.

Working with cursors

Copyright © 2007, iAnywhere Solutions, Inc. 29

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Cursor positioning problems
Inserts and some updates to asensitive cursors can cause problems with cursor positioning. SQL Anywhere
does not put inserted rows at a predictable position within a cursor unless there is an ORDER BY clause on
the SELECT statement. In some cases, the inserted row does not appear at all until the cursor is closed and
opened again. With SQL Anywhere, this occurs if a work table had to be created to open the cursor (see
“Use work tables in query processing (use All-rows optimization goal)” [SQL Anywhere Server - SQL
Usage] for a description).
The UPDATE statement may cause a row to move in the cursor. This happens if the cursor has an ORDER
BY clause that uses an existing index (a work table is not created). Using STATIC SCROLL cursors alleviates
these problems but requires more memory and processing.

Configuring cursors on opening

You can configure the following aspects of cursor behavior when you open the cursor:

♦ Isolation level You can explicitly set the isolation level of operations on a cursor to be different from
the current isolation level of the transaction. To do this, set the isolation_level option.

For more information, see “isolation_level option [compatibility]” [SQL Anywhere Server - Database
Administration].

♦ Holding By default, cursors in embedded SQL close at the end of a transaction. Opening a cursor
WITH HOLD allows you to keep it open until the end of a connection, or until you explicitly close it.
ADO.NET, ODBC, JDBC, and Open Client leave cursors open at the end of transactions by default.

Fetching rows through a cursor

The simplest way of processing the result set of a query using a cursor is to loop through all the rows of the
result set until there are no more rows.

♦ To loop through the rows of a result set

1. Declare and open the cursor (embedded SQL), or execute a statement that returns a result set (ODBC,
JDBC, Open Client) or SADataReader object (ADO.NET).

2. Continue to fetch the next row until you get a Row Not Found error.

3. Close the cursor.

How step 2 of this operation is carried out depends on the interface you use. For example,

♦ ADO.NET Use the SADataReader.NextResult method. See “NextResult method” on page 305.

♦ ODBC SQLFetch, SQLExtendedFetch, or SQLFetchScroll advances the cursor to the next row and
returns the data.

Using SQL in Applications

30 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

For more information on using cursors in ODBC, see “Working with result sets” on page 458.

♦ JDBC The next method of the ResultSet object advances the cursor and returns the data.

For more information on using the ResultSet object in JDBC, see “Returning result sets” on page 489.

♦ Embedded SQL The FETCH statement carries out the same operation.

For more information on using cursors in embedded SQL, see “Using cursors in embedded
SQL” on page 538.

♦ Open Client The ct_fetch function advances the cursor to the next row and returns the data.

For more information on using cursors in Open Client applications, see “Using cursors” on page 626.

Fetching multiple rows

This section discusses how fetching multiple rows at a time can improve performance.

Multiple-row fetching should not be confused with prefetching rows, which is described in the next section.
Multiple row fetching is performed by the application, while prefetching is transparent to the application,
and provides a similar performance gain.

Multiple-row fetches
Some interfaces provide methods for fetching more than one row at a time into the next several fields in an
array. Generally, the fewer separate fetch operations you execute, the fewer individual requests the server
must respond to, and the better the performance. A modified FETCH statement that retrieves multiple rows
is also sometimes called a wide fetch. Cursors that use multiple-row fetches are sometimes called block
cursors or fat cursors.

Using multiple-row fetching
♦ In ODBC, you can set the number of rows that will be returned on each call to SQLFetchScroll or

SQLExtendedFetch by setting the SQL_ATTR_ROW_ARRAY_SIZE or SQL_ROWSET_SIZE
attribute.

♦ In embedded SQL, the FETCH statement uses an ARRAY clause to control the number of rows fetched
at a time.

♦ Open Client and JDBC do not support multi-row fetches. They do use prefetching.

Fetching with scrollable cursors

ODBC and embedded SQL provide methods for using scrollable cursors and dynamic scrollable cursors.
These methods allow you to move several rows forward at a time, or to move backward through the result
set.

The JDBC and Open Client interfaces do not support scrollable cursors.

Working with cursors

Copyright © 2007, iAnywhere Solutions, Inc. 31

Prefetching does not apply to scrollable operations. For example, fetching a row in the reverse direction does
not prefetch several previous rows.

Modifying rows through a cursor

Cursors can do more than just read result sets from a query. You can also modify data in the database while
processing a cursor. These operations are commonly called positioned insert, update, and delete operations,
or PUT operations if the action is an insert.

Not all query result sets allow positioned updates and deletes. If you perform a query on a non-updatable
view, then no changes occur to the underlying tables. Also, if the query involves a join, then you must specify
which table you want to delete from, or which columns you want to update, when you perform the operations.

Inserts through a cursor can only be executed if any non-inserted columns in the table allow NULL or have
defaults.

If multiple rows are inserted into a value-sensitive (keyset driven) cursor, they appear at the end of the cursor
result set. The rows appear at the end, even if they do not match the WHERE clause of the query or if an
ORDER BY clause would normally have placed them at another location in the result set. This behavior is
independent of programming interface. For example, it applies when using the embedded SQL PUT
statement or the ODBC SQLBulkOperations function. The value of an autoincrement column for the most
recent row inserted can be found by selecting the last row in the cursor. For example, in embedded SQL the
value could be obtained using FETCH ABSOLUTE -1 cursor-name. As a result of this behavior, the first
multiple-row insert for a value-sensitive cursor may be expensive.

ODBC, JDBC, embedded SQL, and Open Client permit data modification using cursors, but ADO.NET
does not. With Open Client, you can delete and update rows, but you can only insert rows on a single-table
query.

Which table are rows deleted from?
If you attempt a positioned delete through a cursor, the table from which rows are deleted is determined as
follows:

1. If no FROM clause is included in the DELETE statement, the cursor must be on a single table only.

2. If the cursor is for a joined query (including using a view containing a join), then the FROM clause
must be used. Only the current row of the specified table is deleted. The other tables involved in the
join are not affected.

3. If a FROM clause is included, and no table owner is specified, the table-spec value is first matched
against any correlation names.

For more information, see “FROM clause” [SQL Anywhere Server - SQL Reference].

4. If a correlation name exists, the table-spec value is identified with the correlation name.

5. If a correlation name does not exist, the table-spec value must be unambiguously identifiable as a table
name in the cursor.

Using SQL in Applications

32 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

6. If a FROM clause is included, and a table owner is specified, the table-spec value must be
unambiguously identifiable as a table name in the cursor.

7. The positioned DELETE statement can be used on a cursor open on a view as long as the view is
updatable.

Understanding updatable statements
This section describes how clauses in the SELECT statement affect updatable statements and cursors.

Updatability of read-only statements
Specifying FOR READ ONLY in the cursor declaration, or including a FOR READ ONLY clause in the
statement, renders the statement read-only. In other words, a FOR READ ONLY clause, or the appropriate
read-only cursor declaration when using a client API, overrides any other updatability specification.

If the outermost block of a SELECT statement contains an ORDER BY clause, and the statement does not
specify FOR UPDATE, then the cursor is READ ONLY. If the SQL SELECT statement specifies FOR
XML, then the cursor is READ ONLY. Otherwise, the cursor is updatable.

Updatable statements and concurrency control
For updatable statements, SQL Anywhere provides both optimistic and pessimistic concurrency control
mechanisms on cursors to ensure that a result set remains consistent during scrolling operations. These
mechanisms are alternatives to using INSENSITIVE cursors or snapshot isolation, although they have
different semantics and tradeoffs.

The specification of FOR UPDATE can affect whether or not a cursor is updatable, but in SQL Anywhere,
the FOR UPDATE syntax alone has no other effect on concurrency control. If FOR UPDATE is specified
with additional parameters, SQL Anywhere alters the processing of the statement to incorporate one of two
concurrency control options as follows:

♦ Pessimistic For all rows fetched in the cursor's result set, the database server acquires intent row
locks to prevent the rows from being updated by any other transaction.

♦ Optimistic The cursor type used by the database server is changed to a keyset-driven cursor
(insensitive row membership, value-sensitive) so that the application can be informed when a row in the
result has been modified or deleted by this, or any other transaction.

Pessimistic or optimistic concurrency is specified at the cursor level either through options with DECLARE
CURSOR or FOR statements, or though the concurrency setting API for a specific programming interface.
If a statement is updatable and the cursor does not specify a concurrency control mechanism, the statement's
specification is used. The syntax is as follows:

♦ FOR UPDATE BY LOCK The database server acquires intent row locks on fetched rows of the result
set. These are long-term locks that are held until transaction COMMIT or ROLLBACK.

♦ FOR UPDATE BY { VALUES | TIMESTAMP } The database server utilizes a keyset-driven cursor
to enable the application to be informed when rows have been modified or deleted as the result set is
scrolled.

Working with cursors

Copyright © 2007, iAnywhere Solutions, Inc. 33

For more information, see “DECLARE statement” [SQL Anywhere Server - SQL Reference], and “FOR
statement” [SQL Anywhere Server - SQL Reference].

Restricting updatable statements
FOR UPDATE (column-list) enforces the restriction that only named result set attributes can be modified
in a subsequent UPDATE WHERE CURRENT OF statement.

Canceling cursor operations

You can cancel a request through an interface function. From Interactive SQL, you can cancel a request by
clicking Interrupt SQL Statement on the toolbar (or by choosing Stop from the SQL menu).

If you cancel a request that is carrying out a cursor operation, the position of the cursor is indeterminate.
After canceling the request, you must locate the cursor by its absolute position, or close it.

Using SQL in Applications

34 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Choosing cursor types
This section describes mappings between SQL Anywhere cursors and the options available to you from the
programming interfaces supported by SQL Anywhere.

For information on SQL Anywhere cursors, see “SQL Anywhere cursors” on page 37.

Availability of cursors

Not all interfaces provide support for all types of cursors.

♦ ADO.NET provides only forward-only, read-only cursors.

♦ ADO/OLE DB and ODBC support all types of cursors.

For more information, see “Working with result sets” on page 458.

♦ Embedded SQL supports all types of cursors.

♦ For JDBC:

♦ The iAnywhere JDBC driver supports the JDBC 2.0 and JDBC 3.0 specifications and permits the
declaration of insensitive, sensitive, and forward-only asensitive cursors.

♦ jConnect 5.5 and 6.0.5 support the declaration of insensitive, sensitive, and forward-only asensitive
cursors in the same manner as the iAnywhere JDBC driver. However, the underlying implementation
of jConnect only supports asensitive cursor semantics.

For more information about declaring JDBC cursors, see “Requesting SQL Anywhere
cursors” on page 51.

♦ Sybase Open Client supports only asensitive cursors. Also, a severe performance penalty results when
using updatable, non-unique cursors.

Cursor properties

You request a cursor type, either explicitly or implicitly, from the programming interface. Different interface
libraries offer different choices of cursor types. For example, JDBC and ODBC specify different cursor
types.

Each cursor type is defined by a number of characteristics:

♦ Uniqueness Declaring a cursor to be unique forces the query to return all the columns required to
uniquely identify each row. Often this means returning all the columns in the primary key. Any columns
required but not specified are added to the result set. The default cursor type is non-unique.

♦ Updatability A cursor declared as read only cannot be used in a positioned update or delete operation.
The default cursor type is updatable.

Choosing cursor types

Copyright © 2007, iAnywhere Solutions, Inc. 35

♦ Scrollability You can declare cursors to behave different ways as you move through the result set.
Some cursors can fetch only the current row or the following row. Others can move backward and forward
through the result set.

♦ Sensitivity Changes to the database may or may not be visible through a cursor.

These characteristics may have significant side effects on performance and on database server memory usage.

SQL Anywhere makes available cursors with a variety of mixes of these characteristics. When you request
a cursor of a given type, SQL Anywhere matches those characteristics as well as it can.

There are some occasions when not all characteristics can be supplied. For example, insensitive cursors in
SQL Anywhere must be read-only, for reasons described below. If your application requests an updatable
insensitive cursor, a different cursor type (value-sensitive) is supplied instead.

Bookmarks and cursors

ODBC provides bookmarks, or values, used to identify rows in a cursor. SQL Anywhere supports
bookmarks for value-sensitive and insensitive cursors. For example, this means that the ODBC cursor types
SQL_CURSOR_STATIC and SQL_CURSOR_KEYSET_DRIVEN support bookmarks while cursor types
SQL_CURSOR_DYNAMIC and SQL_CURSOR_FORWARD_ONLY do not.

Block cursors

ODBC provides a cursor type called a block cursor. When you use a BLOCK cursor, you can use
SQLFetchScroll or SQLExtendedFetch to fetch a block of rows, rather than a single row. Block cursors
behave identically to embedded SQL ARRAY fetches.

Using SQL in Applications

36 Copyright © 2007, iAnywhere Solutions, Inc.

SQL Anywhere cursors
Any cursor, once opened, has an associated result set. The cursor is kept open for a length of time. During
that time, the result set associated with the cursor may be changed, either through the cursor itself or, subject
to isolation level requirements, by other transactions. Some cursors permit changes to the underlying data
to be visible, while others do not reflect these changes. The different behavior of cursors with respect to
changes to the underlying data is the sensitivity of the cursor.

SQL Anywhere provides cursors with a variety of sensitivity characteristics. This section describes what
sensitivity is, and describes the sensitivity characteristics of cursors.

This section assumes that you have read “What are cursors?” on page 25.

Membership, order, and value changes
Changes to the underlying data can affect the result set of a cursor in the following ways:

♦ Membership The set of rows in the result set, as identified by their primary key values.

♦ Order The order of the rows in the result set.

♦ Value The values of the rows in the result set.

For example, consider the following simple table with employee information (EmployeeID is the primary
key column):

EmployeeID Surname

1 Whitney

2 Cobb

3 Chin

A cursor on the following query returns all results from the table in primary key order:

SELECT EmployeeID, Surname
FROM Employees
ORDER BY EmployeeID

The membership of the result set could be changed by adding a new row or deleting a row. The values could
be changed by changing one of the names in the table. The order could be changed by changing the primary
key value of one of the employees.

Visible and invisible changes
Subject to isolation level requirements, the membership, order, and values of the result set of a cursor can
be changed after the cursor is opened. Depending on the type of cursor in use, the result set as seen by the
application may or may not change to reflect these changes.

Changes to the underlying data may be visible or invisible through the cursor. A visible change is a change
that is reflected in the result set of the cursor. Changes to the underlying data that are not reflected in the
result set seen by the cursor are invisible.

SQL Anywhere cursors

Copyright © 2007, iAnywhere Solutions, Inc. 37

Cursor sensitivity overview

SQL Anywhere cursors are classified by their sensitivity with respect to changes of the underlying data. In
particular, cursor sensitivity is defined in terms of which changes are visible.

♦ Insensitive cursors The result set is fixed when the cursor is opened. No changes to the underlying
data are visible. See “Insensitive cursors” on page 42.

♦ Sensitive cursors The result set can change after the cursor is opened. All changes to the underlying
data are visible. See “Sensitive cursors” on page 42.

♦ Asensitive cursors Changes may be reflected in the membership, order, or values of the result set
seen through the cursor, or may not be reflected at all. See “Asensitive cursors” on page 44.

♦ Value-sensitive cursors Changes to the order or values of the underlying data are visible. The
membership of the result set is fixed when the cursor is opened. See “Value-sensitive
cursors” on page 45.

The differing requirements on cursors place different constraints on execution, and so, performance. For
more information, see “Cursor sensitivity and performance” on page 46.

Cursor sensitivity example: A deleted row

This example uses a simple query to illustrate how different cursors respond to a row in the result set being
deleted.

Consider the following sequence of events:

1. An application opens a cursor on the following query against the sample database.

SELECT EmployeeID, Surname
FROM Employees
ORDER BY EmployeeID

EmployeeID Surname

102 Whitney

105 Cobb

160 Breault

… …

2. The application fetches the first row through the cursor (102).

3. The application fetches the next row through the cursor (105).

4. A separate transaction deletes employee 102 (Whitney) and commits the change.

The results of cursor actions in this situation depend on the cursor sensitivity:

Using SQL in Applications

38 Copyright © 2007, iAnywhere Solutions, Inc.

♦ Insensitive cursors The DELETE is not reflected in either the membership or values of the results
as seen through the cursor:

Action Result

Fetch previous row Returns the original copy of the row (102).

Fetch the first row (absolute
fetch)

Returns the original copy of the row (102).

Fetch the second row (absolute
fetch)

Returns the unchanged row (105).

♦ Sensitive cursors The membership of the result set has changed so that row 105 is now the first row
in the result set:

Action Result

Fetch previous row Returns Row Not Found error. There is no previous row.

Fetch the first row (absolute
fetch)

Returns row 105.

Fetch the second row (absolute
fetch)

Returns row 160.

♦ Value-sensitive cursors The membership of the result set is fixed, and so row 105 is still the second
row of the result set. The DELETE is reflected in the values of the cursor, and creates an effective hole
in the result set.

Action Result

Fetch previous row Returns No current row of cursor. There is a hole in the
cursor where the first row used to be.

Fetch the first row (absolute
fetch)

Returns No current row of cursor. There is a hole in the
cursor where the first row used to be.

Fetch the second row (absolute
fetch)

Returns row 105.

♦ Asensitive cursors The membership and values of the result set are indeterminate with respect to
the changes. The response to a fetch of the previous row, the first row, or the second row depends on the
particular optimization method for the query, whether that method involved the formation of a work
table, and whether the row being fetched was prefetched from the client.

The benefit of asensitive cursors is that for many applications, sensitivity is unimportant. In particular,
if you are using a forward-only, read-only cursor, no underlying changes are seen. Also, if you are running
at a high isolation level, underlying changes are disallowed.

SQL Anywhere cursors

Copyright © 2007, iAnywhere Solutions, Inc. 39

Cursor sensitivity example: An updated row

This example uses a simple query to illustrate how different cursor types respond to a row in the result set
being updated in such a way as to change the order of the result set.

Consider the following sequence of events:

1. An application opens a cursor on the following query against the sample database.

SELECT EmployeeID, Surname
FROM Employees

EmployeeID Surname

102 Whitney

105 Cobb

160 Breault

… …

2. The application fetches the first row through the cursor (102).

3. The application fetches the next row through the cursor (105).

4. A separate transaction updates the employee ID of employee 102 (Whitney) to 165 and commits the
change.

The results of the cursor actions in this situation depend on the cursor sensitivity:

♦ Insensitive cursors The UPDATE is not reflected in either the membership or values of the results
as seen through the cursor:

Action Result

Fetch previous row Returns the original copy of the row (102).

Fetch the first row (absolute
fetch)

Returns the original copy of the row (102).

Fetch the second row (absolute
fetch)

Returns the unchanged row (105).

♦ Sensitive cursors The membership of the result set has changed so that row 105 is now the first row
in the result set:

Action Result

Fetch previous row Returns Row Not Found. The membership of the result set has
changed so that 105 is now the first row. The cursor is moved to the
position before the first row.

Using SQL in Applications

40 Copyright © 2007, iAnywhere Solutions, Inc.

Action Result

Fetch the first row (absolute
fetch)

Returns row 105.

Fetch the second row (absolute
fetch)

Returns row 160.

In addition, a fetch on a sensitive cursor returns the warning SQLE_ROW_UPDATED_WARNING if the
row has changed since the last reading. The warning is given only once. Subsequent fetches of the same
row do not produce the warning.

Similarly, a positioned update or delete through the cursor on a row since it was last fetched returns the
SQLE_ROW_UPDATED_SINCE_READ error. An application must fetch the row again for an update
or delete on a sensitive cursor to work.

An update to any column causes the warning/error, even if the column is not referenced by the cursor.
For example, a cursor on a query returning Surname would report the update even if only the Salary
column was modified.

♦ Value-sensitive cursors The membership of the result set is fixed, and so row 105 is still the second
row of the result set. The UPDATE is reflected in the values of the cursor, and creates an effective "hole"
in the result set.

Action Result

Fetch previous row Returns Row Not Found. The membership of the result set has
changed so that 105 is now the first row: The cursor is positioned
on the hole: it is before row 105.

Fetch the first row (absolute
fetch)

Returns No current row of cursor. The membership of
the result set has changed so that 105 is now the first row: The cursor
is positioned on the hole: it is before row 105.

Fetch the second row (absolute
fetch)

Returns row 105.

♦ Asensitive cursors The membership and values of the result set are indeterminate with respect to
the changes. The response to a fetch of the previous row, the first row, or the second row depends on the
particular optimization method for the query, whether that method involved the formation of a work
table, and whether the row being fetched was prefetched from the client.

No warnings or errors in bulk operations mode
Update warning and error conditions do not occur in bulk operations mode (-b database server option).

SQL Anywhere cursors

Copyright © 2007, iAnywhere Solutions, Inc. 41

Insensitive cursors

These cursors have insensitive membership, order, and values. No changes made after cursor open time are
visible.

Insensitive cursors are used only for read-only cursor types.

Standards
Insensitive cursors correspond to the ISO/ANSI standard definition of insensitive cursors, and to ODBC
static cursors.

Programming interfaces

Interface Cursor type Comment

ODBC, ADO/OLE DB Static If an updatable static cursor is requested, a value-sen-
sitive cursor is used instead.

Embedded SQL INSENSITIVE

JDBC INSENSITIVE Insensitive semantics are only supported by the iAny-
where JDBC driver.

Open Client Unsupported

Description
Insensitive cursors always return rows that match the query's selection criteria, in the order specified by any
ORDER BY clause.

The result set of an insensitive cursor is fully materialized as a work table when the cursor is opened. This
has the following consequences:

♦ If the result set is very large, the disk space and memory requirements for managing the result set may
be significant.

♦ No row is returned to the application before the entire result set is assembled as a work table. For complex
queries, this may lead to a delay before the first row is returned to the application.

♦ Subsequent rows can be fetched directly from the work table, and so are returned quickly. The client
library may prefetch several rows at a time, further improving performance.

♦ Insensitive cursors are not affected by ROLLBACK or ROLLBACK TO SAVEPOINT.

Sensitive cursors

Sensitive cursors can be used for read-only or updatable cursor types.

These cursors have sensitive membership, order, and values.

Using SQL in Applications

42 Copyright © 2007, iAnywhere Solutions, Inc.

Standards
Sensitive cursors correspond to the ISO/ANSI standard definition of sensitive cursors, and to ODBC dynamic
cursors.

Programming interfaces

Interface Cursor type Comment

ODBC, ADO/OLE DB Dynamic

Embedded SQL SENSITIVE Also supplied in response to a request for a DYNAM-
IC SCROLL cursor when no work table is required
and the prefetch option is set to Off.

JDBC SENSITIVE Sensitive cursors are fully supported by the iAny-
where JDBC driver.

Description
Prefetching is disabled for sensitive cursors. All changes are visible through the cursor, including changes
through the cursor and from other transactions. Higher isolation levels may hide some changes made in other
transactions because of locking.

Changes to cursor membership, order, and all column values are all visible. For example, if a sensitive cursor
contains a join, and one of the values of one of the underlying tables is modified, then all result rows composed
from that base row show the new value. Result set membership and order may change at each fetch.

Sensitive cursors always return rows that match the query's selection criteria, and are in the order specified
by any ORDER BY clause. Updates may affect the membership, order, and values of the result set.

The requirements of sensitive cursors place restrictions on the implementation of sensitive cursors:

♦ Rows cannot be prefetched, as changes to the prefetched rows would not be visible through the cursor.
This may impact performance.

♦ Sensitive cursors must be implemented without any work tables being constructed, as changes to those
rows stored as work tables would not be visible through the cursor.

♦ The no work table limitation restricts the choice of join method by the optimizer and therefore may
impact performance.

♦ For some queries, the optimizer is unable to construct a plan that does not include a work table that would
make a cursor sensitive.

Work tables are commonly used for sorting and grouping intermediate results. A work table is not needed
for sorting if the rows can be accessed through an index. It is not possible to state exactly which queries
employ work tables, but the following queries do employ them:

♦ UNION queries, although UNION ALL queries do not necessarily use work tables.

♦ Statements with an ORDER BY clause, if there is no index on the ORDER BY column.

♦ Any query that is optimized using a hash join.

SQL Anywhere cursors

Copyright © 2007, iAnywhere Solutions, Inc. 43

♦ Many queries involving DISTINCT or GROUP BY clauses.

In these cases, SQL Anywhere either returns an error to the application, or changes the cursor type to an
asensitive cursor and returns a warning.

For more information on query optimization and the use of work tables, see “Query Optimization and
Execution” [SQL Anywhere Server - SQL Usage].

Asensitive cursors

These cursors do not have well-defined sensitivity in their membership, order, or values. The flexibility that
is allowed in the sensitivity permits asensitive cursors to be optimized for performance.

Asensitive cursors are used only for read-only cursor types.

Standards
Asensitive cursors correspond to the ISO/ANSI standard definition of asensitive cursors, and to ODBC
cursors with unspecific sensitivity.

Programming interfaces

Interface Cursor type

ODBC, ADO/OLE DB Unspecified sensitivity

Embedded SQL DYNAMIC SCROLL

Description
A request for an asensitive cursor places few restrictions on the methods SQL Anywhere can use to optimize
the query and return rows to the application. For these reasons, asensitive cursors provide the best
performance. In particular, the optimizer is free to employ any measure of materialization of intermediate
results as work tables, and rows can be prefetched by the client.

SQL Anywhere makes no guarantees about the visibility of changes to base underlying rows. Some changes
may be visible, others not. Membership and order may change at each fetch. In particular, updates to base
rows may result in only some of the updated columns being reflected in the cursor's result.

Asensitive cursors do not guarantee to return rows that match the query's selection and order. The row
membership is fixed at cursor open time, but subsequent changes to the underlying values are reflected in
the results.

Asensitive cursors always return rows that matched the customer's WHERE and ORDER BY clauses at the
time the cursor membership is established. If column values change after the cursor is opened, rows may be
returned that no longer match WHERE and ORDER BY clauses.

Using SQL in Applications

44 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf

Value-sensitive cursors

These cursors are insensitive with respect to their membership, and sensitive with respect to the order and
values of the result set.

Value-sensitive cursors can be used for read-only or updatable cursor types.

Standards
Value-sensitive cursors do not correspond to an ISO/ANSI standard definition. They correspond to ODBC
keyset-driven cursors.

Programming interfaces

Interface Cursor type Comment

ODBC, ADO/OLE DB Keyset-driven

Embedded SQL SCROLL

JDBC INSENSITIVE and CONCUR_UP-
DATABLE

With the iAnywhere JDBC driv-
er, a request for an updatable IN-
SENSITIVE cursor is answered
with a value-sensitive cursor.

Open Client and jConnect Not supported

Description
If the application fetches a row composed of a base underlying row that has changed, then the application
must be presented with the updated value, and the SQL_ROW_UPDATED status must be issued to the
application. If the application attempts to fetch a row that was composed of a base underlying row that was
deleted, a SQL_ROW_DELETED status must be issued to the application.

Changes to primary key values remove the row from the result set (treated as a delete, followed by an insert).
A special case occurs when a row in the result set is deleted (either from cursor or outside) and a new row
with the same key value is inserted. This will result in the new row replacing the old row where it appeared.

There is no guarantee that rows in the result set match the query's selection or order specification. Since row
membership is fixed at open time, subsequent changes that make a row not match the WHERE clause or
ORDER BY do not change a row's membership nor position.

All values are sensitive to changes made through the cursor. The sensitivity of membership to changes made
through the cursor is controlled by the ODBC option SQL_STATIC_SENSITIVITY. If this option is on,
then inserts through the cursor add the row to the cursor. Otherwise, they are not part of the result set. Deletes
through the cursor remove the row from the result set, preventing a hole returning the
SQL_ROW_DELETED status.

Value-sensitive cursors use a key set table. When the cursor is opened, SQL Anywhere populates a work
table with identifying information for each row contributing to the result set. When scrolling through the
result set, the key set table is used to identify the membership of the result set, but values are obtained, if
necessary, from the underlying tables.

SQL Anywhere cursors

Copyright © 2007, iAnywhere Solutions, Inc. 45

The fixed membership property of value-sensitive cursors allows your application to remember row positions
within a cursor and be assured that these positions will not change. For more information, see “Cursor
sensitivity example: A deleted row” on page 38.

♦ If a row was updated or may have been updated since the cursor was opened, SQL Anywhere returns a
SQLE_ROW_UPDATED_WARNING when the row is fetched. The warning is generated only once:
fetching the same row again does not produce the warning.

An update to any column of the row causes the warning, even if the updated column is not referenced
by the cursor. For example, a cursor on Surname and GivenName would report the update even if only
the Birthdate column was modified. These update warning and error conditions do not occur in bulk
operations mode (-b database server option) when row locking is disabled. See “Performance aspects of
bulk operations” [SQL Anywhere Server - SQL Usage].

For more information, see “Row has been updated since last time read” [SQL Anywhere 10 - Error
Messages]

♦ An attempt to execute a positioned update or delete on a row that has been modified since it was last
fetched returns a SQLE_ROW_UPDATED_SINCE_READ error and cancels the statement. An
application must FETCH the row again before the UPDATE or DELETE is permitted.

An update to any column of the row causes the error, even if the updated column is not referenced by
the cursor. The error does not occur in bulk operations mode.

For more information, see “Row has changed since last read -- operation canceled” [SQL Anywhere 10
- Error Messages].

♦ If a row has been deleted after the cursor is opened, either through the cursor or from another transaction,
a hole is created in the cursor. The membership of the cursor is fixed, so a row position is reserved, but
the DELETE operation is reflected in the changed value of the row. If you fetch the row at this hole, you
receive a No Current Row of Cursor error, indicating that there is no current row, and the cursor
is left positioned on the hole. You can avoid holes by using sensitive cursors, as their membership changes
along with the values.

For more information, see “No current row of cursor” [SQL Anywhere 10 - Error Messages].

Rows cannot be prefetched for value-sensitive cursors. This requirement may impact performance in some
cases.

Inserting multiple rows
When inserting multiple rows through a value-sensitive cursor, the new rows appear at the end of the result
set. For more information, see “Modifying rows through a cursor” on page 32.

Cursor sensitivity and performance

There is a trade-off between performance and other cursor properties. In particular, making a cursor updatable
places restrictions on the cursor query processing and delivery that constrain performance. Also, putting
requirements on cursor sensitivity may constrain cursor performance.

Using SQL in Applications

46 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf

To understand how the updatability and sensitivity of cursors affects performance, you need to understand
how the results that are visible through a cursor are transmitted from the database to the client application.

In particular, results may be stored at two intermediate locations for performance reasons:

♦ Work tables Either intermediate or final results may be stored as work tables. Value-sensitive cursors
employ a work table of primary key values. Query characteristics may also lead the optimizer to use
work tables in its chosen execution plan.

♦ Prefetching The client side of the communication may retrieve rows into a buffer on the client side
to avoid separate requests to the database server for each row.

Prefetched
rows

Work table

Database server
ODBC driver or
network library

Client
application

Sensitivity and updatability limit the use of intermediate locations.

Prefetching rows

Prefetches and multiple-row fetches are different. Prefetches can be carried out without explicit instructions
from the client application. Prefetching retrieves rows from the server into a buffer on the client side, but
does not make those rows available to the client application until the application fetches the appropriate row.

By default, the SQL Anywhere client library prefetches multiple rows whenever an application fetches a
single row. The SQL Anywhere client library stores the additional rows in a buffer.

Prefetching assists performance by cutting down on client/server traffic, and increases throughput by making
many rows available without a separate request to the server for each row or block of rows.

For more information on controlling prefetches, see “prefetch option [database]” [SQL Anywhere Server -
Database Administration].

Controlling prefetching from an application
♦ The prefetch option controls whether or not prefetching occurs. You can set the prefetch option to On

or Off for a single connection. By default, it is set to On.

♦ In embedded SQL, you can control prefetching on a per-cursor basis when you open a cursor on an
individual FETCH operation using the BLOCK clause.

SQL Anywhere cursors

Copyright © 2007, iAnywhere Solutions, Inc. 47

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

The application can specify a maximum number of rows contained in a single fetch from the server by
specifying the BLOCK clause. For example, if you are fetching and displaying 5 rows at a time, you
could use BLOCK 5. Specifying BLOCK 0 fetches 1 record at a time and also causes a FETCH
RELATIVE 0 to always fetch the row from the server again.

Although you can also turn off prefetch by setting a connection parameter on the application, it is more
efficient to specify BLOCK 0 than to set the prefetch option to Off.

For more information, see “prefetch option [database]” [SQL Anywhere Server - Database
Administration]

♦ In Open Client, you can control prefetching behavior using ct_cursor with CS_CURSOR_ROWS after
the cursor is declared, but before it is opened.

Lost updates

When using an updatable cursor, it is important to guard against lost updates. A lost update is a scenario in
which two or more transactions update the same row, but neither transaction is aware of the modification
made by the other transaction, and consequently the second change overwrites the first modification. The
following example illustrates this problem:

1. An application opens a cursor on the following query against the sample database.

SELECT ID, Quantity
FROM Products;

ID Quantity

300 28

301 54

302 75

… …

2. The application fetches the row with ID = 300 through the cursor.

3. A separate transaction updates the row using the following statement:

UPDATE Products
SET Quantity = Quantity - 10
WHERE ID = 300;

4. The application then updates the row through the cursor to a value of (Quantity - 5).

5. The correct final value for the row would be 13. If the cursor had prefetched the row, the new value of
the row would be 23. The update from the separate transaction is lost.

In a database application, the potential for a lost update exists at any isolation level if changes are made to
rows without verification of their values beforehand. At higher isolation levels (2 and 3), locking (read,

Using SQL in Applications

48 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

intent, and write locks) can be used to ensure that changes to rows cannot be made by another transaction
once the row has been read by the application. However, at isolation levels 0 and 1, the potential for lost
updates is greater: at isolation level 0, read locks are not acquired to prevent subsequent changes to the data,
and isolation level 1 only locks the current row. Lost updates cannot occur when using snapshot isolation
since any attempt to change an old value results in an update conflict. Moreover, the use of prefetching at
isolation level 1 can also introduce the potential for lost updates, since the result set row that the application
is positioned on, which is in the client's prefetch buffer, may not be the same as the current row that the
server is positioned on in the cursor.

To prevent lost updates from occurring with cursors at isolation level 1, the database server supports three
different concurrency control mechanisms that can be specified by an application:

1. The acquisition of intent row locks on each row in the cursor as it is fetched. Intent locks prevent other
transactions from acquiring intent or write locks on the same row, preventing simultaneous updates.
However, intent locks do not block read row locks, so they do not affect the concurrency of read-only
statements

2. The use of a value-sensitive cursor. Value-sensitive cursors can be used to track when an underlying
row has changed, or has been deleted, so that the application can respond accordingly.

3. The use of FETCH FOR UPDATE, which acquires an intent row lock for that specific row.

How these alternatives are specified depends on the interface used by the application. For the first two
alternatives that pertain to a SELECT statement:

♦ In ODBC, lost updates cannot occur because the application must specify a cursor concurrency parameter
to the SQLSetStmtAttr function when declaring an updatable cursor. This parameter is one of
SQL_CONCUR_LOCK, SQL_CONCUR_VALUES, SQL CONCUR_READ_ONLY, or
SQL_CONCUR_TIMESTAMP. For SQL_CONCUR_LOCK, the database server acquires row intent
locks. For SQL_CONCUR_VALUES and SQL_CONCUR_TIMESTAMP, a value-sensitive cursor is
used. SQL_CONCUR_READ_ONLY is used for read-only cursors, and is the default.

♦ In JDBC, the concurrency setting for a statement is similar to that of ODBC. The iAnywhere JDBC
driver supports the JDBC concurrency values RESULTSET_CONCUR_READ_ONLY and
RESULTSET_CONCUR_UPDATABLE. The first value corresponds to the ODBC concurrency setting
SQL_CONCUR_READ_ONLY and specifies a read-only statement. The second value corresponds to
the ODBC SQL_CONCUR_LOCK setting, so row intent locks are used to prevent lost updates. Note
that value-sensitive cursors cannot be specified directly in the JDBC 3.0 specification.

♦ In jConnect, updatable cursors are supported at the API level, but the underlying implementation (using
TDS) does not support updates through a cursor. Instead, jConnect sends a separate UPDATE statement
to the database server to update the specific row. To avoid lost updates, the application must run at a
isolation level 2 or higher. Alternatively, the application can issue separate UPDATE statements from
the cursor, but you must ensure that the UPDATE statement verifies that the row values have not been
altered since the row was read by placing appropriate conditions in the UPDATE statement's WHERE
clause.

♦ In embedded SQL, a concurrency specification can be set by including syntax within the SELECT
statement itself, or in the cursor declaration. In the SELECT statement, the syntax SELECT ... FOR
UPDATE BY LOCK causes the database server to acquire intent row locks on the result set.

SQL Anywhere cursors

Copyright © 2007, iAnywhere Solutions, Inc. 49

Alternatively, SELECT ... FOR UPDATE BY [VALUES | TIMESTAMP] causes the database server
to change the cursor type to a value-sensitive cursor, so that if a specific row has been changed since the
row was last read through the cursor, the application receives either a warning
(SQLE_ROW_UPDATED_WARNING) on a FETCH statement, or an error
(SQLE_ROW_UPDATED_SINCE_READ) on an UPDATE WHERE CURRENT OF statement. If the
row was deleted, the application also receives an error (SQLE_NO_CURRENT_ROW).

FETCH FOR UPDATE functionality is also supported by the embedded SQL and ODBC interfaces, although
the details differ depending on the API that is used.

In embedded SQL, the application uses FETCH FOR UPDATE, rather than FETCH, to cause an intent lock
to be acquired on the row. In ODBC, the application uses the API call SQLSetPos with the operation argument
SQL_POSITION or SQL_REFRESH, and the lock type argument SQL_LOCK_EXCLUSIVE, to acquire
an intent lock on a row. In SQL Anywhere, these are long-term locks that are held until the transaction
commits or rolls back.

Cursor sensitivity and isolation levels

Both cursor sensitivity and isolation levels address the problem of concurrency control, but in different ways,
and with different sets of tradeoffs.

By choosing an isolation level for a transaction (typically at the connection level), you determine the type
and locks to place, and when, on rows in the database. Locks prevent other transactions from accessing or
modifying rows in the database. In general, the greater the number of locks held, the lower the expected
level of concurrency across concurrent transactions.

However, locks do not prevent updates from other portions of the same transaction from occurring.
Consequently, a single transaction that maintains multiple updatable cursors cannot rely on locking to prevent
such problems as lost updates.

Snapshot isolation is intended to eliminate the need for read locks by ensuring that each transaction sees a
consistent view of the database. The obvious advantage is that a consistent view of the database can be
queried without relying on fully serializable transactions (isolation level 3), and the loss of concurrency that
comes with using isolation level 3. However, snapshot isolation comes with a significant cost because copies
of modified rows must be maintained to satisfy the requirements of both concurrent snapshot transactions
already executing, and snapshot transactions that have yet to start. Because of this copy maintenance, the
use of snapshot isolation may be inappropriate for heavy-update workloads. See “Choosing a snapshot
isolation level” [SQL Anywhere Server - SQL Usage].

Cursor sensitivity, on the other hand, determines which changes are visible (or not) to the cursor's result.
Because cursor sensitivity is specified on a cursor basis, cursor sensitivity applies to both the effects of other
transactions and to update activity of the same transaction, although these effects depend entirely on the
cursor type specified. By setting cursor sensitivity, you are not directly determining when locks are placed
on rows in the database. However, it is the combination of cursor sensitivity and isolation level that controls
the various concurrency scenarios that are possible with a particular application.

Using SQL in Applications

50 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf

Requesting SQL Anywhere cursors

When you request a cursor type from your client application, SQL Anywhere provides a cursor. SQL
Anywhere cursors are defined, not by the type as specified in the programming interface, but by the sensitivity
of the result set to changes in the underlying data. Depending on the cursor type you ask for, SQL Anywhere
provides a cursor with behavior to match the type.

SQL Anywhere cursor sensitivity is set in response to the client cursor type request.

ADO.NET

Forward-only, read-only cursors are available by using SACommand.ExecuteReader. The SADataAdapter
object uses a client-side result set instead of cursors.

For more information, see “SACommand class” on page 180.

ADO/OLE DB and ODBC

The following table illustrates the cursor sensitivity that is set in response to different ODBC scrollable
cursor types.

ODBC scrollable cursor type SQL Anywhere cursor

STATIC Insensitive

KEYSET-DRIVEN Value-sensitive

DYNAMIC Sensitive

MIXED Value-sensitive

A MIXED cursor is obtained by setting the cursor type to SQL_CURSOR_KEYSET_DRIVEN, and then
specifying the number of rows in the keyset for a keyset-driven cursor using SQL_ATTR_KEYSET_SIZE .
If the keyset size is 0 (the default), the cursor is fully keyset-driven. If the keyset size is greater than 0, the
cursor is mixed (keyset-driven within the keyset and dynamic outside of the keyset). The default keyset size
is 0. It is an error if the keyset size is greater than 0 and less than the rowset size
(SQL_ATTR_ROW_ARRAY_SIZE).

For information on SQL Anywhere cursors and their behavior, see “SQL Anywhere cursors” on page 37.
For information on how to request a cursor type in ODBC, see “Choosing ODBC cursor
characteristics” on page 459.

Exceptions
If a STATIC cursor is requested as updatable, a value-sensitive cursor is supplied instead and a warning is
issued.

If a DYNAMIC or MIXED cursor is requested and the query cannot be executed without using work tables,
a warning is issued and an asensitive cursor is supplied instead.

SQL Anywhere cursors

Copyright © 2007, iAnywhere Solutions, Inc. 51

JDBC

The JDBC 2.0 and 3.0 specifications support three types of cursors: insensitive, sensitive, and forward-only
asensitive. The iAnywhere JDBC driver is compliant with these JDBC specifications and supports these
different cursor types for a JDBC ResultSet object. However, there are cases when the database server cannot
construct an access plan with the required semantics for a given cursor type. In these cases, the database
server either returns an error or substitutes a different cursor type. See “Sensitive cursors” on page 42.

With jConnect, the underlying protocol (TDS) only supports forward-only, read-only asensitive cursors on
the database server, even though jConnect supports the APIs for creating different types of cursors following
the JDBC 2.0 specification. All jConnect cursors are asensitive because the TDS protocol buffers the
statement's result set in blocks. These blocks of buffered results are scrolled when the application needs to
scroll through an insensitive or sensitive cursor type that supports scrollability. If the application scrolls
backward past the beginning of the cached result set, the statement is re-executed, which can result in data
inconsistencies if the data has been altered between statement executions.

Embedded SQL

To request a cursor from an embedded SQL application, you specify the cursor type on the DECLARE
statement. The following table illustrates the cursor sensitivity that is set in response to different requests:

Cursor type SQL Anywhere cursor

NO SCROLL Asensitive

DYNAMIC SCROLL Asensitive

SCROLL Value-sensitive

INSENSITIVE Insensitive

SENSITIVE Sensitive

Exceptions
If a DYNAMIC SCROLL or NO SCROLL cursor is requested as UPDATABLE, then a sensitive or value-
sensitive cursor is supplied. It is not guaranteed which of the two is supplied. This uncertainty fits the
definition of asensitive behavior.

If an INSENSITIVE cursor is requested as UPDATABLE, then a value-sensitive cursor is supplied.

If a DYNAMIC SCROLL cursor is requested, if the prefetch database option is set to Off, and if the query
execution plan involves no work tables, then a sensitive cursor may be supplied. Again, this uncertainty fits
the definition of asensitive behavior.

Open Client

As with jConnect, the underlying protocol (TDS) for Open Client only supports forward-only, read-only,
asensitive cursors.

Using SQL in Applications

52 Copyright © 2007, iAnywhere Solutions, Inc.

Describing result sets
Some applications build SQL statements that cannot be completely specified in the application. In some
cases, for example, statements depend on a response from the user before the application knows exactly
what information to retrieve, such as when a reporting application allows a user to select which columns to
display.

In such a case, the application needs a method for retrieving information about both the nature of the result
set and the contents of the result set. The information about the nature of the result set, called a
descriptor, identifies the data structure, including the number and type of columns expected to be returned.
Once the application has determined the nature of the result set, retrieving the contents is straightforward.

This result set metadata (information about the nature and content of the data) is manipulated using
descriptors. Obtaining and managing the result set metadata is called describing.

Since cursors generally produce result sets, descriptors and cursors are closely linked, although some
interfaces hide the use of descriptors from the user. Typically, statements needing descriptors are either
SELECT statements or stored procedures that return result sets.

A sequence for using a descriptor with a cursor-based operation is as follows:

1. Allocate the descriptor. This may be done implicitly, although some interfaces allow explicit allocation
as well.

2. Prepare the statement.

3. Describe the statement. If the statement is a stored procedure call or batch, and the result set is not
defined by a result clause in the procedure definition, then the describe should occur after opening the
cursor.

4. Declare and open a cursor for the statement (embedded SQL) or execute the statement.

5. Get the descriptor and modify the allocated area if necessary. This is often done implicitly.

6. Fetch and process the statement results.

7. Deallocate the descriptor.

8. Close the cursor.

9. Drop the statement. Some interfaces do this automatically.

Implementation notes
♦ In embedded SQL, a SQLDA (SQL Descriptor Area) structure holds the descriptor information.

For more information, see “The SQL descriptor area (SQLDA)” on page 529.

♦ In ODBC, a descriptor handle allocated using SQLAllocHandle provides access to the fields of a
descriptor. You can manipulate these fields using SQLSetDescRec, SQLSetDescField,
SQLGetDescRec, and SQLGetDescField.

Describing result sets

Copyright © 2007, iAnywhere Solutions, Inc. 53

Alternatively, you can use SQLDescribeCol and SQLColAttributes to obtain column information.

♦ In Open Client, you can use ct_dynamic to prepare a statement and ct_describe to describe the result set
of the statement. However, you can also use ct_command to send a SQL statement without preparing it
first and use ct_results to handle the returned rows one by one. This is the more common way of operating
in Open Client application development.

♦ In JDBC, the java.sql.ResultSetMetaData class provides information about result sets.

♦ You can also use descriptors for sending data to the database server (for example, with the INSERT
statement); however, this is a different kind of descriptor than for result sets.

For more information about input and output parameters of the DESCRIBE statement, see “DESCRIBE
statement [ESQL]” [SQL Anywhere Server - SQL Reference].

Using SQL in Applications

54 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Controlling transactions in applications
Transactions are sets of atomic SQL statements. Either all statements in the transaction are executed, or
none. This section describes a few aspects of transactions in applications.

For more information about transactions, see “Using Transactions and Isolation Levels” [SQL Anywhere
Server - SQL Usage].

Setting autocommit or manual commit mode

Database programming interfaces can operate in either manual commit mode or autocommit mode.

♦ Manual commit mode Operations are committed only when your application carries out an explicit
commit operation or when the database server carries out an automatic commit, for example when
executing an ALTER TABLE statement or other data definition statement. Manual commit mode is also
sometimes called chained mode.

To use transactions in your application, including nested transactions and savepoints, you must operate
in manual commit mode.

♦ Autocommit mode Each statement is treated as a separate transaction. Autocommit mode is
equivalent to appending a COMMIT statement to the end of each of your commands. Autocommit mode
is also sometimes called unchained mode.

Autocommit mode can affect the performance and behavior of your application. Do not use autocommit if
your application requires transactional integrity.

For information on autocommit impact on performance, see “Turn off autocommit mode” [SQL Anywhere
Server - SQL Usage].

Controlling autocommit behavior

The way to control the commit behavior of your application depends on the programming interface you are
using. The implementation of autocommit may be client-side or server-side, depending on the interface.

For more information, see “Autocommit implementation details” on page 56.

♦ To control autocommit mode (ADO.NET)

• By default, the ADO.NET provider operates in autocommit mode. To use explicit transactions, use the
SAConnection.BeginTransaction method.

For more information, see “Transaction processing” on page 130.

♦ To control autocommit mode (OLE DB)

• By default, the OLE DB provider operates in autocommit mode. To use explicit transactions, use the
ITransactionLocal::StartTransaction, ITransaction::Commit, and ITransaction::Abort methods.

Controlling transactions in applications

Copyright © 2007, iAnywhere Solutions, Inc. 55

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf

♦ To control autocommit mode (ODBC)

• By default, ODBC operates in autocommit mode. The way you turn off autocommit depends on whether
you are using ODBC directly, or using an application development tool. If you are programming directly
to the ODBC interface, set the SQL_ATTR_AUTOCOMMIT connection attribute.

♦ To control autocommit mode (JDBC)

• By default, JDBC operates in autocommit mode. To turn off autocommit, use the setAutoCommit
method of the connection object:

conn.setAutoCommit(false);

♦ To control autocommit mode (embedded SQL)

• By default, embedded SQL applications operate in manual commit mode. To turn on autocommit, set
the chained database option (a server-side option) to Off using a statement such as the following:

SET OPTION chained='Off';

♦ To control autocommit mode (Open Client)

• By default, a connection made through Open Client operates in autocommit mode. You can change this
behavior by setting the chained database option (a server-side option) to On in your application using
a statement such as the following:

SET OPTION chained='On';

♦ To control autocommit mode (PHP)

• By default, PHP operates in autocommit mode. To turn off autocommit, use the sqlanywhere_set_option
function:

$result = sqlanywhere_set_option($conn, "auto_commit", "Off");

♦ To control autocommit mode (on the server)

• By default, the database server operates in manual commit mode. To turn on automatic commits, set
the chained database option (a server-side option) to Off using a statement such as the following:

SET OPTION chained='Off';

If you are using an interface that controls commits on the client side, setting the chained database option
(a server-side option) can impact performance and/or behavior of your application. Setting the server's
chained mode is not recommended.

Autocommit implementation details

Autocommit mode has slightly different behavior depending on the interface you are using and how you
control the autocommit behavior.

Autocommit mode can be implemented in one of two ways:

Using SQL in Applications

56 Copyright © 2007, iAnywhere Solutions, Inc.

♦ Client-side autocommit When an application uses autocommit, the client-library sends a COMMIT
statement after each SQL statement executed.

ADO.NET, ADO/OLE DB, ODBC, and PHP applications control commit behavior from the client side.

♦ Server-side autocommit When an application turns off chained mode, the database server commits
the results of each SQL statement. This behavior is controlled, implicitly in the case of JDBC, by the
chained database option.

Embedded SQL, JDBC, and Open Client applications manipulate server-side commit behavior (for
example, they set the chained option).

There is a difference between client-side and server-side autocommit in the case of compound statements
such as stored procedures or triggers. From the client side, a stored procedure is a single statement, and so
autocommit sends a single commit statement after the whole procedure is executed. From the database server
perspective, the stored procedure may be composed of many SQL statements, and so server-side autocommit
commits the results of each SQL statement within the procedure.

Do not mix client-side and server-side implementations
Do not combine setting of the chained option with setting of the autocommit option in your ADO.NET,
ADO/OLE DB, ODBC, or PHP application.

Controlling the isolation level

You can set the isolation level of a current connection using the isolation_level database option.

Some interfaces, such as ODBC, allow you to set the isolation level for a connection at connection time.
You can reset this level later using the isolation_level database option. See “isolation_level option
[compatibility]” [SQL Anywhere Server - Database Administration].

Cursors and transactions

In general, a cursor closes when a COMMIT is performed. There are two exceptions to this behavior:

♦ The close_on_endtrans database option is set to Off.

♦ A cursor is opened WITH HOLD, which is the default with Open Client and JDBC.

If either of these two cases is true, the cursor remains open on a COMMIT.

ROLLBACK and cursors
If a transaction rolls back, then cursors close except for those cursors opened WITH HOLD. However, don't
rely on the contents of any cursor after a rollback.

The draft ISO SQL3 standard states that on a rollback, all cursors (even those cursors opened WITH HOLD)
should close. You can obtain this behavior by setting the ansi_close_cursors_on_rollback option to On.

Controlling transactions in applications

Copyright © 2007, iAnywhere Solutions, Inc. 57

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Savepoints
If a transaction rolls back to a savepoint, and if the ansi_close_cursors_on_rollback option is On, then all
cursors (even those cursors opened WITH HOLD) opened after the SAVEPOINT close.

Cursors and isolation levels
You can change the isolation level of a connection during a transaction using the SET OPTION statement
to alter the isolation_level option. However, this change does not affect open cursors.

Using SQL in Applications

58 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 4

Three-Tier Computing and Distributed
Transactions

Contents
Introduction to three-tier computing and distributed transactions 60
Three-tier computing architecture .. 61
Using distributed transactions ... 64
Using EAServer with SQL Anywhere .. 66

Copyright © 2007, iAnywhere Solutions, Inc. 59

Introduction to three-tier computing and distributed
transactions

You can use SQL Anywhere as a database server or resource manager, participating in distributed
transactions coordinated by a transaction server.

A three-tier environment, where an application server sits between client applications and a set of resource
managers, is a common distributed-transaction environment. Sybase EAServer and some other application
servers are also transaction servers.

Sybase EAServer and Microsoft Transaction Server both use the Microsoft Distributed Transaction
Coordinator (DTC) to coordinate transactions. SQL Anywhere provides support for distributed transactions
controlled by the DTC service, so you can use SQL Anywhere with either of these application servers, or
any other product based on the DTC model.

When integrating SQL Anywhere into a three-tier environment, most of the work needs to be done from the
Application Server. This chapter provides an introduction to the concepts and architecture of three-tier
computing, and an overview of relevant SQL Anywhere features. It does not describe how to configure your
Application Server to work with SQL Anywhere. For more information, see your Application Server
documentation.

Three-Tier Computing and Distributed Transactions

60 Copyright © 2007, iAnywhere Solutions, Inc.

Three-tier computing architecture
In three-tier computing, application logic is held in an application server, such as Sybase EAServer, which
sits between the resource manager and the client applications. In many situations, a single application server
may access multiple resource managers. In the Internet case, client applications are browser-based, and the
application server is generally a web server extension.

Application
Server

Sybase EAServer stores application logic in the form of components, and makes these components available
to client applications. The components may be PowerBuilder components, JavaBeans, or COM components.

For more information, see your Sybase EAServer documentation.

Distributed transactions in three-tier computing

When client applications or application servers work with a single transaction processing database, such as
SQL Anywhere, there is no need for transaction logic outside the database itself, but when working with
multiple resource managers, transaction control must span the resources involved in the transaction.
Application servers provide transaction logic to their client applications—guaranteeing that sets of
operations are executed atomically.

Many transaction servers, including Sybase EAServer, use the Microsoft Distributed Transaction
Coordinator (DTC) to provide transaction services to their client applications. DTC uses OLE

Three-tier computing architecture

Copyright © 2007, iAnywhere Solutions, Inc. 61

transactions, which in turn use the two-phase commit protocol to coordinate transactions involving
multiple resource managers. You must have DTC installed to use the features described in this chapter.

SQL Anywhere in distributed transactions
SQL Anywhere can take part in transactions coordinated by DTC, which means that you can use SQL
Anywhere databases in distributed transactions using a transaction server such as Sybase EAServer or
Microsoft Transaction Server. You can also use DTC directly in your applications to coordinate transactions
across multiple resource managers.

The vocabulary of distributed transactions

This chapter assumes some familiarity with distributed transactions. For information, see your transaction
server documentation. This section describes some commonly used terms.

♦ Resource managers are those services that manage the data involved in the transaction.

The SQL Anywhere database server can act as a resource manager in a distributed transaction when
accessed through OLE DB or ODBC. The ODBC driver and OLE DB provider act as resource manager
proxies on the client computer.

♦ Instead of communicating directly with the resource manager, application components can communicate
with resource dispensers, which in turn manage connections or pools of connections to the resource
managers.

SQL Anywhere supports two resource dispensers: the ODBC driver manager and OLE DB.

♦ When a transactional component requests a database connection (using a resource manager), the
application server enlists each database connection that takes part in the transaction. DTC and the
resource dispenser perform the enlistment process.

Two-phase commit
Distributed transactions are managed using two-phase commit. When the work of the transaction is complete,
the transaction manager (DTC) asks all the resource managers enlisted in the transaction whether they are
ready to commit the transaction. This phase is called preparing to commit.

If all the resource managers respond that they are prepared to commit, DTC sends a commit request to each
resource manager, and responds to its client that the transaction is completed. If one or more resource manager
does not respond, or responds that it cannot commit the transaction, all the work of the transaction is rolled
back across all resource managers.

How application servers use DTC

Sybase EAServer and Microsoft Transaction Server are both component servers. The application logic is
held in the form of components, and made available to client applications.

Three-Tier Computing and Distributed Transactions

62 Copyright © 2007, iAnywhere Solutions, Inc.

Each component has a transaction attribute that indicates how the component participates in transactions.
The application developer building the component must program the work of the transaction into the
component—the resource manager connections, the operations on the data for which each resource manager
is responsible. However, the application developer does not need to add transaction management logic to
the component. Once the transaction attribute is set, to indicate that the component needs transaction
management, EAServer uses DTC to enlist the transaction and manage the two-phase commit process.

Distributed transaction architecture

The following diagram illustrates the architecture of distributed transactions. In this case, the resource
manager proxy is either ODBC or OLE DB.

Application
Server

DTC

DTC DTC

Client
system

Server
system 1

Server
system 2

Resource
Manager

Proxy

Resource
Manager

Proxy

In this case, a single resource dispenser is used. The Application Server asks DTC to prepare a transaction.
DTC and the resource dispenser enlist each connection in the transaction. Each resource manager must be
in contact with both DTC and the database, so as to perform the work and to notify DTC of its transaction
status when required.

A DTC service must be running on each computer to operate distributed transactions. You can control DTC
services from the Services icon in the Windows Control Panel; the DTC service is named MSDTC.

For more information, see your DTC or EAServer documentation.

Three-tier computing architecture

Copyright © 2007, iAnywhere Solutions, Inc. 63

Using distributed transactions
While SQL Anywhere is enlisted in a distributed transaction, it hands transaction control over to the
transaction server, and SQL Anywhere ensures that it does not perform any implicit transaction management.
The following conditions are imposed automatically by SQL Anywhere when it participates in distributed
transactions:

♦ Autocommit is automatically turned off, if it is in use.

♦ Data definition statements (which commit as a side effect) are disallowed during distributed transactions.

♦ An explicit COMMIT or ROLLBACK issued by the application directly to SQL Anywhere, instead of
through the transaction coordinator, generates an error. The transaction is not aborted, however.

♦ A connection can participate in only a single distributed transaction at a time.

♦ There must be no uncommitted operations at the time the connection is enlisted in a distributed
transaction.

DTC isolation levels

DTC has a set of isolation levels, which the application server specifies. These isolation levels map to SQL
Anywhere isolation levels as follows:

DTC isolation level SQL Anywhere isolation level

ISOLATIONLEVEL_UNSPECIFIED 0

ISOLATIONLEVEL_CHAOS 0

ISOLATIONLEVEL_READUNCOMMITTED 0

ISOLATIONLEVEL_BROWSE 0

ISOLATIONLEVEL_CURSORSTABILITY 1

ISOLATIONLEVEL_READCOMMITTED 1

ISOLATIONLEVEL_REPEATABLEREAD 2

ISOLATIONLEVEL_SERIALIZABLE 3

ISOLATIONLEVEL_ISOLATED 3

Recovery from distributed transactions

If the database server faults while uncommitted operations are pending, it must either rollback or commit
those operations on startup to preserve the atomic nature of the transaction.

Three-Tier Computing and Distributed Transactions

64 Copyright © 2007, iAnywhere Solutions, Inc.

If uncommitted operations from a distributed transaction are found during recovery, the database server
attempts to connect to DTC and requests that it be re-enlisted in the pending or in-doubt transactions. Once
the re-enlistment is complete, DTC instructs the database server to roll back or commit the outstanding
operations.

If the reenlistment process fails, SQL Anywhere has no way of knowing whether the in-doubt operations
should be committed or rolled back, and recovery fails. If you want the database in such a state to recover,
regardless of the uncertain state of the data, you can force recovery using the following database server
options:

♦ -tmf If DTC cannot be located, the outstanding operations are rolled back and recovery continues. See
“-tmf server option” [SQL Anywhere Server - Database Administration].

♦ -tmt If re-enlistment is not achieved before the specified time, the outstanding operations are rolled
back and recovery continues. See “-tmt server option” [SQL Anywhere Server - Database
Administration].

Using distributed transactions

Copyright © 2007, iAnywhere Solutions, Inc. 65

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Using EAServer with SQL Anywhere
This section provides an overview of the actions you need to take in EAServer 3.0 or later to work with SQL
Anywhere. For more detailed information, see the EAServer documentation.

Configuring EAServer

All components installed in a Sybase EAServer system share the same transaction coordinator.

EAServer 3.0 and later offer a choice of transaction coordinators. You must use DTC as the transaction
coordinator if you are including SQL Anywhere in the transactions. This section describes how to configure
EAServer 3.0 to use DTC as its transaction coordinator.

The component server in EAServer is named Jaguar.

♦ To configure an EAServer to use the Microsoft DTC transaction model

1. Ensure that your Jaguar server is running.

On Windows, the Jaguar server commonly runs as a service. To manually start the installed Jaguar
server that is included with EAServer 3.0, choose
Start ► Programs ► Sybase ► EAServer ► EAServer.

2. Start Jaguar Manager.

From the Windows desktop, choose Start ► Programs ► Sybase ► EAServer ► Jaguar Manager.

3. Connect to the Jaguar server from Jaguar Manager.

From Sybase Central, choose Tools ► Connect ► Jaguar Manager. In the connection dialog, enter
jagadmin as the User Name, leave the Password field blank, and enter a Host Name of localhost. Click
OK to connect.

4. Set the transaction model for the Jaguar server.

In the left pane, open the Servers folder. In the right pane, right-click the server you want to configure,
and choose Server Properties from the popup menu. Click the Transactions tab, and choose Microsoft
DTC as the transaction model. Click OK to complete the operation.

Setting the component transaction attribute

In EAServer you can implement a component that carries out operations on more than one database. You
assign a transaction attribute to this component that defines how it participates in transactions. The
transaction attribute can have the following values:

♦ Not Supported The component's methods never execute as part of a transaction. If the component is
activated by another component that is executing within a transaction, the new instance's work is
performed outside the existing transaction. This is the default.

Three-Tier Computing and Distributed Transactions

66 Copyright © 2007, iAnywhere Solutions, Inc.

♦ Supports Transaction The component can execute in the context of a transaction, but a connection
is not required to execute the component's methods. If the component is instantiated directly by a base
client, EAServer does not begin a transaction. If component A is instantiated by component B, and
component B is executing within a transaction, component A executes in the same transaction.

♦ Requires Transaction The component always executes in a transaction. When the component is
instantiated directly by a base client, a new transaction begins. If component A is activated by component
B, and B is executing within a transaction, then A executes within the same transaction; if B is not
executing in a transaction, then A executes in a new transaction.

♦ Requires New Transaction Whenever the component is instantiated, a new transaction begins. If
component A is activated by component B, and B is executing within a transaction, then A begins a new
transaction that is unaffected by the outcome of B's transaction; if B is not executing in a transaction,
then A executes in a new transaction.

For example, in the Sybase Virtual University sample application, included with EAServer as the SVU
package, the SVUEnrollment component enroll method carries out two separate operations (reserves a seat
in a course, bills the student for the course). These two operations need to be treated as a single transaction.

Microsoft Transaction Server provides the same set of attribute values.

♦ To set the transaction attribute of a component

1. In Jaguar Manager, locate the component.

To find the SVUEnrollment component in the Jaguar sample application, connect to the Jaguar server,
open the Packages folder, and open the SVU package. The components in the package are listed in the
right pane.

2. Set the transaction attribute for the desired component.

Right-click the component, and choose Component Properties from the popup menu. Click the
Transaction tab, and choose the transaction attribute value from the list. Click OK to complete the
operation.

The SVUEnrollment component is already marked as Requires Transaction.

Once the component transaction attribute is set, you can perform SQL Anywhere database operations from
that component, and be assured of transaction processing at the level you have specified.

Using EAServer with SQL Anywhere

Copyright © 2007, iAnywhere Solutions, Inc. 67

68

Part II. Java in the database

This part provides an introduction to Java and Java in the database.

CHAPTER 5

Java in the Database

Contents
Introduction to Java in the database .. 72
Java in the database Q & A ... 73
Java error handling .. 77
The runtime environment for Java in the database ... 78

Copyright © 2007, iAnywhere Solutions, Inc. 71

Introduction to Java in the database
SQL Anywhere provides a runtime environment for Java classes. This means that Java classes can be
executed in the database server. Using Java methods in the database server provides powerful ways of adding
programming logic to a database.

Java in the database offers the following:

♦ You can reuse Java components in the different layers of your application—client, middle-tier, or server
—and use them wherever it makes the most sense to you. SQL Anywhere becomes a platform for
distributed computing.

♦ Java provides a more powerful language than the SQL stored procedure language for building logic into
the database.

♦ Java can be used in the database without jeopardizing the integrity, security, or robustness of the database.

The SQLJ standard
Java in the database is based on the SQLJ Part 1 proposed standard (ANSI/INCITS 331.1-1999). SQLJ Part
1 provides specifications for calling Java static methods as SQL stored procedures and functions.

Learning about Java in the database
The following table outlines the documentation regarding the use of Java in the database.

Title Purpose

“Java in the Database” on page 71 (this
chapter)

Java concepts and how to apply them in SQL Anywhere.

“Tutorial: Using Java in the
Database” on page 83

Practical steps for using Java in the database.

“SQL Anywhere JDBC
API” on page 469

Accessing data from Java classes, including distributed com-
puting.

The following table is a guide to which parts of the Java documentation apply to you, depending on your
interests and background.

If you … Consider reading …

Are a Java developer who wants to just get started. “The runtime environment for Java in the
database” on page 78

“Introduction to Java in the Database tutori-
al” on page 84

Want to know the key features of Java in the database. “Java in the database Q & A” on page 73

Want to find out how to access data from Java. “SQL Anywhere JDBC API” on page 469

Java in the Database

72 Copyright © 2007, iAnywhere Solutions, Inc.

Java in the database Q & A
This section describes the key features of Java in the database.

What are the key features of Java in the database?

Detailed explanations of all the following points appear in later sections.

♦ You can run Java in the database server An external Java Virtual Machine (VM) runs Java code
in the database server.

♦ You can access data from Java An internal JDBC driver lets you access data from Java.

♦ SQL is preserved The use of Java does not alter the behavior of existing SQL statements or other
aspects of non-Java relational database behavior.

How do I store Java classes in the database?

Java is an object-oriented language, so its instructions (source code) come in the form of classes. To execute
Java in a database, you write the Java instructions outside the database and compile them outside the database
into compiled classes (byte code), which are binary files holding Java instructions.

You then install these compiled classes into a database. Once installed, you can execute these classes in the
database server as a stored procedure. For example, the following statement creates a Java stored procedure:

CREATE PROCEDURE insertfix()
EXTERNAL NAME 'JDBCExample.InsertFixed ()V'
LANGUAGE JAVA;

SQL Anywhere is a runtime environment for Java classes, not a Java development environment. You need
a Java development environment, such as the Sun Microsystems Java Development Kit, to write and compile
Java.

For more information, see “Installing Java classes into a database” on page 91.

How does Java get executed in a database?

SQL Anywhere uses a Java Virtual Machine (VM). The Java VM interprets compiled Java instructions
and runs them in the database server. The database server starts the Java VM automatically when needed:
you do not have to take any explicit action to start or stop the Java VM.

The SQL request processor in the database server has been extended so it can call into the Java VM to execute
Java instructions. It can also process requests from the Java VM to enable data access from Java.

Java in the database Q & A

Copyright © 2007, iAnywhere Solutions, Inc. 73

Why Java?
Java provides a number of features that make it ideal for use in the database:

♦ Thorough error checking at compile time.

♦ Built-in error handing with a well-defined error handling methodology.

♦ Built-in garbage collection (memory recovery).

♦ Elimination of many bug-prone programming techniques.

♦ Strong security features.

♦ Java code is interpreted, so no operations get executed without being acceptable to the Java VM.

On what platforms is Java in the database supported?

Java in the database is supported on all Windows operating systems (except Windows CE), Unix, and
NetWare.

How do I use Java and SQL together?
Java methods are declared as stored procedures, and can then be called just like SQL stored procedures.

You can use many of the classes that are part of the Java API as included in the Sun Microsystems Java
Development Kit. You can also use classes created and compiled by Java developers.

How do I access Java from SQL?
You can treat Java methods as stored procedures, which can be called from SQL.

You must create a stored procedure that runs your method. For example:

CREATE PROCEDURE javaproc()
EXTERNAL NAME 'JDBCExample.MyMethod ()V'
LANGUAGE JAVA;

For more information, see “CREATE PROCEDURE statement” [SQL Anywhere Server - SQL Reference].

For example, the SQL function PI(*) returns the value for pi. The Java API class java.lang.Math has a
parallel field named PI returning the same value. But java.lang.Math also has a field named E that returns
the base of the natural logarithms, as well as a method that computes the remainder operation on two
arguments as prescribed by the IEEE 754 standard.

Other members of the Java API offer even more specialized functionality. For example, java.util.Stack
generates a last-in, first-out queue that can store ordered lists; java.util.HashTable maps values to keys; and
java.util.StringTokenizer breaks a string of characters into individual word units.

Java in the Database

74 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Which Java classes are supported?

The database does not support all Java API classes. Some classes, such as the java.awt package containing
user interface components for applications, are inappropriate inside a database server. Other classes,
including parts of java.io, deal with writing information to disk, and this also is unsupported in the database
server environment.

How can I use my own Java classes in databases?
You can install your own Java classes into a database. For example, you could design, write in Java, and
compile with a Java compiler, a user-created Employees class or Package class.

User-created Java classes can contain both information about the subject and some computational logic.
Once installed in a database, SQL Anywhere lets you use these classes in all parts and operations of the
database and execute their functionality (in the form of class or instance methods) as easily as calling a stored
procedure.

Java classes and stored procedures are different
Java classes are different from stored procedures. Whereas stored procedures are written in SQL, Java classes
provide a more powerful language, and can be called from client applications as easily and in the same way
as stored procedures.

For more information, see “Installing Java classes into a database” on page 91.

Can I access data using Java?
The JDBC interface is an industry standard, designed specifically to access database systems. The JDBC
classes are designed to connect to a database, request data using SQL statements, and return result sets that
can be processed in the client application.

Normally, client applications use JDBC classes, and the database system vendor supplies a JDBC driver that
allows the JDBC classes to establish a connection.

You can connect to SQL Anywhere from a client application via JDBC, using jConnect, or using the
iAnywhere JDBC driver. SQL Anywhere also provides an internal JDBC driver that permits Java classes
installed in a database to use JDBC classes that execute SQL statements. See “SQL Anywhere JDBC
API” on page 469.

Can I move classes from client to server?
You can create Java classes that can be moved between levels of an enterprise application. The same Java
class can be integrated into either the client application, a middle tier, or the database—wherever is most
appropriate.

You can move a class containing business logic to any level of the enterprise system, including the database
server, allowing you complete flexibility to make the most appropriate use of resources. It also enables

Java in the database Q & A

Copyright © 2007, iAnywhere Solutions, Inc. 75

enterprise customers to develop their applications using a single programming language in a multi-tier
architecture with unparalleled flexibility.

What can I not do with Java in the database?
SQL Anywhere is a runtime environment for Java classes, not a Java development environment.

You cannot perform the following tasks in the database:

♦ Edit class source files (*.java files).

♦ Compile Java class source files (*.java files).

♦ Execute unsupported Java APIs, such as applet and visual classes.

♦ Execute Java methods that require the execution of native methods. All user classes installed into the
database must be 100% Java.

The Java classes used in SQL Anywhere must be written and compiled using a Java application development
tool, and then installed into a database for use.

Java in the Database

76 Copyright © 2007, iAnywhere Solutions, Inc.

Java error handling
Java error handling code is separate from the code for normal processing.

Errors generate an exception object representing the error. This is called throwing an exception. A thrown
exception terminates a Java program unless it is caught and handled properly at some level of the application.

Both Java API classes and custom-created classes can throw exceptions. In fact, users can create their own
exception classes that throw their own custom-created classes.

If there is no exception handler in the body of the method where the exception occurred, then the search for
an exception handler continues up the call stack. If the top of the call stack is reached and no exception
handler has been found, the default exception handler of the Java interpreter running the application is called
and the program terminates.

In SQL Anywhere, if a SQL statement calls a Java method, and an unhandled exception is thrown, a SQL
error is generated.

Java error handling

Copyright © 2007, iAnywhere Solutions, Inc. 77

The runtime environment for Java in the database
This section describes the SQL Anywhere runtime environment for Java, and how it differs from a standard
Java runtime environment.

The runtime Java classes

The runtime Java classes are the low-level classes that are made available to a database when it is created
or Java-enabled. These classes include a subset of the Java API. These classes are part of the Sun Java
Development Kit.

The runtime classes provide basic functionality on which to build applications. The runtime classes are
always available to classes in the database.

You can incorporate the runtime Java classes in your own user-created classes: either inheriting their
functionality or using it within a calculation or operation in a method.

Examples
Some Java API classes included in the runtime Java classes include:

♦ Primitive Java data types All primitive (native) data types in Java have a corresponding class. In
addition to being able to create objects of these types, the classes have additional, often useful,
functionality.

The Java int data type has a corresponding class in java.lang.Integer.

♦ The utility package The package java.util.* contains a number of very helpful classes whose
functionality has no parallel in the SQL functions available in SQL Anywhere.

Some of the classes include:

♦ Hashtable maps keys to values.

♦ StringTokenizer breaks a String down into individual words.

♦ Vector holds an array of objects whose size can change dynamically.

♦ Stack holds a last-in, first-out stack of objects.

♦ JDBC for SQL operations The package java.SQL.* contains the classes needed by Java objects to
extract data from the database using SQL statements.

Unlike user-defined classes, the runtime classes are not stored in the database. Instead, they are stored in
files in the java subdirectory of your SQL Anywhere installation directory.

Java in the Database

78 Copyright © 2007, iAnywhere Solutions, Inc.

Java is case sensitive

Java syntax works as you would expect it to, and SQL syntax is unaltered by the presence of Java classes.
This is true even if the same SQL statement contains both Java and SQL syntax. It is a simple statement, but
with far-reaching implications.

Java is case sensitive. The Java class FindOut is a completely different class from the class Findout. SQL is
case insensitive with respect to keywords and identifiers.

Java case sensitivity is preserved even when embedded in a SQL statement that is case insensitive. The Java
parts of the statement must be case sensitive, even though the parts previous to and following the Java syntax
can be in either upper or lowercase.

For example, the following SQL statement executes successfully because the case of Java objects, classes,
and operators is respected even though there is variation in the case of the remaining SQL parts of the
statement.

SeLeCt java.lang.Math.random();

Strings in Java and SQL

A set of double quotes identifies string literals in Java, as in the following Java code fragment:

String str = "This is a string";

In SQL, however, single quotes mark strings, and double quotes indicate an identifier, as illustrated by the
following SQL statement:

INSERT INTO TABLE DBA.t1
VALUES('Hello');

You should always use the double quote in Java source code, and single quotes in SQL statements.

The following Java code fragment is valid, if used within a Java class.

String str = new java.lang.String(
 "Brand new object");

Printing to the command line

Printing to the standard output is a quick way of checking variable values and execution results at various
points of code execution. When the method in the second line of the following Java code fragment is
encountered, the string argument it accepts prints out to standard output.

String str = "Hello world";
System.out.println(str);

In SQL Anywhere, standard output is the Server Messages window, so the string appears there. Executing
the above Java code within the database is the equivalent of the following SQL statement.

MESSAGE 'Hello world';

The runtime environment for Java in the database

Copyright © 2007, iAnywhere Solutions, Inc. 79

Using the main method

When a class contains a main method matching the following declaration, most Java run time environments,
such as the Sun Java interpreter, execute it automatically. Normally, this static method executes only if it is
the class being invoked by the Java interpreter.

public static void main(String args[]) { }

You are always guaranteed this method will be called first when the Sun Java runtime system starts.

In SQL Anywhere, the Java runtime system is always available. The functionality of objects and methods
can be tested in an ad hoc, dynamic manner using SQL statements. This provides a flexible method for testing
Java class functionality.

Persistence

Once a Java class has been added to a database, it remains there until you explicitly remove it with a
REMOVE JAVA statement.

Variables in Java classes, like SQL variables, persist only for the duration of the connection.

For more information on removing classes, see “REMOVE JAVA statement” [SQL Anywhere Server - SQL
Reference].

Java escape characters in SQL statements

In Java code, you can use escape characters to insert certain special characters into strings. Consider the
following code, which inserts a new line and tab in front of a sentence containing an apostrophe.

String str = "\n\t\This is an object\'s string literal";

SQL Anywhere permits the use of Java escape characters only when being used by Java classes. From within
SQL, however, you must follow the rules that apply to strings in SQL.

For example, to pass a string value to a field using a SQL statement, you could use the following statement
(which includes SQL escape characters), but the Java escape characters could not be used.

SET obj.str = '\nThis is the object''s string field';

For more information on SQL string handling rules, see “Strings” [SQL Anywhere Server - SQL
Reference].

Using import statements

It is common in a Java class declaration to include an import statement to access classes in another package.
You can reference imported classes using unqualified class names.

For example, you can reference the Stack class of the java.util package in two ways:

Java in the Database

80 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

♦ explicitly using the name java.util.Stack

♦ using the name Stack, and including the following import statement:

import java.util.*;

Classes further up in the hierarchy must also be installed
A class referenced by another class, either explicitly with a fully qualified name or implicitly using an import
statement, must also be installed in the database.

The import statement works as intended within compiled classes. However, within the SQL Anywhere
runtime environment, no equivalent to the import statement exists. All class names used in stored procedures
must be fully qualified. For example, to create a variable of type String, you would reference the class using
the fully qualified name: java.lang.String.

Public fields

It is a common practice in object-oriented programming to define class fields as private and make their values
available only through public methods.

Many of the examples used in this documentation render fields public to make examples more compact and
easier to read. Using public fields in SQL Anywhere also offers a performance advantage over accessing
public methods.

The general convention followed in this documentation is that a user-created Java class designed for use in
SQL Anywhere exposes its main values in its fields. Methods contain computational automation and logic
that may act on these fields.

The runtime environment for Java in the database

Copyright © 2007, iAnywhere Solutions, Inc. 81

82

CHAPTER 6

Tutorial: Using Java in the Database

Contents
Introduction to Java in the Database tutorial ... 84
Installing Java classes into a database ... 91
Special features of Java classes in the database .. 95
Starting and stopping the Java VM .. 99
Unsupported Java classes .. 100

Copyright © 2007, iAnywhere Solutions, Inc. 83

Introduction to Java in the Database tutorial
This chapter describes how to accomplish tasks using Java in the database. The first thing you need to do is
compile and install Java classes in a database to make them available for use in SQL Anywhere.

The following is a brief introduction to the steps involved in creating Java methods and calling them from
SQL. It describes how to compile and install a Java class into the database. It also describes how to access
the class and its members and methods from SQL statements.

Requirements
The tutorial assumes that you have a Java Development Kit (JDK) installed, including the Java compiler
(javac) and Java VM.

Resources
Source code and batch files for this sample are provided in samples-dir\SQLAnywhere\JavaInvoice.

Creating and compiling the sample Java class
The first step to using Java in the database is to write the Java code and compile it. This is done outside the
database.

♦ To create and compile the class

1. Create the sample Java class source file.

For your convenience, the sample code is included here. You can paste the following code into
Invoice.java or obtain the file from samples-dir\SQLAnywhere\JavaInvoice.

import java.io.*;
public class Invoice
{
 public static String lineItem1Description;
 public static double lineItem1Cost;
 public static String lineItem2Description;
 public static double lineItem2Cost;
 public static double totalSum() {
 double runningsum;
 double taxfactor = 1 + Invoice.rateOfTaxation();
 runningsum = lineItem1Cost + lineItem2Cost;
 runningsum = runningsum * taxfactor;
 return runningsum;
 }

 public static double rateOfTaxation()
 {
 double rate;
 rate = .15;

Tutorial: Using Java in the Database

84 Copyright © 2007, iAnywhere Solutions, Inc.

 return rate;
 }
 public static void init(
 String item1desc, double item1cost,
 String item2desc, double item2cost)
 {
 lineItem1Description = item1desc;
 lineItem1Cost = item1cost;
 lineItem2Description = item2desc;
 lineItem2Cost = item2cost;
 }

 public static String getLineItem1Description()
 {
 return lineItem1Description;
 }
 public static double getLineItem1Cost()
 {
 return lineItem1Cost;
 }
 public static String getLineItem2Description()
 {
 return lineItem2Description;
 }
 public static double getLineItem2Cost()
 {
 return lineItem2Cost;
 }
 public static boolean testOut(int[] param)
 {
 param[0] = 123;
 return true;
 }

 public static void main(String[] args)
 {
 System.out.print("Hello");
 for (int i = 0; i < args.length; i++)
 System.out.print(" " + args[i]);
 System.out.println();
 }
}

2. Compile the file to create the file Invoice.class.

javac Invoice.java

The class is now compiled and ready to be installed into the database.

Introduction to Java in the Database tutorial

Copyright © 2007, iAnywhere Solutions, Inc. 85

Choosing a Java VM

The database server must be set up to locate a Java VM. Since you can specify different Java VMs for each
database, the java_location option can be used to indicate the location (path) of the Java VM. See
“java_location option [database]” [SQL Anywhere Server - Database Administration].

If this option is not set, the database server searches for the location of the Java VM, as follows:

♦ Check the JAVA_HOME environment variable.

♦ Check the JAVAHOME environment variable.

♦ Check the path.

♦ If the information is not in the path, return an error.

Note
JAVA_HOME and JAVAHOME are environment variables commonly created when installing a Java VM.
If neither of these exist, you can create them manually, and point them to the root directory of your Java
VM. However, this is not required if you use the java_location option. See “java_location option
[database]” [SQL Anywhere Server - Database Administration].

♦ To specify the location of the Java VM (Interactive SQL)

1. Start Interactive SQL and connect to the database.

2. In the SQL Statements pane, type the following command:

SET OPTION PUBLIC.java_location='path\java.exe';

Here, path indicates the location of the Java VM (for example, c:\jdk1.5.0_06\jre\bin).

You can also set the java_main_userid option to specify the database user whose connection can be used for
installing classes and performing other Java-related administrative tasks. Use the java_vm_options option
to specify any additional command line options that are required to start the Java VM. See “java_main_userid
option [database]” [SQL Anywhere Server - Database Administration], and “java_vm_options option
[database]” [SQL Anywhere Server - Database Administration].

If you want to use JAVA in the database, but do not have a Java Runtime Environment (JRE) installed, you
can install and use any Java JRE that you wish. Once installed, it is best to set the JAVA_HOME or
JAVAHOME environment variable to point to the root of the installed JRE. Note that most Java installers
set one of these environment variables by default. Once a JRE is installed and JAVA_HOME or JAVAHOME
is set correctly, you should then be able to use Java in the database without performing any additional steps.

On NetWare, which does not use environment variables, either install the JRE in the path, or set the
java_location option accordingly. See “java_location option [database]” [SQL Anywhere Server - Database
Administration].

Tutorial: Using Java in the Database

86 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Install the sample Java class
Java classes must be installed into a database before they can be used. You can install classes from Sybase
Central or Interactive SQL.

♦ To install the class to the SQL Anywhere sample database (Sybase Central)

1. Start Sybase Central and connect to the sample database.

2. Open the Java Objects folder and then choose File ► New ► Java Class.

The Create Java Class wizard appears.

3. Use the Browse button to locate Invoice.class.

4. Click Finish to close the wizard.

♦ To install the class to the SQL Anywhere sample database (Interactive SQL)

1. Start Interactive SQL and connect to the sample database.

2. In the SQL Statements pane of Interactive SQL, type the following command:

INSTALL JAVA NEW
FROM FILE 'path\\Invoice.class';

Here path is the location of your compiled class file. The class is now installed into the sample database.

3. Press F5 to execute the statement.

Notes
♦ At this point, no Java in the database operations have taken place. The class has been installed into the

database and is ready for use.

♦ Changes made to the class file from now on are not automatically reflected in the copy of the class in
the database. You must update the classes in the database if you want the changes reflected.

For more information on installing classes, and for information on updating an installed class, see “Installing
Java classes into a database” on page 91.

Using the CLASSPATH variable

The Sun Java runtime environment and the Sun JDK Java compiler use the CLASSPATH environment
variable to locate classes referenced within Java code. A CLASSPATH variable provides the link between
Java code and the actual file path or URL location of the classes being referenced. For example, import
java.io.* allows all the classes in the java.io package to be referenced without a fully qualified name.
Only the class name is required in the following Java code to use classes from the java.io package. The
CLASSPATH environment variable on the system where the Java class declaration is to be compiled must
include the location of the Java directory, the root of the java.io package.

Introduction to Java in the Database tutorial

Copyright © 2007, iAnywhere Solutions, Inc. 87

CLASSPATH used to install classes
The CLASSPATH variable can be used to locate a file during the installation of classes. For example, the
following statement installs a user-created Java class to a database, but only specifies the name of the file,
not its full path and name. (Note that this statement involves no Java operations.)

INSTALL JAVA NEW
FROM FILE 'Invoice.class';

If the file specified is in a directory or ZIP file specified by the CLASSPATH environmental variable, SQL
Anywhere successfully locates the file and install the class.

Accessing methods in the Java class

To access the Java methods in the class, you must create stored procedures or functions that act as wrappers
for the methods in the class.

♦ To call a Java method using Interactive SQL

1. Create the following SQL stored procedure to call the Invoice.main method in the sample class:

CREATE PROCEDURE InvoiceMain(IN arg1 CHAR(50))
EXTERNAL NAME 'Invoice.main([Ljava/lang/String;)V'
LANGUAGE JAVA;

This stored procedure acts as a wrapper to the Java method.

For more information about the syntax of this command, see “CREATE PROCEDURE
statement” [SQL Anywhere Server - SQL Reference].

2. Call the stored procedure to call the Java method:

CALL InvoiceMain('to you');

If you examine the database server console or Server Messages window, you see the message "Hello
to you" written there. The database server has redirected the output there from System.out.

Accessing fields and methods of the Java object

Here are more examples of how to call Java methods, pass arguments, and return values.

♦ To create stored procedures/functions for the methods in the Invoice class

1. Create the following SQL stored procedures to pass arguments to and retrieve return values from the
Java methods in the Invoice class:

-- Invoice.init takes a string argument (Ljava/lang/String;)
-- a double (D), a string argument (Ljava/lang/String;), and
-- another double (D), and returns nothing (V)
CREATE PROCEDURE init(IN arg1 CHAR(50),
 IN arg2 DOUBLE,
 IN arg3 CHAR(50),
 IN arg4 DOUBLE)

Tutorial: Using Java in the Database

88 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

EXTERNAL NAME
 'Invoice.init(Ljava/lang/String;DLjava/lang/String;D)V'
LANGUAGE JAVA;

-- Invoice.rateOfTaxation take no arguments ()
-- and returns a double (D)
CREATE FUNCTION rateOfTaxation()
RETURNS DOUBLE
EXTERNAL NAME
 'Invoice.rateOfTaxation()D'
LANGUAGE JAVA;

-- Invoice.rateOfTaxation take no arguments ()
-- and returns a double (D)
CREATE FUNCTION totalSum()
RETURNS DOUBLE
EXTERNAL NAME
 'Invoice.totalSum()D'
LANGUAGE JAVA;

-- Invoice.getLineItem1Description take no arguments ()
-- and returns a string (Ljava/lang/String;)
CREATE FUNCTION getLineItem1Description()
RETURNS CHAR(50)
EXTERNAL NAME
 'Invoice.getLineItem1Description()Ljava/lang/String;'
LANGUAGE JAVA;

-- Invoice.getLineItem1Cost take no arguments ()
-- and returns a double (D)
CREATE FUNCTION getLineItem1Cost()
RETURNS DOUBLE
EXTERNAL NAME
 'Invoice.getLineItem1Cost()D'
LANGUAGE JAVA;

-- Invoice.getLineItem2Description take no arguments ()
-- and returns a string (Ljava/lang/String;)
CREATE FUNCTION getLineItem2Description()
RETURNS CHAR(50)
EXTERNAL NAME
 'Invoice.getLineItem2Description()Ljava/lang/String;'
LANGUAGE JAVA;

-- Invoice.getLineItem2Cost take no arguments ()
-- and returns a double (D)
CREATE FUNCTION getLineItem2Cost()
RETURNS DOUBLE
EXTERNAL NAME
 'Invoice.getLineItem2Cost()D'
LANGUAGE JAVA;

The descriptors for arguments to and return values from Java methods have the following meanings:

Field type Java data type

B byte

C char

D double

Introduction to Java in the Database tutorial

Copyright © 2007, iAnywhere Solutions, Inc. 89

Field type Java data type

F float

I int

J long

L class-name; An instance of the class class-name. The class name must be fully qualified,
and any dot in the name must be replaced by a /. For example, java/lang/
String.

S short

V void

Z Boolean

[Use one for each dimension of an array.

For more information about the syntax of these commands, see “CREATE PROCEDURE
statement” [SQL Anywhere Server - SQL Reference] and “CREATE FUNCTION statement” [SQL
Anywhere Server - SQL Reference].

2. Call the stored procedure that is acting as a wrapper to call the Java method:

CALL init('Shirt',10.00,'Jacket',25.00);
SELECT getLineItem1Description() as Item1,
 getLineItem1Cost() as Item1Cost,
 getLineItem2Description() as Item2,
 getLineItem2Cost() as Item2Cost,
 rateOfTaxation() as TaxRate,
 totalSum() as Cost;

The query returns six columns with values as follows:

Item1 Item1Cost Item2 Item2Cost TaxRate Cost

Shirt 10 Jacket 25 0.15 40.25

Tutorial: Using Java in the Database

90 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Installing Java classes into a database
You can install Java classes into a database as:

♦ A single class You can install a single class into a database from a compiled class file. Class files
typically have extension .class.

♦ A JAR You can install a set of classes all at once if they are in either a compressed or uncompressed
JAR file. JAR files typically have the extension .jar or .zip. SQL Anywhere supports all compressed
JAR files created with the Sun JAR utility, as well as some other JAR compression schemes.

Creating a class

Although the details of each step may differ depending on whether you are using a Java development tool,
the steps involved in creating your own class generally include the following:

♦ To create a class

1. Define your class Write the Java code that defines your class. If you are using the Sun Java SDK
then you can use a text editor. If you are using a development tool, the development tool provides
instructions.

Use only supported classes
User classes must be 100% Java. Native methods are not allowed.

2. Name and save your class Save your class declaration (Java code) in a file with the
extension .java. Make certain the name of the file is the same as the name of the class and that the case
of both names is identical.

For example, a class called Utility should be saved in a file called Utility.java.

3. Compile your class This step turns your class declaration containing Java code into a new, separate
file containing byte code. The name of the new file is the same as the Java code file, but has an extension
of .class. You can run a compiled Java class in a Java runtime environment, regardless of the platform
you compiled it on or the operating system of the runtime environment.

The Sun JDK contains a Java compiler, javac.

Installing a class

To make your Java class available within the database, you install the class into the database either from
Sybase Central, or using the INSTALL JAVA statement from Interactive SQL or another application. You
must know the path and file name of the class you want to install.

You require DBA authority to install a class.

Installing Java classes into a database

Copyright © 2007, iAnywhere Solutions, Inc. 91

♦ To install a class (Sybase Central)

1. Connect to a database as a DBA user.

2. Open the Java Objects folder for the database.

3. Right-click the right pane and choose New ► Java Class from the popup menu.

4. Follow the instructions in the wizard.

♦ To install a class (SQL)

1. Connect to the database as a DBA user.

2. Execute the following statement:

INSTALL JAVA NEW
FROM FILE 'path\\ClassName.class';

path is the directory where the class file is located, and ClassName.class is the name of the class file.

The double backslash ensures that the backslash is not treated as an escape character.

For example, to install a class in a file named Utility.class, held in the directory c:\source, you would
execute the following statement:

INSTALL JAVA NEW
FROM FILE 'c:\\source\\Utility.class';

If you use a relative path, it must be relative to the current working directory of the database server.

For more information, see “INSTALL JAVA statement” [SQL Anywhere Server - SQL Reference].

Installing a JAR

It is useful and common practice to collect sets of related classes together in packages, and to store one or
more packages in a JAR file.

You install a JAR file the same way as you install a class file. A JAR file can have the extension JAR or
ZIP. Each JAR file must have a name in the database. Usually, you use the same name as the JAR file,
without the extension. For example, if you install a JAR file named myjar.zip, you would generally give it
a JAR name of myjar.

For more information, see “INSTALL JAVA statement” [SQL Anywhere Server - SQL Reference].

♦ To install a JAR (Sybase Central)

1. Connect to the database as a DBA user.

2. Open the Java Objects folder for the database.

3. Right-click the right pane and choose New ► JAR File from the popup menu.

4. Follow the instructions in the wizard.

Tutorial: Using Java in the Database

92 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

♦ To install a JAR (SQL)

1. Connect to a database as a DBA user.

2. Execute the following statement:

INSTALL JAVA NEW
JAR 'jarname'
FROM FILE 'path\\JarName.jar';

Updating classes and JAR files

You can update classes and JAR files using Sybase Central or by executing an INSTALL JAVA statement
from Interactive SQL or some other client application.

To update a class or JAR, you must have DBA authority and a newer version of the compiled class file or
JAR file available in a file on disk.

When updated classes take effect
Only new connections established after installing the class, or that use the class for the first time after
installing the class, use the new definition. Once the Java VM loads a class definition, it stays in memory
until the connection closes.

If you have been using a Java class or objects based on a class in the current connection, you need to
disconnect and reconnect to use the new class definition.

♦ To update a class or JAR (Sybase Central)

1. Connect to the database as a DBA user.

2. Open the Java Objects folder.

3. Locate the subfolder containing the class or JAR file you want to update.

4. Select the class or JAR file and the choose File ► Update.

The Update dialog appears.

5. In the Update dialog, specify the name and location of the class or JAR file to be updated. You can
click Browse to search for it.

Tip
You can also update a Java class or JAR file by clicking Update Now on the General tab of its property sheet.

♦ To update a class or JAR (SQL)

1. Connect to a database as a DBA user.

2. Execute the following statement:

Installing Java classes into a database

Copyright © 2007, iAnywhere Solutions, Inc. 93

INSTALL JAVA UPDATE
[JAR 'jarname']
FROM FILE 'filename'

If you are updating a JAR, you must enter the name by which the JAR is known in the database. See
“INSTALL JAVA statement” [SQL Anywhere Server - SQL Reference].

Tutorial: Using Java in the Database

94 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Special features of Java classes in the database
This section describes features of Java classes when used in the database.

Calling the main method

You typically start Java applications (outside the database) by running the Java VM on a class that has a
main method.

For example, the Invoice class in the file samples-dir\SQLAnywhere\JavaInvoice\Invoice.java has a main
method. When you execute the class from the command line using a command such as the following, it is
the main method that executes:

java Invoice

♦ To call the main method of a class from SQL

1. Declare the method with an array of strings as an argument:

public static void main(java.lang.String args[])
{
...
}

2. Create a stored procedure that wraps this method.

CREATE PROCEDURE JavaMain(in arg char(50))
EXTERNAL NAME 'JavaClass.main([Ljava/lang/String;)V'
LANGUAGE JAVA;

For more information, see “CREATE PROCEDURE statement” [SQL Anywhere Server - SQL
Reference].

3. Invoke the main method using the CALL statement.

call JavaMain('Hello world');

Due to the limitations of the SQL language, only a single string can be passed.

Using threads in Java applications

With features of the java.lang.Thread package, you can use multiple threads in a Java application.

You can synchronize, suspend, resume, interrupt, or stop threads in Java applications.

No Such Method Exception

If you supply an incorrect number of arguments when calling a Java method, or if you use an incorrect data
type, the Java VM responds with a java.lang.NoSuchMethodException error. You should check
the number and type of arguments.

Special features of Java classes in the database

Copyright © 2007, iAnywhere Solutions, Inc. 95

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

For more information, see “Accessing fields and methods of the Java object” on page 88.

Returning result sets from Java methods

This section describes how to make result sets available from Java methods. You must write a Java method
that returns a result set to the calling environment, and wrap this method in a SQL stored procedure declared
to be EXTERNAL NAME of LANGUAGE JAVA.

♦ To return result sets from a Java method

1. Ensure that the Java method is declared as public and static in a public class.

2. For each result set you expect the method to return, ensure that the method has a parameter of type
java.sql.ResultSet[]. These result set parameters must all occur at the end of the parameter list.

3. In the method, first create an instance of java.sql.ResultSet and then assign it to one of the ResultSet[]
parameters.

4. Create a SQL stored procedure of type EXTERNAL NAME LANGUAGE JAVA. This type of
procedure is a wrapper around a Java method. You can use a cursor on the SQL procedure result set in
the same way as any other procedure that returns result sets.

For more information about the syntax for stored procedures that are wrappers for Java methods, see
“CREATE PROCEDURE statement” [SQL Anywhere Server - SQL Reference].

Example
The following simple class has a single method that executes a query and passes the result set back to the
calling environment.

import java.sql.*;
public class MyResultSet
{
 public static void return_rset(ResultSet[] rset1)
 throws SQLException
 {
 Connection conn = DriverManager.getConnection(
 "jdbc:default:connection");
 Statement stmt = conn.createStatement();
 ResultSet rset =
 stmt.executeQuery (
 "SELECT Surname " +
 "FROM Customers");
 rset1[0] = rset;
 }
}

You can expose the result set using a CREATE PROCEDURE statement that indicates the number of result
sets returned from the procedure and the signature of the Java method.

A CREATE PROCEDURE statement indicating a result set could be defined as follows:

CREATE PROCEDURE result_set()
 DYNAMIC RESULT SETS 1

Tutorial: Using Java in the Database

96 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

 EXTERNAL NAME
 'MyResultSet.return_rset([Ljava/sql/ResultSet;)V'
 LANGUAGE JAVA

You can open a cursor on this procedure, just as you can with any SQL Anywhere procedure returning result
sets.

The string ([Ljava/sql/ResultSet;)V is a Java method signature that is a compact character
representation of the number and type of the parameters and return value.

For more information about Java method signatures, see “CREATE PROCEDURE statement” [SQL
Anywhere Server - SQL Reference].

For more information about returning result sets, see “Returning result sets” on page 489.

Returning values from Java via stored procedures

You can use stored procedures created using the EXTERNAL NAME LANGUAGE JAVA as wrappers
around Java methods. This section describes how to write your Java method to exploit OUT or INOUT
parameters in the stored procedure.

Java does not have explicit support for INOUT or OUT parameters. Instead, you can use an array of the
parameter. For example, to use an integer OUT parameter, create an array of exactly one integer:

public class Invoice
{
 public static boolean testOut(int[] param)
 {
 param[0] = 123;
 return true;
 }
}

The following procedure uses the testOut method:

CREATE PROCEDURE testOut(OUT p INTEGER)
EXTERNAL NAME 'Invoice.testOut([I)Z'
LANGUAGE JAVA

The string ([I)Z is a Java method signature, indicating that the method has a single parameter, which is
an array of integers, and returns a Boolean value. You must define the method so that the method parameter
you want to use as an OUT or INOUT parameter is an array of a Java data type that corresponds to the SQL
data type of the OUT or INOUT parameter.

To test this, call the stored procedure with an uninitialized variable.

CREATE VARIABLE zap INTEGER;
CALL testOut(zap);
SELECT zap;

The result set is 123.

For more information about the syntax, including the method signature, see “CREATE PROCEDURE
statement” [SQL Anywhere Server - SQL Reference].

Special features of Java classes in the database

Copyright © 2007, iAnywhere Solutions, Inc. 97

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Security management for Java

Java provides security managers than you can use to control user access to security-sensitive features of your
applications, such as file access and network access. You should take advantage of the security management
features supported by your Java VM.

Tutorial: Using Java in the Database

98 Copyright © 2007, iAnywhere Solutions, Inc.

Starting and stopping the Java VM
The Java VM loads automatically whenever the first Java operation is carried out. If you want to load it
explicitly in readiness for carrying out Java operations, you can do so by executing the following statement:

START JAVA

You can unload the Java VM when Java is not in use using the STOP JAVA statement. Only a user with
DBA authority can execute this statement. The syntax is:

STOP JAVA

Starting and stopping the Java VM

Copyright © 2007, iAnywhere Solutions, Inc. 99

Unsupported Java classes
You cannot use all classes from the JDK. The runtime Java classes available for use in the database server
belong to a subset of the Java API. Classes in the following packages are not supported in SQL Anywhere:

♦ java.applet

♦ java.awt

♦ java.awt.datatransfer

♦ java.awt.event

♦ java.awt.image

♦ All packages prefixed by sun (for example, sun.audio)

Tutorial: Using Java in the Database

100 Copyright © 2007, iAnywhere Solutions, Inc.

Part III. SQL Anywhere Data Access
APIs

This part describes the programming interfaces for SQL Anywhere.

CHAPTER 7

SQL Anywhere .NET Data Provider

Contents
SQL Anywhere .NET Data Provider features .. 104
Running the sample projects ... 105
Using the .NET Data Provider in a Visual Studio .NET project 106
Connecting to a database .. 108
Accessing and manipulating data .. 111
Using stored procedures ... 128
Transaction processing ... 130
Error handling and the SQL Anywhere .NET Data Provider 132
Deploying the SQL Anywhere .NET Data Provider ... 133
.NET 2.0 tracing support .. 135

Copyright © 2007, iAnywhere Solutions, Inc. 103

SQL Anywhere .NET Data Provider features

Note
The SQL Anywhere documentation describes the API for the SQL Anywhere .NET Data Provider for
ADO.NET 2.0.
If you are developing an application with ADO.NET 1.x, refer to the API reference for the SQL
Anywhere .NET Data Provider at http://www.ianywhere.com/downloads/products/sqlanywhere/
sql_10_dotnet_api_reference.pdf.

SQL Anywhere supports Microsoft's .NET Framework 1.x and 2.0 through three distinct namespaces.

♦ iAnywhere.Data.SQLAnywhere The ADO.NET object model is an all-purpose data access model.
ADO.NET components were designed to factor data access from data manipulation. There are two central
components of ADO.NET that accomplish this: the DataSet, and the .NET Framework data provider,
which is a set of components including the Connection, Command, DataReader, and DataAdapter
objects. SQL Anywhere includes a .NET Framework Data Provider that communicates directly with a
SQL Anywhere database server without adding the overhead of OLE DB or ODBC. The SQL
Anywhere .NET Data Provider is represented in the .NET namespace as
iAnywhere.Data.SQLAnywhere.

The Microsoft .NET Compact Framework is the smart device development framework for
Microsoft .NET. The SQL Anywhere .NET Compact Framework Data Provider supports devices running
Windows CE.

The SQL Anywhere .NET Data Provider namespace is described in this document.

♦ System.Data.Oledb This namespace supports OLE DB data sources. This namespace is an intrinsic
part of the Microsoft .NET Framework. You can use System.Data.Oledb together with the SQL
Anywhere OLE DB provider, SAOLEDB, to access SQL Anywhere databases.

♦ System.Data.Odbc This namespace supports ODBC data sources. This namespace is an intrinsic part
of the Microsoft .NET Framework. You can use System.Data.Odbc together with the SQL Anywhere
ODBC driver to access SQL Anywhere databases.

On Windows CE, only the SQL Anywhere .NET Data Provider is supported.

There are some key benefits to using the SQL Anywhere .NET Data Provider:

♦ In the .NET environment, the SQL Anywhere .NET Data Provider provides native access to a SQL
Anywhere database. Unlike the other supported providers, it communicates directly with a SQL
Anywhere server and does not require bridge technology.

♦ As a result, the SQL Anywhere .NET Data Provider is faster than the OLE DB and ODBC Data Providers.
It is the recommended Data Provider for accessing SQL Anywhere databases.

SQL Anywhere .NET Data Provider

104 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/downloads/products/sqlanywhere/sql_10_dotnet_api_reference.pdf
http://www.ianywhere.com/downloads/products/sqlanywhere/sql_10_dotnet_api_reference.pdf

Running the sample projects
There are four sample projects included with the SQL Anywhere .NET Data Provider. They are:

♦ SimpleCE A .NET Compact Framework sample project for Windows CE that demonstrates a simple
listbox that is filled with the names from the Employees table when you click the Connect button.

♦ SimpleWin32 A .NET Framework sample project for Windows that demonstrates a simple listbox
that is filled with the names from the Employees table when you click the Connect button.

♦ SimpleXML A .NET Framework sample project for Windows that demonstrates how to obtain XML
data from SQL Anywhere via ADO.NET.

♦ TableViewer A .NET Framework sample project for Windows that allows you to enter and execute
SQL statements.

For tutorials explaining the sample projects, see “Tutorial: Using the SQL Anywhere .NET Data
Provider” on page 139.

Note
If you installed SQL Anywhere in a location other than the default installation directory (C:\Program Files
\SQL Anywhere 10), you may receive an error referencing the Data Provider DLL when you load the sample
projects. If this happens, add a new reference to iAnywhere.Data.SQLAnywhere.dll. There are two versions
of the Data Provider, one that supports the .NET Framework 1.x and one that supports the .NET Framework
2.0. The 1.x Data Provider for Windows is located in install-dir\Assembly\v1
\iAnywhere.Data.SQLAnywhere.dll. The 2.0 Data Provider for Windows is located in install-dir\Assembly
\v2\iAnywhere.Data.SQLAnywhere.dll. Windows CE versions of the provider are located under install-dir
\ce\Assembly for each supported Windows CE hardware platform.
For instructions on adding a reference to the DLL, see “Adding a reference to the Data Provider DLL in
your project” on page 106.

Running the sample projects

Copyright © 2007, iAnywhere Solutions, Inc. 105

Using the .NET Data Provider in a Visual Studio .NET
project

To use the SQL Anywhere .NET Data Provider, you must include two items in your Visual Studio .NET
project:

♦ a reference to the SQL Anywhere .NET Data Provider DLL

♦ a line in your source code referencing the SQL Anywhere .NET Data Provider classes

These steps are explained below.

For information about installing and registering the SQL Anywhere .NET Data Provider, see “Deploying
the SQL Anywhere .NET Data Provider” on page 133.

Adding a reference to the Data Provider DLL in your project
Adding a reference tells Visual Studio .NET which DLL to include to find the code for the SQL
Anywhere .NET Data Provider.

♦ To add a reference to the SQL Anywhere .NET Data Provider in a Visual Studio .NET
project

1. Start Visual Studio .NET and open your project.

2. In the Solution Explorer window, right-click References and choose Add Reference from the popup
menu.

The Add Reference dialog appears.

3. On the .NET tab, click Browse to locate iAnywhere.Data.SQLAnywhere.dll. Note that there are separate
versions of the DLL for each of .NET 1.x and 2.0 and each of Windows and Windows CE.

♦ For the Windows .NET 2.0 Data Provider, the default location is install-dir\Assembly\v2.

♦ For the Windows CE .NET 2.0 Data Provider, the default location is install-dir\ce\Assembly\v2 for
each supported Windows CE hardware platform (for example, ce\Assembly\v2\arm.30).

♦ For the Windows .NET 1.x Data Provider, the default location is install-dir\Assembly\v1.

♦ For the Windows CE .NET 1.x Data Provider, the default location is install-dir\ce\Assembly\v1 for
each supported Windows CE hardware platform (for example, ce\Assembly\v1\arm.30).

4. Select the DLL and then click Open.

For a complete list of installed DLLs, see “SQL Anywhere .NET Data Provider required
files” on page 133.

5. You can verify that the DLL is added to your project. Open the Add Reference dialog and then click
the .NET tab. iAnywhere.Data.SQLAnywhere.dll appears in the Selected Components list. Click OK to
close the dialog.

The DLL is added to the References folder in the Solution Explorer window of your project.

SQL Anywhere .NET Data Provider

106 Copyright © 2007, iAnywhere Solutions, Inc.

Using the Data Provider classes in your source code
To facilitate the use of the SQL Anywhere .NET Data Provider namespace and the types defined in this
namespace, you should add a directive to your source code.

♦ To facilitate the use of Data Provider namespace in your code

1. Start Visual Studio .NET and open your project.

2. Add the following line to your project:

♦ If you are using C#, add the following line to the list of using directives at the beginning of your
project:

using iAnywhere.Data.SQLAnywhere;
♦ If you are using Visual Basic .NET, add the following line at the beginning of your project before

the line Public Class Form1:

Imports iAnywhere.Data.SQLAnywhere

This directive is not required, however, it allows you to use short forms for the SQL Anywhere ADO.NET
classes. For example:

SAConnection conn = new SAConnection()

Without this directive, you can still use the following:

iAnywhere.Data.SQLAnywhere.SAConnection
 conn = new iAnywhere.Data.SQLAnywhere.SAConnection()

Using the .NET Data Provider in a Visual Studio .NET project

Copyright © 2007, iAnywhere Solutions, Inc. 107

Connecting to a database
Before you can perform any operations on the data, your application must connect to the database. This
section describes how to write code to connect to a SQL Anywhere database.

For more information, see “SAConnectionStringBuilder class” on page 238 and “ConnectionName
property” on page 246.

♦ To connect to a SQL Anywhere database

1. Allocate an SAConnection object.

The following code creates an SAConnection object named conn:

SAConnection conn = new SAConnection(connection-string)

You can have more than one connection to a database from your application. Some applications use a
single connection to a SQL Anywhere database, and keep the connection open all the time. To do this,
you can declare a global variable for the connection:

private SAConnection _conn;

For more information, see the sample code in samples-dir\Samples\SQLAnywhere\ADO.NET
\TableViewer and “Understanding the Table Viewer sample project” on page 147.

2. Specify the connection string used to connect to the database.

For example:

"Data Source=SQL Anywhere 10 Demo;UID=DBA;PWD=sql"

For a complete list of connection parameters, see “Connection parameters” [SQL Anywhere Server -
Database Administration].

Instead of supplying a connection string, you can prompt users for their user ID and password.

3. Open a connection to the database.

The following code attempts to connect to a database. It autostarts the database server if necessary.

conn.Open();
4. Catch connection errors.

Your application should be designed to catch any errors that occur when attempting to connect to the
database. The following code demonstrates how to catch an error and display its message:

try {
 _conn = new SAConnection(txtConnectString.Text);
 _conn.Open();
 } catch(SAException ex) {
 MessageBox.Show(ex.Errors[0].Source + " : "
 + ex.Errors[0].Message + " (" +
 ex.Errors[0].NativeError.ToString() + ")",
 "Failed to connect");

SQL Anywhere .NET Data Provider

108 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Alternately, you can use the ConnectionString property to set the connection string, rather than passing
the connection string when the SAConnection object is created:

SAConnection _conn;
 _conn = new SAConnection();
 _conn.ConnectionString =
 "Data Source=SQL Anywhere 10 Demo;UID=DBA;PWD=sql";
 _conn.Open();

5. Close the connection to the database. Connections to the database stay open until they are explicitly
closed using the conn.Close() method.

Visual Basic .NET connection example
The following Visual Basic .NET code opens a connection to the SQL Anywhere sample database:

Private Sub Button1_Click(ByVal sender As _
 System.Object, ByVal e As System.EventArgs) _
 Handles Button1.Click
 ' Declare the connection object
 Dim myConn As New _
 iAnywhere.Data.SQLAnywhere.SAConnection()
 myConn.ConnectionString = _
 "Data Source=SQL Anywhere 10 Demo;UID=DBA;PWD=sql"
 myConn.Open()
 myConn.Close()
End Sub

Connection pooling

The SQL Anywhere .NET Data Provider supports connection pooling. Connection pooling allows your
application to reuse existing connections by saving the connection handle to a pool so it can be reused, rather
than repeatedly creating a new connection to the database. Connection pooling is turned on by default.

The pool size is set in your connection string using the POOLING option. The default maximum pool size
is 100, while the default minimum pool size is 0. You can specify the minimum and maximum pool sizes.
For example:

"Data Source=SQL Anywhere 10 Demo;UID=DBA;PWD=sql;POOLING=TRUE;Max Pool
Size=50;Min Pool Size=5"

When your application first attempts to connect to the database, it checks the pool for an existing connection
that uses the same connection parameters you have specified. If a matching connection is found, that
connection is used. Otherwise, a new connection is used. When you disconnect, the connection is returned
to the pool so that it can be reused.

For more information about connection pooling, see “ConnectionName property” on page 246.

Checking the connection state

Once your application has established a connection to the database, you can check the connection state to
ensure that the connection is open before you fetch data from the database to update it. If a connection is
lost or is busy, or if another command is being processed, you can return an appropriate message to the user.

Connecting to a database

Copyright © 2007, iAnywhere Solutions, Inc. 109

The SAConnection class has a state property that checks the state of the connection. Possible state values
are Open and Closed.

The following code checks whether the Connection object has been initialized, and if it has, it ensures that
the connection is open. A message is returned to the user if the connection is not open.

if(_conn == null || _conn.State !=
 ConnectionState.Open) {
 MessageBox.Show("Connect to a database first",
 "Not connected");
 return;

For more information, see “State property” on page 227.

SQL Anywhere .NET Data Provider

110 Copyright © 2007, iAnywhere Solutions, Inc.

Accessing and manipulating data
With the SQL Anywhere .NET Data Provider, there are two ways you can access data: using the SACommand
object or using the SADataAdapter object.

♦ SACommand object The SACommand object is the recommended way of accessing and
manipulating data in .NET.

The SACommand object allows you to execute SQL statements that retrieve or modify data directly from
the database. Using the SACommand object, you can issue SQL statements and call stored procedures
directly against the database.

Within an SACommand object, an SADataReader is used to return read-only result sets from a query or
stored procedure. The SADataReader returns only one row at a time, but this does not degrade
performance because the SQL Anywhere client-side libraries use prefetch buffering to prefetch several
rows at a time.

Using the SACommand object allows you to group your changes into transactions rather than operating
in autocommit mode. When you use the SATransaction object, locks are placed on the rows so that other
users cannot modify them.

For more information, see “SACommand class” on page 180 and “SADataReader
class” on page 277.

♦ SADataAdapter object The SADataAdapter object retrieves the entire result set into a DataSet. A
DataSet is a disconnected store for data that is retrieved from a database. You can then edit the data in
the DataSet and when you are finished, the SADataAdapter object updates the database with the changes
made to the DataSet. When you use the SADataAdapter, there is no way to prevent other users from
modifying the rows in your DataSet. You need to include logic within your application to resolve any
conflicts that may occur.

For more information about conflicts, see “Resolving conflicts when using the
SADataAdapter” on page 119.

For more information about the SADataAdapter object, see “SADataAdapter class” on page 266.

There is no performance impact from using the SADataReader within an SACommand object to fetch rows
from the database rather than the SADataAdapter object.

Using the SACommand object to retrieve and manipulate data

The following sections describe how to retrieve data and how to insert, update, or delete rows using the
SADataReader.

Accessing and manipulating data

Copyright © 2007, iAnywhere Solutions, Inc. 111

Getting data using the SACommand object

The SACommand object allows you to issue a SQL statement or call a stored procedure against a SQL
Anywhere database. You can issue the following types of commands to retrieve data from the database:

♦ ExecuteReader Issues a command that returns a result set. This method uses a forward-only, read-
only cursor. You can loop quickly through the rows of the result set in one direction.

For more information, see “ExecuteReader methods” on page 198.

♦ ExecuteScalar Issues a command that returns a single value. This can be the first column in the first
row of the result set, or a SQL statement that returns an aggregate value such as COUNT or AVG. This
method uses a forward-only, read-only cursor.

For more information, see “ExecuteScalar method” on page 200.

When using the SACommand object, you can use the SADataReader to retrieve a result set that is based on
a join. However, you can only make changes (inserts, updates, or deletes) to data that is from a single table.
You cannot update result sets that are based on joins.

The following instructions use the Simple code sample included with the .NET Data Provider.

For more information about the Simple code sample, see “Understanding the Simple sample
project” on page 142.

♦ To issue a command that returns a complete result set

1. Declare and initialize a Connection object.

SAConnection conn = new SAConnection(
 "Data Source=SQL Anywhere 10 Demo;UID=DBA;PWD=sql");

2. Open the connection.

try {
 conn.Open();

3. Add a Command object to define and execute a SQL statement.

SACommand cmd = new SACommand(
 "SELECT Surname FROM Employees", conn);

If you are calling a stored procedure, you must specify the parameters for the stored procedure.

For more information, see “Using stored procedures” on page 128 and “SAParameter
class” on page 352.

4. Call the ExecuteReader method to return the DataReader object.

SADataReader reader = cmd.ExecuteReader();
5. Display the results.

listEmployees.BeginUpdate();
while(reader.Read()) {
 listEmployees.Items.Add(reader.GetString(0));

SQL Anywhere .NET Data Provider

112 Copyright © 2007, iAnywhere Solutions, Inc.

}
listEmployees.EndUpdate();

6. Close the DataReader and Connection objects.

reader.Close();
conn.Close();

♦ To issue a command that returns only one value

1. Declare and initialize an SAConnection object.

SAConnection conn = new SAConnection(
 "Data Source=SQL Anywhere 10 Demo");

2. Open the connection.

conn.Open();
3. Add an SACommand object to define and execute a SQL statement.

SACommand cmd = new SACommand(
 "SELECT COUNT(*) FROM Employees WHERE Sex = 'M'",
 conn);

If you are calling a stored procedure, you must specify the parameters for the stored procedure.

For more information, see “Using stored procedures” on page 128.

4. Call the ExecuteScalar method to return the object containing the value.

int count = (int) cmd.ExecuteScalar();
5. Close the SAConnection object.

conn.Close();

When using the SADataReader, there are several Get methods available that you can use to return the results
in desired the data type.

For more information, see “SADataReader class” on page 277.

Visual Basic .NET DataReader example
The following Visual Basic .NET code opens a connection to the SQL Anywhere sample database and uses
the DataReader to return the last name of the first five employees in the result set:

Dim myConn As New .SAConnection()
Dim myCmd As _
 New .SACommand _
 ("SELECT Surname FROM Employees", myConn)
Dim myReader As SADataReader
Dim counter As Integer
myConn.ConnectionString = _
 "Data Source=SQL Anywhere 10 Demo;UID=DBA;PWD=sql"
myConn.Open()
myReader = myCmd.ExecuteReader()
counter = 0
Do While (myReader.Read())

Accessing and manipulating data

Copyright © 2007, iAnywhere Solutions, Inc. 113

 MsgBox(myReader.GetString(0))
 counter = counter + 1
 If counter >= 5 Then Exit Do
Loop
myConn.Close()

Inserting, updating, and deleting rows using the SACommand object

To perform an insert, update, or delete with the SACommand object, use the ExecuteNonQuery function.
The ExecuteNonQuery function issues a command (SQL statement or stored procedure) that does not return
a result set. See “ExecuteNonQuery method” on page 198.

You can only make changes (inserts, updates, or deletes) to data that is from a single table. You cannot
update result sets that are based on joins. You must be connected to a database to use the SACommand
object.

For information about obtaining primary key values for autoincrement primary keys, see “Obtaining primary
key values” on page 123.

If you want to set the isolation level for a command, you must use the SACommand object as part of an
SATransaction object. When you modify data without an SATransaction object, the .NET Data Provider
operates in autocommit mode and any changes that you make are applied immediately. See “Transaction
processing” on page 130.

♦ To issue a command that inserts a row

1. Declare and initialize an SAConnection object.

SAConnection conn = new SAConnection(
 c_connStr);
conn.Open();

2. Open the connection.

conn.Open();
3. Add an SACommand object to define and execute an INSERT statement.

You can use an INSERT, UPDATE, or DELETE statement with the ExecuteNonQuery method.

SACommand insertCmd = new SACommand(
 "INSERT INTO Departments(DepartmentID, DepartmentName)
 VALUES(?, ?)", conn);

If you are calling a stored procedure, you must specify the parameters for the stored procedure.

For more information, see “Using stored procedures” on page 128 and “SAParameter
class” on page 352.

4. Set the parameters for the SACommand object.

The following code defines parameters for the DepartmentID and DepartmentName columns
respectively.

SAParameter parm = new SAParameter();
parm.SADbType = SADbType.Integer;

SQL Anywhere .NET Data Provider

114 Copyright © 2007, iAnywhere Solutions, Inc.

insertCmd.Parameters.Add(parm);
parm = new SAParameter();
parm.SADbType = SADbType.Char;
insertCmd.Parameters.Add(parm);

5. Insert the new values and call the ExecuteNonQuery method to apply the changes to the database.

insertCmd.Parameters[0].Value = 600;
insertCmd.Parameters[1].Value = "Eastern Sales";
int recordsAffected = insertCmd.ExecuteNonQuery();
insertCmd.Parameters[0].Value = 700;
insertCmd.Parameters[1].Value = "Western Sales";
recordsAffected = insertCmd.ExecuteNonQuery();

6. Display the results and bind them to the grid on the screen.

SACommand selectCmd = new SACommand(
 "SELECT * FROM Departments", conn);
SADataReader dr = selectCmd.ExecuteReader();
System.Windows.Forms.DataGrid dataGrid;
dataGrid = new System.Windows.Forms.DataGrid();
dataGrid.Location = new Point(10, 10);
dataGrid.Size = new Size(275, 200);
dataGrid.CaptionText = "iAnywhere SACommand Example";
this.Controls.Add(dataGrid);
dataGrid.DataSource = dr;
dataGrid.Show();

7. Close the SADataReader and SAConnection objects.

dr.Close();
conn.Close();

♦ To issue a command that updates a row

1. Declare and initialize an SAConnection object.

SAConnection conn = new SAConnection(
 c_connStr);

2. Open the connection.

conn.Open();
3. Add an SACommand object to define and execute an UPDATE statement.

You can use an INSERT, UPDATE, or DELETE statement with the ExecuteNonQuery method.

SACommand updateCmd = new SACommand(
 "UPDATE Departments SET DepartmentName = 'Engineering'
 WHERE DepartmentID=100", conn);

If you are calling a stored procedure, you must specify the parameters for the stored procedure.

For more information, see “Using stored procedures” on page 128 and “SAParameter
class” on page 352.

4. Call the ExecuteNonQuery method to apply the changes to the database.

Accessing and manipulating data

Copyright © 2007, iAnywhere Solutions, Inc. 115

int recordsAffected = updateCmd.ExecuteNonQuery();
5. Display the results and bind them to the grid on the screen.

SACommand selectCmd = new SACommand(
 "SELECT * FROM Departments", conn);
SADataReader dr = selectCmd.ExecuteReader();
dataGrid.DataSource = dr;

6. Close the SADataReader and SAConnection objects.

dr.Close();
conn.Close();

♦ To issue a command that deletes a row

1. Declare and initialize an SAConnection object.

SAConnection conn = new SAConnection(
 c_connStr);

2. Open the connection.

conn.Open();
3. Create an SACommand object to define and execute a DELETE statement.

You can use an INSERT, UPDATE, or DELETE statement with the ExecuteNonQuery method.

SACommand deleteCmd = new SACommand(
 "DELETE FROM Departments WHERE (DepartmentID > 500)", conn);

If you are calling a stored procedure, you must specify the parameters for the stored procedure.

For more information, see “Using stored procedures” on page 128 and “SAParameter
class” on page 352.

4. Call the ExecuteNonQuery method to apply the changes to the database.

int recordsAffected = deleteCmd.ExecuteNonQuery();
5. Close the SAConnection object.

conn.Close();

Obtaining DataReader schema information

You can obtain schema information about columns in the result set.

If you are using the SADataReader, you can use the GetSchemaTable method to obtain information about
the result set. The GetSchemaTable method returns the standard .NET DataTable object, which provides
information about all the columns in the result set, including column properties.

For more information about the GetSchemaTable method, see “GetSchemaTable method” on page 297.

SQL Anywhere .NET Data Provider

116 Copyright © 2007, iAnywhere Solutions, Inc.

♦ To obtain information about a result set using the GetSchemaTable method

1. Declare and initialize a connection object.

SAConnection conn = new SAConnection(
 c_connStr);

2. Open the connection.

conn.Open();
3. Create an SACommand object with the SELECT statement you want to use. The schema is returned

for the result set of this query.

SACommand cmd = new SACommand(
 "SELECT * FROM Employees", conn);

4. Create an SADataReader object and execute the Command object you created.

SADataReader dr = cmd.ExecuteReader();
5. Fill the DataTable with the schema from the data source.

DataTable schema = dr.GetSchemaTable();
6. Close the SADataReader and SAConnection objects.

dr.Close();
conn.Close();

7. Bind the DataTable to the grid on the screen.

dataGrid.DataSource = schema;

Using the SADataAdapter object to access and manipulate data

The following sections describe how to retrieve data and how to insert, update, or delete rows using the
SADataAdapter.

Getting data using the SADataAdapter object

The SADataAdapter allows you to view the entire result set by using the Fill method to fill a DataSet with
the results from a query by binding the DataSet to the display grid.

Using the SADataAdapter, you can pass any string (SQL statement or stored procedure) that returns a result
set. When you use the SADataAdapter, all the rows are fetched in one operation using a forward-only, read-
only cursor. Once all the rows in the result set have been read, the cursor is closed. The SADataAdapter
allows you to make changes to the DataSet. Once your changes are complete, you must reconnect to the
database to apply the changes.

You can use the SADataAdapter object to retrieve a result set that is based on a join. However, you can only
make changes (inserts, updates, or deletes) to data that is from a single table. You cannot update result sets
that are based on joins.

Accessing and manipulating data

Copyright © 2007, iAnywhere Solutions, Inc. 117

Caution
Any changes you make to the DataSet are made while you are disconnected from the database. This means
that your application does not have locks on these rows in the database. Your application must be designed
to resolve any conflicts that may occur when changes from the DataSet are applied to the database in the
event that another user changes the data you are modifying before your changes are applied to the database.

For more information about the SADataAdapter, see “SADataAdapter class” on page 266.

SADataAdapter example
The following example shows how to fill a DataSet using the SADataAdapter.

♦ To retrieve data using the SADataAdapter object

1. Connect to the database.

2. Create a new DataSet. In this case, the DataSet is called Results.

DataSet ds =new DataSet ();
3. Create a new SADataAdapter object to execute a SQL statement and fill the DataSet.

SADataAdapter da=new SADataAdapter(
 txtSQLStatement.Text, _conn);
da.Fill(ds, "Results")

4. Bind the DataSet to the grid on the screen.

dgResults.DataSource = ds.Tables["Results"]

Inserting, updating, and deleting rows using the SADataAdapter object

The SADataAdapter retrieves the result set into a DataSet. A DataSet is a collection of tables and the
relationships and constraints between those tables. The DataSet is built into the .NET Framework, and is
independent of the Data Provider used to connect to your database.

When you use the SADataAdapter, you must be connected to the database to fill the DataSet and to update
the database with changes made to the DataSet. However, once the DataSet is filled, you can modify the
DataSet while disconnected from the database.

If you do not want to apply your changes to the database right away, you can write the DataSet, including
the data and/or the schema, to an XML file using the WriteXML method. Then, you can apply the changes
at a later time by loading a DataSet with the ReadXML method.

For more information, see the .NET Framework documentation for WriteXML and ReadXML.

When you call the Update method to apply changes from the DataSet to the database, the SADataAdapter
analyzes the changes that have been made and then invokes the appropriate commands, INSERT, UPDATE,
or DELETE, as necessary. When you use the DataSet, you can only make changes (inserts, updates, or
deletes) to data that is from a single table. You cannot update result sets that are based on joins. If another
user has a lock on the row you are trying to update, an exception is thrown.

SQL Anywhere .NET Data Provider

118 Copyright © 2007, iAnywhere Solutions, Inc.

Caution
Any changes you make to the DataSet are made while you are disconnected. This means that your application
does not have locks on these rows in the database. Your application must be designed to resolve any conflicts
that may occur when changes from the DataSet are applied to the database in the event that another user
changes the data you are modifying before your changes are applied to the database.

Resolving conflicts when using the SADataAdapter
When you use the SADataAdapter, no locks are placed on the rows in the database. This means there is the
potential for conflicts to arise when you apply changes from the DataSet to the database. Your application
should include logic to resolve or log conflicts that arise.

Some of the conflicts that your application logic should address include:

♦ Unique primary keys If two users insert new rows into a table, each row must have a unique primary
key. For tables with autoincrement primary keys, the values in the DataSet may become out of sync with
the values in the data source.

For information about obtaining primary key values for autoincrement primary keys, see “Obtaining
primary key values” on page 123.

♦ Updates made to the same value If two users modify the same value, your application should
include logic to determine which value is correct.

♦ Schema changes If a user modifies the schema of a table you have updated in the DataSet, the update
will fail when you apply the changes to the database.

♦ Data concurrency Concurrent applications should see a consistent set of data. The SADataAdapter
does not place a lock on rows that it fetches, so another user can update a value in the database once you
have retrieved the DataSet and are working offline.

Many of these potential problems can be avoided by using the SACommand, SADataReader, and
SATransaction objects to apply changes to the database. The SATransaction object is recommended because
it allows you to set the isolation level for the transaction and it places locks on the rows so that other users
cannot modify them.

For more information about using transactions to apply your changes to the database, see “Inserting, updating,
and deleting rows using the SACommand object” on page 114.

To simplify the process of conflict resolution, you can design your INSERT, UPDATE, or DELETE
statement to be a stored procedure call. By including INSERT, UPDATE, and DELETE statements in stored
procedures, you can catch the error if the operation fails. In addition to the statement, you can add error
handling logic to the stored procedure so that if the operation fails the appropriate action is taken, such as
recording the error to a log file, or trying the operation again.

♦ To insert rows into a table using the SADataAdapter

1. Declare and initialize an SAConnection object.

SAConnection conn = new SAConnection(
 c_connStr);

Accessing and manipulating data

Copyright © 2007, iAnywhere Solutions, Inc. 119

2. Open the connection.

conn.Open();
3. Create a new SADataAdapter object.

SADataAdapter adapter = new SADataAdapter();
adapter.MissingMappingAction =
 MissingMappingAction.Passthrough;
adapter.MissingSchemaAction =
 MissingSchemaAction.Add;

4. Create the necessary SACommand objects and define any necessary parameters.

The following code creates a SELECT and an INSERT command and defines the parameters for the
INSERT command.

adapter.SelectCommand = new SACommand(
 "SELECT * FROM Departments", conn);
adapter.InsertCommand = new SACommand(
 "INSERT INTO Departments(DepartmentID, DepartmentName)
 VALUES(?, ?)", conn);
adapter.InsertCommand.UpdatedRowSource =
 UpdateRowSource.None;
SAParameter parm = new SAParameter();
parm.SADbType = SADbType.Integer;
parm.SourceColumn = "DepartmentID";
parm.SourceVersion = DataRowVersion.Current;
adapter.InsertCommand.Parameters.Add(
 parm);
parm = new SAParameter();
parm.SADbType = SADbType.Char;
parm.SourceColumn = "DepartmentName";
parm.SourceVersion = DataRowVersion.Current;
adapter.InsertCommand.Parameters.Add(parm);

5. Fill the DataTable with the results of the SELECT statement.

DataTable dataTable = new DataTable("Departments");
int rowCount = adapter.Fill(dataTable);

6. Insert the new rows into the DataTable and apply the changes to the database.

DataRow row1 = dataTable.NewRow();
row1[0] = 600;
row1[1] = "Eastern Sales";
dataTable.Rows.Add(row1);
DataRow row2 = dataTable.NewRow();
row2[0] = 700;
row2[1] = "Western Sales";
dataTable.Rows.Add(row2);
recordsAffected = adapter.Update(dataTable);

7. Display the results of the updates.

dataTable.Clear();
rowCount = adapter.Fill(dataTable);
dataGrid.DataSource = dataTable;

8. Close the connection.

conn.Close();

SQL Anywhere .NET Data Provider

120 Copyright © 2007, iAnywhere Solutions, Inc.

♦ To update rows using the SADataAdapter object

1. Declare and initialize an SAConnection object.

SAConnection conn = new SAConnection(c_connStr);
2. Open the connection.

conn.Open();
3. Create a new SADataAdapter object.

SADataAdapter adapter = new SADataAdapter();
adapter.MissingMappingAction =
 MissingMappingAction.Passthrough;
adapter.MissingSchemaAction =
 MissingSchemaAction.Add;

4. Create an SACommand object and define its parameters.

The following code creates a SELECT and an UPDATE command and defines the parameters for the
UPDATE command.

adapter.SelectCommand = new SACommand(
 "SELECT * FROM Departments WHERE DepartmentID > 500",
 conn);
adapter.UpdateCommand = new SACommand(
 "UPDATE Departments SET DepartmentName = ?
 WHERE DepartmentID = ?", conn);
adapter.UpdateCommand.UpdatedRowSource =
 UpdateRowSource.None;
SAParameter parm = new SAParameter();
parm.SADbType = SADbType.Char;
parm.SourceColumn = "DepartmentName";
parm.SourceVersion = DataRowVersion.Current;
adapter.UpdateCommand.Parameters.Add(parm);
parm = new SAParameter();
parm.SADbType = SADbType.Integer;
parm.SourceColumn = "DepartmentID";
parm.SourceVersion = DataRowVersion.Original;
adapter.UpdateCommand.Parameters.Add(parm);

5. Fill the DataTable with the results of the SELECT statement.

DataTable dataTable = new DataTable("Departments");
int rowCount = adapter.Fill(dataTable);

6. Update the DataTable with the updated values for the rows and apply the changes to the database.

foreach (DataRow row in dataTable.Rows)
{
row[1] = (string) row[1] + "_Updated";
}
recordsAffected = adapter.Update(dataTable);

7. Bind the results to the grid on the screen.

dataTable.Clear();
adapter.SelectCommand.CommandText =
 "SELECT * FROM Departments";

Accessing and manipulating data

Copyright © 2007, iAnywhere Solutions, Inc. 121

rowCount = adapter.Fill(dataTable);
dataGrid.DataSource = dataTable;

8. Close the connection.

conn.Close();

♦ To delete rows from a table using the SADataAdapter object

1. Declare and initialize an SAConnection object.

SAConnection conn = new SAConnection(c_connStr);
2. Open the connection.

conn.Open();
3. Create an SADataAdapter object.

SADataAdapter adapter = new SADataAdapter();
adapter.MissingMappingAction =
 MissingMappingAction.Passthrough;
adapter.MissingSchemaAction =
 MissingSchemaAction.AddWithKey;

4. Create the required SACommand objects and define any necessary parameters.

The following code creates a SELECT and a DELETE command and defines the parameters for the
DELETE command.

adapter.SelectCommand = new SACommand(
 "SELECT * FROM Departments WHERE DepartmentID > 500",
 conn);
adapter.DeleteCommand = new SACommand(
 "DELETE FROM Departments WHERE DepartmentID = ?",
 conn);
adapter.DeleteCommand.UpdatedRowSource =
 UpdateRowSource.None;
SAParameter parm = new SAParameter();
parm.SADbType = SADbType.Integer;
parm.SourceColumn = "DepartmentID";
parm.SourceVersion = DataRowVersion.Original;
adapter.DeleteCommand.Parameters.Add(parm);

5. Fill the DataTable with the results of the SELECT statement.

DataTable dataTable = new DataTable("Departments");
int rowCount = adapter.Fill(dataTable);

6. Modify the DataTable and apply the changes to the database.

for each (DataRow in dataTable.Rows)
{
 row.Delete();
}
recordsAffected = adapter.Update(dataTable)

7. Bind the results to the grid on the screen.

SQL Anywhere .NET Data Provider

122 Copyright © 2007, iAnywhere Solutions, Inc.

dataTable.Clear();
rowCount = adapter.Fill(dataTable);
dataGrid.DataSource = dataTable;

8. Close the connection.

conn.Close();

Obtaining SADataAdapter schema information

When using the SADataAdapter, you can use the FillSchema method to obtain schema information about
the result set in the DataSet. The FillSchema method returns the standard .NET DataTable object, which
provides the names of all the columns in the result set.

♦ To obtain DataSet schema information using the FillSchema method

1. Declare and initialize an SAConnection object.

SAConnection conn = new SAConnection(
 c_connStr);

2. Open the connection.

conn.Open();
3. Create an SADataAdapter with the SELECT statement you want to use. The schema is returned for the

result set of this query.

SADataAdapter adapter = new SADataAdapter(
 "SELECT * FROM Employees", conn);

4. Create a new DataTable object, in this case called Table, to fill with the schema.

DataTable dataTable = new DataTable(
 "Table");

5. Fill the DataTable with the schema from the data source.

adapter.FillSchema(dataTable, SchemaType.Source);
6. Close the SAConnection object.

conn.Close();
7. Bind the DataSet to the grid on the screen.

dataGrid.DataSource = dataTable;

Obtaining primary key values

If the table you are updating has an autoincremented primary key, uses UUIDs, or if the primary key comes
from a primary key pool, you can use a stored procedure to obtain values generated by the data source.

Accessing and manipulating data

Copyright © 2007, iAnywhere Solutions, Inc. 123

When using the SADataAdapter, this technique can be used to fill the columns in the DataSet with the primary
key values generated by the data source. If you want to use this technique with the SACommand object, you
can either get the key columns from the parameters or reopen the DataReader.

Examples
The following examples use a table called adodotnet_primarykey that contains two columns, ID and Name.
The primary key for the table is ID. It is an INTEGER and contains an autoincremented value. The Name
column is CHAR(40).

These examples call the following stored procedure to retrieve the autoincremented primary key value from
the database.

CREATE PROCEDURE sp_adodotnet_primarykey(out p_id int, in p_name char(40))
BEGIN
 INSERT INTO adodotnet_primarykey(name) VALUES(
 p_name);
 SELECT @@IDENTITY INTO p_id;
END

♦ To insert a new row with an autoincremented primary key using the SACommand object

1. Connect to the database.

SAConnection conn = OpenConnection();
2. Create a new SACommand object to insert new rows into the DataTable. In the following code, the line

int id1 = (int) parmId.Value; verifies the primary key value of the row.

SACommand cmd = conn.CreateCommand();
cmd.CommandText = "sp_adodotnet_primarykey";
cmd.CommandType = CommandType.StoredProcedure;
SAParameter parmId = new SAParameter();
parmId.SADbType = SADbType.Integer;
parmId.Direction = ParameterDirection.Output;
cmd.Parameters.Add(parmId);
SAParameter parmName = new SAParameter();
parmName.SADbType = SADbType.Char;
parmName.Direction = ParameterDirection.Input;
cmd.Parameters.Add(parmName);
parmName.Value = "R & D --- Command";
cmd.ExecuteNonQuery();
int id1 = (int) parmId.Value;
parmName.Value = "Marketing --- Command";
cmd.ExecuteNonQuery();
int id2 = (int) parmId.Value;
parmName.Value = "Sales --- Command";
cmd.ExecuteNonQuery();
int id3 = (int) parmId.Value;
parmName.Value = "Shipping --- Command";
cmd.ExecuteNonQuery();
int id4 = (int) parmId.Value;

3. Bind the results to the grid on the screen and apply the changes to the database.

cmd.CommandText = "SELECT * FROM " +
 adodotnet_primarykey";
cmd.CommandType = CommandType.Text;
SADataReader dr = cmd.ExecuteReader();
dataGrid.DataSource = dr;

SQL Anywhere .NET Data Provider

124 Copyright © 2007, iAnywhere Solutions, Inc.

4. Close the connection.

conn.Close();

♦ To insert a new row with an autoincremented primary key using the SADataAdapter object

1. Create a new SADataAdapter.

DataSet dataSet = new DataSet();
SAConnection conn = OpenConnection();
SADataAdapter adapter = new SADataAdapter();
adapter.MissingMappingAction =
 MissingMappingAction.Passthrough;
adapter.MissingSchemaAction =
 MissingSchemaAction.AddWithKey;

2. Fill the data and schema of the DataSet. The SelectCommand is called by the SADataAdapter.Fill
method to do this. You can also create the DataSet manually without using the Fill method and
SelectCommand if you do not need the existing records.

adapter.SelectCommand = new SACommand("select * from +
adodotnet_primarykey", conn);

3. Create a new SACommand to obtain the primary key values from the database.

adapter.InsertCommand = new SACommand(
 "sp_adodotnet_primarykey", conn);
adapter.InsertCommand.CommandType =
 CommandType.StoredProcedure;
adapter.InsertCommand.UpdatedRowSource =
 UpdateRowSource.OutputParameters;
SAParameter parmId = new SAParameter();
parmId.SADbType = SADbType.Integer;
parmId.Direction = ParameterDirection.Output;
parmId.SourceColumn = "ID";
parmId.SourceVersion = DataRowVersion.Current;
adapter.InsertCommand.Parameters.Add(parmId);
SAParameter parmName = new SAParameter();
parmName.SADbType = SADbType.Char;
parmName.Direction = ParameterDirection.Input;
parmName.SourceColumn = "name";
parmName.SourceVersion = DataRowVersion.Current;
adapter.InsertCommand.Parameters.Add(parmName);

4. Fill the DataSet.

adapter.Fill(dataSet);
5. Insert the new rows into the DataSet.

DataRow row = dataSet.Tables[0].NewRow();
row[0] = -1;
row[1] = "R & D --- Adapter";
dataSet.Tables[0].Rows.Add(row);
row = dataSet.Tables[0].NewRow();
row[0] = -2;
row[1] = "Marketing --- Adapter";
dataSet.Tables[0].Rows.Add(row);
row = dataSet.Tables[0].NewRow();
row[0] = -3;
row[1] = "Sales --- Adapter";

Accessing and manipulating data

Copyright © 2007, iAnywhere Solutions, Inc. 125

dataSet.Tables[0].Rows.Add(row);
row = dataSet.Tables[0].NewRow();
row[0] = -4;
row[1] = "Shipping --- Adapter";
dataSet.Tables[0].Rows.Add(row);

6. Apply the changes in the DataSet to the database. When the Update method is called, the primary key
values are changed to the values obtained from the database.

adapter.Update(dataSet);
dataGrid.DataSource = dataSet.Tables[0];

When you add new rows to the DataTable and call the Update method, the SADataAdapter calls the
InsertCommand and maps the output parameters to the key columns for each new row. The Update
method is called only once, but the InsertCommand is called by the Update method as many times as
necessary for each new row being added.

7. Close the connection to the database.

conn.Close();

Handling BLOBs

When fetching long string values or binary data, there are methods that you can use to fetch the data in pieces.
For binary data, use the GetBytes method, and for string data, use the GetChars method. Otherwise, BLOB
data is treated in the same manner as any other data you fetch from the database.

For more information, see “GetBytes method” on page 285 and “GetChars method” on page 287.

♦ To issue a command that returns a string using the GetChars method

1. Declare and initialize a Connection object.

2. Open the connection.

3. Add a Command object to define and execute a SQL statement.

SACommand cmd = new SACommand(
 "SELECT int_col, blob_col FROM test", conn);

4. Call the ExecuteReader method to return the DataReader object.

SADataReader reader = cmd.ExecuteReader();

The following code reads the two columns from the result set. The first column is an integer (GetInt32
(0)), while the second column is a LONG VARCHAR. GetChars is used to read 100 characters at
a time from the LONG VARCHAR column.

int length = 100;
char[] buf = new char[length];
int intValue;
long dataIndex = 0;
long charsRead = 0;
long blobLength = 0;
while(reader.Read()) {
 intValue = reader.GetInt32(0);

SQL Anywhere .NET Data Provider

126 Copyright © 2007, iAnywhere Solutions, Inc.

 while ((charsRead = reader.GetChars(
 1, dataIndex, buf, 0, length)) == (long)
 length) {
 dataIndex += length;
}
blobLength = dataIndex + charsRead;
}

5. Close the DataReader and Connection objects.

reader.Close();
conn.Close();

Obtaining time values

The .NET Framework does not have a Time structure. If you want to fetch time values from SQL Anywhere,
you must use the GetTimeSpan method. Using this method returns the data as a .NET Framework TimeSpan
object.

For more information about the GetTimeSpan method, see “GetTimeSpan method” on page 299.

♦ To convert a time value using the GetTimeSpan method

1. Declare and initialize a connection object.

SAConnection conn = new SAConnection(
 "Data Source=dsn-time-test;UID=DBA;PWD=sql");

2. Open the connection.

conn.Open();
3. Add a Command object to define and execute a SQL statement.

SACommand cmd = new SACommand(
 "SELECT ID, time_col FROM time_test", conn)

4. Call the ExecuteReader method to return the DataReader object.

SADataReader reader = cmd.ExecuteReader();

The following code uses the GetTimeSpan method to return the time as TimeSpan.

while (reader.Read())
{
 int ID = reader.GetInt32();
 TimeSpan time = reader.GetTimeSpan();
}

5. Close the DataReader and Connection objects.

reader.Close();
conn.Close();

Accessing and manipulating data

Copyright © 2007, iAnywhere Solutions, Inc. 127

Using stored procedures
You can use stored procedures with the .NET Data Provider. The ExecuteReader method is used to call
stored procedures that return a result set, while the ExecuteNonQuery method is used to call stored procedures
that do not return a result set. The ExecuteScalar method is used to call stored procedures that return only a
single value.

When you call a stored procedure, you must create an SAParameter object. Use a question mark as a
placeholder for parameters, as follows:

sp_producttype(?, ?)

For more information about the Parameter object, see “SAParameter class” on page 352.

♦ To execute a stored procedure

1. Declare and initialize an SAConnection object.

SAConnection conn = new SAConnection(
 "Data Source=SQL Anywhere 10 Demo");

2. Open the connection.

conn.Open();
3. Add an SACommand object to define and execute a SQL statement. The following code uses the

CommandType property to identify the command as a stored procedure.

SACommand cmd = new SACommand("ShowProductInfo",
 conn);
cmd.CommandType = CommandType.StoredProcedure;

If you do not specify the CommandType property, then you must use a question mark as a placeholder
for parameters, as follows:

SACommand cmd = new SACommand(
 "call ShowProductInfo(?)", conn);
cmd.CommandType = CommandType.Text;

4. Add an SAParameter object to define the parameters for the stored procedure. You must create a new
SAParameter object for each parameter the stored procedure requires.

SAParameter param = cmd.CreateParameter();
param.SADbType = SADbType.Int32;
param.Direction = ParameterDirection.Input;
param.Value = 301;
cmd.Parameters.Add(param);

For more information about the Parameter object, see “SAParameter class” on page 352.

5. Call the ExecuteReader method to return the DataReader object. The Get methods are used to return
the results in the desired data type.

SADataReader reader = cmd.ExecuteReader();
reader.Read();
int ID = reader.GetInt32(0);
string name = reader.GetString(1);

SQL Anywhere .NET Data Provider

128 Copyright © 2007, iAnywhere Solutions, Inc.

string descrip = reader.GetString(2);
decimal price = reader.GetDecimal(6);

6. Close the SADataReader and SAConnection objects.

reader.Close();
conn.Close();

Alternative way to call a stored procedure
Step 3 in the above instructions presents two ways you can call a stored procedure. Another way you can
call a stored procedure, without using a Parameter object, is to call the stored procedure from your source
code, as follows:

SACommand cmd = new SACommand(
 "call ShowProductInfo(301)", conn);

For information about calling stored procedures that return a result set or a single value, see “Getting data
using the SACommand object” on page 112.

For information about calling stored procedures that do not return a result set, see “Inserting, updating, and
deleting rows using the SACommand object” on page 114.

Using stored procedures

Copyright © 2007, iAnywhere Solutions, Inc. 129

Transaction processing
With the SQL Anywhere .NET Data Provider, you can use the SATransaction object to group statements
together. Each transaction ends with a COMMIT or ROLLBACK, which either makes your changes to the
database permanent or cancels all the operations in the transaction. Once the transaction is complete, you
must create a new SATransaction object to make further changes. This behavior is different from ODBC
and embedded SQL, where a transaction persists after you execute a COMMIT or ROLLBACK until the
transaction is closed.

If you do not create a transaction, the SQL Anywhere .NET Data Provider operates in autocommit mode by
default. There is an implicit COMMIT after each insert, update, or delete, and once an operation is completed,
the change is made to the database. In this case, the changes cannot be rolled back.

For more information about the SATransaction object, see “SATransaction class” on page 419.

Setting the isolation level for transactions
The database isolation level is used by default for transactions. However, you can choose to specify the
isolation level for a transaction using the IsolationLevel property when you begin the transaction. The
isolation level applies to all commands executed within the transaction. The SQL Anywhere .NET Data
Provider supports snapshot isolation.

For more information about isolation levels, see “Isolation levels and consistency” [SQL Anywhere Server
- SQL Usage].

The locks that SQL Anywhere uses when you enter a SELECT statement depend on the transaction's isolation
level.

For more information about locking and isolation levels, see “Locking during queries” [SQL Anywhere
Server - SQL Usage].

The following example uses an SATransaction object to issue and then roll back a SQL statement. The
transaction uses isolation level 2 (RepeatableRead), which places a write lock on the row being modified so
that no other database user can update the row.

♦ To use an SATransaction object to issue a command

1. Declare and initialize an SAConnection object.

SAConnection conn = new SAConnection(
 "Data Source=SQL Anywhere 10 Demo");

2. Open the connection.

conn.Open();
3. Issue a SQL statement to change the price of Tee shirts.

string stmt = "UPDATE Products SET UnitPrice =
 2000.00 WHERE name = 'Tee shirt'";

4. Create an SATransaction object to issue the SQL statement using a Command object.

SQL Anywhere .NET Data Provider

130 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf

Using a transaction allows you to specify the isolation level. Isolation level 2 (RepeatableRead) is used
in this example so that another database user cannot update the row.

SATransaction trans = conn.BeginTransaction(
 IsolationLevel.RepeatableRead);
SACommand cmd = new SACommand(stmt, conn,
 trans);
int rows = cmd.ExecuteNonQuery();

5. Roll back the changes.

trans.Rollback();

The SATransaction object allows you to commit or roll back your changes to the database. If you do
not use a transaction, the .NET Data Provider operates in autocommit mode and you cannot roll back
any changes that you make to the database. If you want to make the changes permanent, you would use
the following:

trans.Commit();
6. Close the SAConnection object.

conn.Close();

Transaction processing

Copyright © 2007, iAnywhere Solutions, Inc. 131

Error handling and the SQL Anywhere .NET Data
Provider

Your application must be designed to handle any errors that occur, including ADO.NET errors. ADO.NET
errors are handled within your code in the same way that you handle other errors in your application.

The SQL Anywhere .NET Data Provider throws SAException objects whenever errors occur during
execution. Each SAException object consists of a list of SAError objects, and these error objects include the
error message and code.

Errors are different from conflicts. Conflicts arise when changes are applied to the database. Your application
should include a process to compute correct values or to log conflicts when they arise.

For more information about handling conflicts, see “Resolving conflicts when using the
SADataAdapter” on page 119.

.NET Data Provider error handling example
The following example is from the Simple sample project. Any errors that occur during execution and that
originate with SQL Anywhere .NET Data Provider objects are handled by displaying them in a message
box. The following code catches the error and displays its message:

catch(SAException ex) {
 MessageBox.Show(ex.Errors[0].Message);
}

Connection error handling example
The following example is from the Table Viewer sample project. If there is an error when the application
attempts to connect to the database, the following code uses a try and catch block to catch the error and
display its message:

try {
 _conn = new SAConnection(txtConnectString.Text);
 _conn.Open();
 } catch(SAException ex) {
 MessageBox.Show(ex.Errors[0].Source + " : "
 + ex.Errors[0].Message + " (" +
 ex.Errors[0].NativeError.ToString() + ")",
 "Failed to connect");

For more error handling examples, see “Understanding the Simple sample project” on page 142 and
“Understanding the Table Viewer sample project” on page 147.

For more information about error handling, see “SAFactory class” on page 327 and “SAError
class” on page 317.

SQL Anywhere .NET Data Provider

132 Copyright © 2007, iAnywhere Solutions, Inc.

Deploying the SQL Anywhere .NET Data Provider
The following sections describe how to deploy the SQL Anywhere .NET Data Provider.

SQL Anywhere .NET Data Provider system requirements

To use the SQL Anywhere .NET Data Provider, you must have the following installed on your computer or
handheld device:

♦ the .NET Framework and/or .NET Compact Framework version 1.x or 2.0

♦ Visual Studio .NET 2003 or 2005, or a .NET language compiler, such as C# (required only for
development)

SQL Anywhere .NET Data Provider required files

The SQL Anywhere .NET Data Provider consists of two DLLs for each platform.

Windows required files
For Windows (except Windows CE) the following DLLs are required:

♦ install-dir\Assembly\v2\iAnywhere.Data.SQLAnywhere.dll

♦ install-dir\Assembly\v1\iAnywhere.Data.SQLAnywhere.dll

The file iAnywhere.Data.SQLAnywhere.dll) is the DLL that is referenced by Visual Studio projects. The
first DLL is required for .NET Framework and/or .NET Compact Framework version 2.0 applications. The
second DLL is required for .NET Framework and/or .NET Compact Framework version 1.x applications.

Windows CE required files
These files must be installed in your SQL Anywhere installation directory (the default location is C:\Program
Files\SQL Anywhere 10\ce\Assembly) because they require the language DLLs that are also located in your
SQL Anywhere installation directory.

For Windows CE, iAnywhere.Data.SQLAnywhere.dll is the DLL that is referenced by Visual Studio projects.
There are versions for .NET Compact Framework version 2.0 or 1.x under each supported Windows CE
hardware platform. The DLLs are stored in the following locations under install-dir\ce\Assembly:

♦ v2\arm.30\iAnywhere.Data.SQLAnywhere.dll

♦ v2\arm.50\iAnywhere.Data.SQLAnywhere.dll

♦ v2\armt.40\iAnywhere.Data.SQLAnywhere.dll

♦ v2\x86.30\iAnywhere.Data.SQLAnywhere.dll

♦ v1\arm.30\iAnywhere.Data.SQLAnywhere.dll

Deploying the SQL Anywhere .NET Data Provider

Copyright © 2007, iAnywhere Solutions, Inc. 133

♦ v1\armt.40\iAnywhere.Data.SQLAnywhere.dll

♦ v1\arm.50\iAnywhere.Data.SQLAnywhere.dll

♦ v1\x86.30\iAnywhere.Data.SQLAnywhere.dll

Visual Studio .NET deploys the .NET Data Provider DLL (iAnywhere.Data.SQLAnywhere.dll) to your
device along with your program. If you are not using Visual Studio .NET, you need to copy the Data Provider
DLL to the device along with your program. It can go in the same directory as your application, or in the
Windows directory.

Registering the SQL Anywhere .NET Data Provider DLL

The SQL Anywhere .NET Data Provider DLL (install-dir\Assembly\v2\iAnywhere.Data.SQLAnywhere.dll)
needs to be registered in the Global Assembly Cache on Windows (except Windows CE). The Global
Assembly Cache lists all the registered programs on your machine. When you install the .NET Data Provider,
the .NET Data Provider installation program registers it. On Windows CE, you do not need to register the
DLL.

If you are deploying the .NET Data Provider, you must register the .NET Data Provider DLL (install-dir
\Assembly\v2\iAnywhere.Data.SQLAnywhere.dll) using the gacutil utility that is included with the .NET
Framework.

SQL Anywhere .NET Data Provider

134 Copyright © 2007, iAnywhere Solutions, Inc.

.NET 2.0 tracing support
The SQL Anywhere ADO.NET 2.0 provider supports tracing using the .NET 2.0 tracing feature. Note that
tracing is not supported on Windows CE.

By default, tracing is disabled. To enable tracing, specify the trace source in your application's configuration
file. Here's an example of the configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.diagnostics>
<sources>
 <source name="iAnywhere.Data.SQLAnywhere"
 switchName="SASourceSwitch"
 switchType="System.Diagnostics.SourceSwitch">
 <listeners>
 <add name="ConsoleListener"
 type="System.Diagnostics.ConsoleTraceListener"/>
 <add name="EventListener"
 type="System.Diagnostics.EventLogTraceListener"
 initializeData="MyEventLog"/>
 <add name="TraceLogListener"
 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="myTrace.log"
 traceOutputOptions="ProcessId, ThreadId, Timestamp"/>
 <remove name="Default"/>
 </listeners>
 </source>
</sources>
<switches>
 <add name="SASourceSwitch" value="All"/>
 <add name="SATraceAllSwitch" value="1" />
 <add name="SATraceExceptionSwitch" value="1" />
 <add name="SATraceFunctionSwitch" value="1" />
 <add name="SATracePoolingSwitch" value="1" />
 <add name="SATracePropertySwitch" value="1" />
</switches>
</system.diagnostics>
</configuration>

The trace configuration information is placed in the application's bin\debug folder under the name
app.exe.config.

The traceOutputOptions that can be specified include the following:

♦ Callstack Write the call stack, which is represented by the return value of the Environment.StackTrace
property.

♦ DateTime Write the date and time.

♦ LogicalOperationStack Write the logical operation stack, which is represented by the return value
of the CorrelationManager.LogicalOperationStack property.

♦ None Do not write any elements.

♦ ProcessId Write the process identity, which is represented by the return value of the Process.Id
property.

.NET 2.0 tracing support

Copyright © 2007, iAnywhere Solutions, Inc. 135

♦ ThreadId Write the thread identity, which is represented by the return value of the
Thread.ManagedThreadId property for the current thread.

♦ Timestamp Write the timestamp, which is represented by the return value of the
System.Diagnostics.Stopwatch.GetTimeStamp method.

You can limit what is traced by setting specific trace options. By default the trace option settings are all 0.
The trace options that can be set include the following:

♦ SATraceAllSwitch The Trace All switch. When specified, all the trace options are enabled. You do
not need to set any other options since they are all selected. You cannot disable individual options if you
choose this option. For example, the following will not disable exception tracing.

<add name="SATraceAllSwitch" value="1" />
<add name="SATraceExceptionSwitch" value="0" />

♦ SATraceExceptionSwitch All exceptions are logged. Trace messages have the following form.

<Type|ERR> message='message_text'[nativeError=error_number]

The nativeError=error_number text will only be displayed if there is an SAException object.

♦ SATraceFunctionSwitch All function scope entry/exits are logged. Trace messages have any of the
following forms.

enter_nnn <sa.class_name.method_name|API> [object_id#][parameter_names]
leave_nnn

The nnn is an integer representing the scope nesting level 1, 2, 3,... The optional parameter_names is a
list of parameter names separated by spaces.

♦ SATracePoolingSwitch All connection pooling is logged. Trace messages have any of the
following forms.

<sa.ConnectionPool.AllocateConnection|CPOOL>
connectionString='connection_text'
<sa.ConnectionPool.RemoveConnection|CPOOL>
connectionString='connection_text'
<sa.ConnectionPool.ReturnConnection|CPOOL>
connectionString='connection_text'
<sa.ConnectionPool.ReuseConnection|CPOOL>
connectionString='connection_text'

♦ SATracePropertySwitch All property setting and retrieval is logged. Trace messages have any of
the following forms.

<sa.class_name.get_property_name|API> object_id#
<sa.class_name.set_property_name|API> object_id#

To illustrate application tracing, we will use the TableViewer sample.

♦ To configure an application for tracing

1. You must use .NET 2.0. Tracing is not supported in .NET 1.x.

SQL Anywhere .NET Data Provider

136 Copyright © 2007, iAnywhere Solutions, Inc.

Start Visual Studio 2005 and open the TableViewer project file (TableViewer.sln) in samples-dir
\Samples\SQLAnywhere\ADO.NET\TableViewer.

2. As distributed, this application uses .NET 1.0. To convert it to .NET 2.0, open up the References folder
in the Solution Explorer pane.

3. Right-click iAnywhere.Data.SQLAnywhere and select Remove. This removes the .NET 1.0 provider
from the project.

4. Right-click References and select Add.

5. From the .NET tab of the Add References dialog, select iAnywhere.Data.SQLAnywhere with a Runtime
version of 2.0.xxxxxx.

6. Click OK.

7. Place a copy of the configuration file shown above in the application's bin\debug folder under the name
TableViewer.exe.config.

8. From the Debug menu, select Start Debugging.

When the application finishes execution, you will find a trace output file in samples-dir\Samples
\SQLAnywhere\ADO.NET\TableViewer\bin\Debug\myTrace.log.

Please note that tracing is not supported on Windows CE.

For more information, see "Tracing Data Access" at http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/dnadonet/html/tracingdataaccess.asp.

.NET 2.0 tracing support

Copyright © 2007, iAnywhere Solutions, Inc. 137

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnadonet/html/tracingdataaccess.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnadonet/html/tracingdataaccess.asp

138

CHAPTER 8

Tutorial: Using the SQL Anywhere .NET Data
Provider

Contents
Introduction to the .NET data provider tutorial ... 140
Using the Simple code sample .. 141
Using the Table Viewer code sample .. 145

Copyright © 2007, iAnywhere Solutions, Inc. 139

Introduction to the .NET data provider tutorial
This chapter explains how to use the Simple and Table Viewer sample projects that are included with the
SQL Anywhere .NET Data Provider.

If your SQL Anywhere installation directory is not the default (C:\Program Files\SQL Anywhere 10), you
may receive an error referencing the Data Provider DLL when you load the sample projects. If this happens,
add a new reference to iAnywhere.Data.SQLAnywhere.dll.

For instructions on adding a reference to the DLL, see “Adding a reference to the Data Provider DLL in
your project” on page 106.

Note
The SQL Anywhere documentation describes the API for the SQL Anywhere .NET Data Provider for
ADO.NET 2.0.
If you are developing an application with ADO.NET 1.0, refer to the API reference for the SQL
Anywhere .NET Data Provider at http://www.ianywhere.com/downloads/products/sqlanywhere/
sql_10_dotnet_api_reference.pdf.

Tutorial: Using the SQL Anywhere .NET Data Provider

140 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/downloads/products/sqlanywhere/sql_10_dotnet_api_reference.pdf
http://www.ianywhere.com/downloads/products/sqlanywhere/sql_10_dotnet_api_reference.pdf

Using the Simple code sample
This tutorial is based on the Simple project that is included with SQL Anywhere 10.

The complete application can be found in your SQL Anywhere samples directory at samples-dir
\SQLAnywhere\ADO.NET\SimpleWin32.

For information about the default location of samples-dir, see “Samples directory” [SQL Anywhere Server
- Database Administration].

The Simple project illustrates the following features:

♦ connecting to a database using the SAConnection object

♦ executing a query using the SACommand object

♦ obtaining the results using the SADataReader object

♦ basic error handling

For more information about how the sample works, see “Understanding the Simple sample
project” on page 142.

♦ To run the Simple code sample in Visual Studio .NET

1. Start Visual Studio .NET.

2. Choose File ► Open ► Project.

3. Browse to samples-dir\SQLAnywhere\ADO.NET\SimpleWin32 and open the Simple.sln project.

4. When you use the SQL Anywhere .NET Data Provider in a project, you must add a reference to the
Data Provider DLL. This has already been done in the Simple code sample. You can view the reference
to the Data Provider DLL in the following location:

♦ In the Solution Explorer window, open the References folder.

♦ You should see iAnywhere.Data.SQLAnywhere in the list.

For instructions about adding a reference to the Data Provider DLL, see “Adding a reference to the
Data Provider DLL in your project” on page 106.

5. You must also add a using directive to your source code to reference the Data Provider classes. This
has already been done in the Simple code sample. To view the using directive:

♦ Open the source code for the project. In the Solution Explorer window, right-click Form1.cs and
choose View Code from the popup menu.

♦ In the using directives in the top section, you should see the following line:

using iAnywhere.Data.SQLAnywhere;

Using the Simple code sample

Copyright © 2007, iAnywhere Solutions, Inc. 141

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

This line is required for C# projects. If you are using Visual Basic .NET, you need to add an Imports
line to your source code.

6. Choose Debug ► Start Without Debugging or press Ctrl+F5 to run the Simple sample.

The SQL Anywhere Sample dialog appears.

♦ In the SQL Anywhere Sample dialog, click Connect.

The application connects to the SQL Anywhere sample database and puts the last name of each
employee in the dialog, as follows:

7. Click the X in the upper right corner of the screen to terminate the application and disconnect from the
sample database. This also shuts down the database server.

You have now run the application. The next section describes the application code.

Understanding the Simple sample project
This section illustrates some key features of the SQL Anywhere .NET Data Provider by walking through
some of the code from the Simple code sample. The Simple code sample uses the SQL Anywhere sample
database, demo.db, which is held in your SQL Anywhere samples directory.

For information about the location of the SQL Anywhere samples directory, see “Samples directory” [SQL
Anywhere Server - Database Administration].

For information about the sample database, including the tables in the database and the relationships between
them, see “SQL Anywhere Sample Database” [SQL Anywhere 10 - Introduction].

In this section, the code is described a few lines at a time. Not all code from the sample is included here. To
see all the code, open the sample project in samples-dir\SQLAnywhere\ADO.NET\SimpleWin32.

Declaring controls The following code declares a button named btnConnect and a listbox named
listEmployees.

Tutorial: Using the SQL Anywhere .NET Data Provider

142 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbfgen10.pdf

private System.Windows.Forms.Button btnConnect;
private System.Windows.Forms.ListBox listEmployees;

Connecting to the database The btnConnect_Click method declares and initializes an SAConnection
connection object.

private void btnConnect_Click(object sender,
 System.EventArgs e)
 SAConnection conn = new SAConnection(
 "Data Source=SQL Anywhere 10 Demo;UID=DBA;PWD=sql");

The SAConnection object uses the connection string to connect to the SQL Anywhere sample database when
the Open method is called.

conn.Open();

For more information about the SAConnection object, see “SAConnection class” on page 221.

Defining a query A SQL statement is executed using an SACommand object. The following code declares
and creates a command object using the SACommand constructor. This constructor accepts a string
representing the query to be executed, along with the SAConnection object that represents the connection
that the query is executed on.

SACommand cmd = new SACommand(
 "SELECT Surname FROM Employees", conn);

For more information about the SACommand object, see “SACommand class” on page 180.

Displaying the results The results of the query are obtained using an SADataReader object. The
following code declares and creates an SADataReader object using the ExecuteReader constructor. This
constructor is a member of the SACommand object, cmd, that was declared previously. ExecuteReader sends
the command text to the connection for execution and builds an SADataReader.

SADataReader reader = cmd.ExecuteReader();

The following code loops through the rows held in the SADataReader object and adds them to the listbox
control. Each time the Read method is called, the data reader gets another row back from the result set. A
new item is added to the listbox for each row that is read. The data reader uses the GetString method with
an argument of 0 to get the first column from the result set row.

listEmployees.BeginUpdate();
while(reader.Read()) {
 listEmployees.Items.Add(reader.GetString(0));
}
listEmployees.EndUpdate();

For more information about the SADataReader object, see “SADataReader class” on page 277.

Finishing off The following code at the end of the method closes the data reader and connection objects.

reader.Close();
conn.Close();

Error handling Any errors that occur during execution and that originate with SQL Anywhere .NET Data
Provider objects are handled by displaying them in a message box. The following code catches the error and
displays its message:

Using the Simple code sample

Copyright © 2007, iAnywhere Solutions, Inc. 143

catch(SAException ex) {
 MessageBox.Show(ex.Errors[0].Message);
}

For more information about the SAException object, see “SAException class” on page 323.

Tutorial: Using the SQL Anywhere .NET Data Provider

144 Copyright © 2007, iAnywhere Solutions, Inc.

Using the Table Viewer code sample
This tutorial is based on the Table Viewer project that is included with the SQL Anywhere .NET Data
Provider.

The complete application can be found in your SQL Anywhere samples directory in samples-dir
\SQLAnywhere\ADO.NET\TableViewer.

For information about the default location of samples-dir, see “Samples directory” [SQL Anywhere Server
- Database Administration].

The Table Viewer project is more complex than the Simple project. It illustrates the following features:

♦ connecting to a database using the SAConnection object

♦ executing a query using the SACommand object

♦ obtaining the results using the SADataReader object

♦ using a grid to display the results using the DataGrid object

♦ more advanced error handling and result checking

For more information about how the sample works, see “Understanding the Table Viewer sample
project” on page 147.

♦ To run the Table Viewer code sample in Visual Studio .NET

1. Start Visual Studio .NET.

2. Choose File ► Open ► Project.

3. Browse to samples-dir\SQLAnywhere\ADO.NET\TableViewer and open the TableViewer.sln project.

4. If you want to use the SQL Anywhere .NET Data Provider in a project, you must add a reference to the
Data Provider DLL. This has already been done in the Table Viewer code sample. You can view the
reference to the Data Provider DLL in the following location:

♦ In the Solution Explorer window, open the References folder.

♦ You should see iAnywhere.Data.SQLAnywhere in the list.

For instructions about adding a reference to the Data Provider DLL, see “Adding a reference to the
Data Provider DLL in your project” on page 106.

5. You must also add a using directive to your source code to reference the Data Provider classes. This
has already been done in the Table Viewer code sample. To view the using directive:

♦ Open the source code for the project. In the Solution Explorer window, right-click
TableViewer.cs and choose View Code from the popup menu.

♦ In the using directives in the top section, you should see the following line:

Using the Table Viewer code sample

Copyright © 2007, iAnywhere Solutions, Inc. 145

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

using iAnywhere.Data.SQLAnywhere;

This line is required for C# projects. If you are using Visual Basic .NET, you need to add an Imports
line to your source code.

6. Choose Debug ► Start Without Debugging or press Ctrl+F5 to run the Table Viewer sample.

The Table Viewer dialog appears.

♦ In the Table Viewer dialog, click Connect.

The application connects to the SQL Anywhere sample database.

♦ In the Table Viewer dialog, click Execute.

The application retrieves the data from the Employees table in the sample database and puts the
query results in the Results DataList, as follows:

♦ You can also execute other SQL statements from this application: type a SQL statement in the SQL
Statement pane, and then click Execute.

7. Click the X in the upper right corner of the screen to terminate the application and disconnect from the
SQL Anywhere sample database. This also shuts down the database server.

You have now run the application. The next section describes the application code.

Tutorial: Using the SQL Anywhere .NET Data Provider

146 Copyright © 2007, iAnywhere Solutions, Inc.

Understanding the Table Viewer sample project
This section illustrates some key features of the SQL Anywhere .NET Data Provider by walking through
some of the code from the Table Viewer code sample. The Table Viewer project uses the SQL Anywhere
sample database, demo.db, which is held in your SQL Anywhere samples directory.

For information about the location of the SQL Anywhere samples directory, see “Samples directory” [SQL
Anywhere Server - Database Administration].

For information about the sample database, including the tables in the database and the relationships between
them, see “SQL Anywhere Sample Database” [SQL Anywhere 10 - Introduction].

In this section the code is described a few lines at a time. Not all code from the sample is included here. To
see all the code, open the sample project in samples-dir\SQLAnywhere\ADO.NET\TableViewer.

Declaring controls The following code declares a couple of Labels named label1 and label2, a TextBox
named txtConnectString, a button named btnConnect, a TextBox named txtSQLStatement, a button named
btnExecute, and a DataGrid named dgResults.

private System.Windows.Forms.Label label1;
private System.Windows.Forms.TextBox txtConnectString;
private System.Windows.Forms.Label label2;
private System.Windows.Forms.Button btnConnect;
private System.Windows.Forms.TextBox txtSQLStatement;
private System.Windows.Forms.Button btnExecute;
private System.Windows.Forms.DataGrid dgResults;

Declaring a connection object The SAConnection type is used to declare an uninitialized SQL
Anywhere connection object. The SAConnection object is used to represent a unique connection to a SQL
Anywhere data source.

private SAConnection _conn;

For more information about the SAConnection class, see “SAConnection class” on page 221.

Connecting to the database The Text property of the txtConnectString object has a default value of
"Data Source=SQL Anywhere 10 Demo". This value can be overridden by the application user by typing a
new value into the txtConnectString text box. You can see how this default value is set by opening up the
region or section in TableViewer.cs labeled Windows Form Designer Generated Code. In this section, you
find the following line of code.

this.txtConnectString.Text = "Data Source=SQL Anywhere 10 Demo";

Later, the SAConnection object uses the connection string to connect to a database. The following code
creates a new connection object with the connection string using the SAConnection constructor. It then
establishes the connection by using the Open method.

_conn = new SAConnection(txtConnectString.Text);
_conn.Open();

For more information about the SAConnection constructor, see “SAConnection members” on page 221.

Defining a query The Text property of the txtSQLStatement object has a default value of "SELECT *
FROM Employees". This value can be overridden by the application user by typing a new value into the
txtSQLStatement text box.

Using the Table Viewer code sample

Copyright © 2007, iAnywhere Solutions, Inc. 147

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbfgen10.pdf

The SQL statement is executed using an SACommand object. The following code declares and creates a
command object using the SACommand constructor. This constructor accepts a string representing the query
to be executed, along with the SAConnection object that represents the connection that the query is executed
on.

SACommand cmd = new SACommand(txtSQLStatement.Text.Trim(),
 _conn);

For more information about the SACommand object, see “SACommand class” on page 180.

Displaying the results The results of the query are obtained using an SADataReader object. The
following code declares and creates an SADataReader object using the ExecuteReader constructor. This
constructor is a member of the SACommand object, cmd, that was declared previously. ExecuteReader sends
the command text to the connection for execution and builds an SADataReader.

SADataReader dr = cmd.ExecuteReader();

The following code connects the SADataReader object to the DataGrid object, which causes the result
columns to appear on the screen. The SADataReader object is then closed.

dgResults.DataSource = dr;
dr.Close();

For more information about the SADataReader object, see “SADataReader class” on page 277.

Error handling If there is an error when the application attempts to connect to the database or when it
populates the Tables combo box, the following code catches the error and displays its message:

try {
 _conn = new SAConnection(txtConnectString.Text);
 _conn.Open();
 SACommand cmd = new SACommand(
 "SELECT table_name FROM systable where creator = 101", _conn);
 SADataReader dr = cmd.ExecuteReader();
 comboBoxTables.Items.Clear();
 while (dr.Read()) {
 comboBoxTables.Items.Add(dr.GetString(0));
 }
 dr.Close();
} catch(SAException ex) {
 MessageBox.Show(ex.Errors[0].Source + " : " +
 ex.Errors[0].Message + " (" +
 ex.Errors[0].NativeError.ToString() + ")",
 "Failed to connect");
}

For more information about the SAException object, see “SAException class” on page 323.

Tutorial: Using the SQL Anywhere .NET Data Provider

148 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 9

SQL Anywhere .NET 2.0 API Reference

Contents
SABulkCopy class ... 151
SABulkCopyColumnMapping class ... 163
SABulkCopyColumnMappingCollection class ... 170
SABulkCopyOptions enumeration ... 179
SACommand class .. 180
SACommandBuilder class ... 203
SACommLinksOptionsBuilder class .. 213
SAConnection class .. 221
SAConnectionStringBuilder class .. 238
SAConnectionStringBuilderBase class .. 259
SADataAdapter class .. 266
SADataReader class ... 277
SADataSourceEnumerator class ... 308
SADbType enumeration .. 310
SADefault class ... 315
SAError class ... 317
SAErrorCollection class ... 320
SAException class ... 323
SAFactory class ... 327
SAInfoMessageEventArgs class ... 334
SAInfoMessageEventHandler delegate ... 338
SAIsolationLevel enumeration ... 339
SAMessageType enumeration .. 341
SAMetaDataCollectionNames class .. 342
SAParameter class .. 352
SAParameterCollection class .. 366
SAPermission class ... 384
SAPermissionAttribute class ... 387
SARowsCopiedEventArgs class .. 390

Copyright © 2007, iAnywhere Solutions, Inc. 149

SARowsCopiedEventHandler delegate ... 393
SARowUpdatedEventArgs class ... 394
SARowUpdatedEventHandler delegate .. 397
SARowUpdatingEventArgs class .. 398
SARowUpdatingEventHandler delegate .. 401
SASpxOptionsBuilder class ... 402
SATcpOptionsBuilder class ... 408
SATransaction class .. 419

SQL Anywhere .NET 2.0 API Reference

150 Copyright © 2007, iAnywhere Solutions, Inc.

SABulkCopy class
Efficiently bulk load a SQL Anywhere table with data from another source. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SABulkCopy
 Implements IDisposable

C#

public sealed class SABulkCopy : IDisposable

Remarks
Restrictions: The SABulkCopy class is not available in the .NET Compact Framework 2.0.

Implements: IDisposable

See also
♦ “SABulkCopy members” on page 151

SABulkCopy members

Public constructors

Member name Description

SABulkCopy constructors Initializes an SABulkCopy object.

Public properties

Member name Description

BatchSize property Gets or sets the number of rows in each batch. At the end of each
batch, the rows in the batch are sent to the server.

BulkCopyTimeout property Gets or sets the number of seconds for the operation to complete be-
fore it times out.

ColumnMappings property Returns a collection of SABulkCopyColumnMapping items. Column
mappings define the relationships between columns in the data source
and columns in the destination.

DestinationTableName property Gets or sets the name of the destination table on the server.

NotifyAfter property Gets or sets the number of rows to be processed before generating a
notification event.

SABulkCopy class

Copyright © 2007, iAnywhere Solutions, Inc. 151

http://msdn2.microsoft.com/en-us/library/System.IDisposable.aspx

Public methods

Member name Description

Close method Closes the SABulkCopy instance.

Dispose method Disposes of the SABulkCopy instance.

WriteToServer methods Copies all rows in the supplied array of DataRow objects to a desti-
nation table specified by the DestinationTableName property of the
SABulkCopy object.

Public events

Member name Description

SARowsCopied event This event occurs every time the number of rows specified by the
NotifyAfter property have been processed.

See also
♦ “SABulkCopy class” on page 151

SABulkCopy constructors

Initializes an SABulkCopy object.

SABulkCopy(SAConnection) constructor

Syntax
Visual Basic

Public Sub New(_
 ByVal connection As SAConnection _
)

C#

public SABulkCopy(
 SAConnection connection
);

Parameters
♦ connection The already open SAConnection that will be used to perform the bulk-copy operation. If

the connection is not open, an exception is thrown in WriteToServer.

Remarks
Restrictions: The SABulkCopy class is not available in the .NET Compact Framework 2.0.

SQL Anywhere .NET 2.0 API Reference

152 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.DataRow.aspx

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151
♦ “SABulkCopy constructors” on page 152

SABulkCopy(String) constructor

Initializes an SABulkCopy object.

Syntax
Visual Basic

Public Sub New(_
 ByVal connectionString As String _
)

C#

public SABulkCopy(
 string connectionString
);

Parameters
♦ connectionString The string defining the connection that will be opened for use by the SABulkCopy

instance. A connection string is a semicolon-separated list of keyword=value pairs.

Remarks
This syntax opens a connection during WriteToServer using connectionString. The connection is closed at
the end of WriteToServer.

Restrictions: The SABulkCopy class is not available in the .NET Compact Framework 2.0.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151
♦ “SABulkCopy constructors” on page 152

SABulkCopy(String, SABulkCopyOptions) constructor

Initializes an SABulkCopy object.

Syntax
Visual Basic

Public Sub New(_
 ByVal connectionString As String, _
 ByVal copyOptions As SABulkCopyOptions _
)

SABulkCopy class

Copyright © 2007, iAnywhere Solutions, Inc. 153

C#

public SABulkCopy(
 string connectionString,
 SABulkCopyOptions copyOptions
);

Parameters
♦ connectionString The string defining the connection that will be opened for use by the SABulkCopy

instance. A connection string is a semicolon-separated list of keyword=value pairs.

♦ copyOptions A combination of values from the SABulkCopyOptions enumeration that determines
which data source rows are copied to the destination table.

Remarks
This syntax opens a connection during WriteToServer using connectionString. The connection is closed at
the end of WriteToServer. The copyOptions parameter has the effects described above.

Restrictions: The SABulkCopy class is not available in the .NET Compact Framework 2.0.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151
♦ “SABulkCopy constructors” on page 152

SABulkCopy(SAConnection, SABulkCopyOptions, SATransaction) constructor

Initializes an SABulkCopy object.

Syntax
Visual Basic

Public Sub New(_
 ByVal connection As SAConnection, _
 ByVal copyOptions As SABulkCopyOptions, _
 ByVal externalTransaction As SATransaction _
)

C#

public SABulkCopy(
 SAConnection connection,
 SABulkCopyOptions copyOptions,
 SATransaction externalTransaction
);

Parameters
♦ connection The already open SAConnection that will be used to perform the bulk-copy operation. If

the connection is not open, an exception is thrown in WriteToServer.

SQL Anywhere .NET 2.0 API Reference

154 Copyright © 2007, iAnywhere Solutions, Inc.

♦ copyOptions A combination of values from the SABulkCopyOptions enumeration that determines
which data source rows are copied to the destination table.

♦ externalTransaction An existing SATransaction instance under which the bulk copy will occur. If
externalTransaction is not NULL, then the bulk-copy operation is done within it. It is an error to specify
both an external transaction and the UseInternalTransaction option.

Remarks
Restrictions: The SABulkCopy class is not available in the .NET Compact Framework 2.0.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151
♦ “SABulkCopy constructors” on page 152

BatchSize property

Gets or sets the number of rows in each batch. At the end of each batch, the rows in the batch are sent to the
server.

Syntax
Visual Basic

Public Property BatchSize As Integer

C#

public int BatchSize { get; set; }

Property value
The number of rows in each batch. The default is 0.

Remarks
Setting this property to zero causes all the rows to be sent in one batch.

Setting this property to a value less than zero is an error.

If this value is changed while a batch is in progress, the current batch completes and any further batches use
the new value.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151

BulkCopyTimeout property

Gets or sets the number of seconds for the operation to complete before it times out.

SABulkCopy class

Copyright © 2007, iAnywhere Solutions, Inc. 155

Syntax
Visual Basic

Public Property BulkCopyTimeout As Integer

C#

public int BulkCopyTimeout { get; set; }

Property value
The default value is 30 seconds.

Remarks
A value of zero indicates no limit. This should be avoided because it may cause an indefinite wait.

If the operation times out, then all rows in the current transaction are rolled back and an SAException is
raised.

Setting this property to a value less than zero is an error.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151

ColumnMappings property

Returns a collection of SABulkCopyColumnMapping items. Column mappings define the relationships
between columns in the data source and columns in the destination.

Syntax
Visual Basic

Public Readonly Property ColumnMappings As SABulkCopyColumnMappingCollection

C#

public SABulkCopyColumnMappingCollection ColumnMappings { get;}

Property value
By default, it is an empty collection.

Remarks
The property cannot be modified while WriteToServer is executing.

If ColumnMappings is empty when WriteToServer is executed, then the first column in the source is mapped
to the first column in the destination, the second to the second, and so on. This takes place as long as the
column types are convertible, there are at least as many destination columns as source columns, and any
extra destination columns are nullable.

SQL Anywhere .NET 2.0 API Reference

156 Copyright © 2007, iAnywhere Solutions, Inc.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151

DestinationTableName property

Gets or sets the name of the destination table on the server.

Syntax
Visual Basic

Public Property DestinationTableName As String

C#

public string DestinationTableName { get; set; }

Property value
The default value is a null reference. In Visual Basic it is Nothing.

Remarks
If the value is changed while WriteToServer is executing, the change has no effect.

If the value has not been set before a call to WriteToServer, an InvalidOperationException is raised.

It is an error to set the value to NULL or the empty string.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151

NotifyAfter property

Gets or sets the number of rows to be processed before generating a notification event.

Syntax
Visual Basic

Public Property NotifyAfter As Integer

C#

public int NotifyAfter { get; set; }

Property value
Zero is returned if the property has not been set.

SABulkCopy class

Copyright © 2007, iAnywhere Solutions, Inc. 157

Remarks
Changes made to NotifyAfter, while executing WriteToServer, do not take effect until after the next
notification.

Setting this property to a value less than zero is an error.

The values of NotifyAfter and BulkCopyTimeOut are mutually exclusive, so the event can fire even if no
rows have been sent to the database or committed.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151
♦ “BulkCopyTimeout property” on page 155

Close method

Closes the SABulkCopy instance.

Syntax
Visual Basic

Public Sub Close()

C#

public void Close();

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151

Dispose method

Disposes of the SABulkCopy instance.

Syntax
Visual Basic

NotOverridable Public Sub Dispose()

C#

public void Dispose();

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151

SQL Anywhere .NET 2.0 API Reference

158 Copyright © 2007, iAnywhere Solutions, Inc.

WriteToServer methods

Copies all rows in the supplied array of DataRow objects to a destination table specified by the
DestinationTableName property of the SABulkCopy object.

WriteToServer(DataRow[]) method

Copies all rows in the supplied array of DataRow objects to a destination table specified by the
DestinationTableName property of the SABulkCopy object.

Syntax
Visual Basic

Public Sub WriteToServer(_
 ByVal rows As DataRow() _
)

C#

public void WriteToServer(
 DataRow[] rows
);

Parameters
♦ rows An array of System.Data.DataRow objects that will be copied to the destination table.

Remarks
Restrictions: The SABulkCopy class is not available in the .NET Compact Framework 2.0.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151
♦ “WriteToServer methods” on page 159
♦ “DestinationTableName property” on page 157

WriteToServer(DataTable) method

Copies all rows in the supplied DataTable to a destination table specified by the DestinationTableName
property of the SABulkCopy object.

Syntax
Visual Basic

Public Sub WriteToServer(_
 ByVal table As DataTable _
)

SABulkCopy class

Copyright © 2007, iAnywhere Solutions, Inc. 159

http://msdn2.microsoft.com/en-us/library/System.Data.DataRow.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.DataRow.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.DataTable.aspx

C#

public void WriteToServer(
 DataTable table
);

Parameters
♦ table A System.Data.DataTable whose rows will be copied to the destination table.

Remarks
Restrictions: The SABulkCopy class is not available in the .NET Compact Framework 2.0.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151
♦ “WriteToServer methods” on page 159
♦ “DestinationTableName property” on page 157

WriteToServer(IDataReader) method

Copies all rows in the supplied IDataReader to a destination table specified by the DestinationTableName
property of the SABulkCopy object.

Syntax
Visual Basic

Public Sub WriteToServer(_
 ByVal reader As IDataReader _
)

C#

public void WriteToServer(
 IDataReader reader
);

Parameters
♦ reader A System.Data.IDataReader whose rows will be copied to the destination table.

Remarks
Restrictions: The SABulkCopy class is not available in the .NET Compact Framework 2.0.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151
♦ “WriteToServer methods” on page 159
♦ “DestinationTableName property” on page 157

SQL Anywhere .NET 2.0 API Reference

160 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.IDataReader.aspx

WriteToServer(DataTable, DataRowState) method

Copies all rows in the supplied DataTable with the specified row state to a destination table specified by the
DestinationTableName property of the SABulkCopy object.

Syntax
Visual Basic

Public Sub WriteToServer(_
 ByVal table As DataTable, _
 ByVal rowState As DataRowState _
)

C#

public void WriteToServer(
 DataTable table,
 DataRowState rowState
);

Parameters
♦ table A System.Data.DataTable whose rows will be copied to the destination table.

♦ rowState A value from the System.Data.DataRowState enumeration. Only rows matching the row
state are copied to the destination.

Remarks
Only those rows matching the row state are copied.

Restrictions: The SABulkCopy class is not available in the .NET Compact Framework 2.0.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151
♦ “WriteToServer methods” on page 159
♦ “DestinationTableName property” on page 157

SARowsCopied event

This event occurs every time the number of rows specified by the NotifyAfter property have been processed.

Syntax
Visual Basic

Public Event SARowsCopied As SARowsCopiedEventHandler

C#

public event SARowsCopiedEventHandler SARowsCopied ;

SABulkCopy class

Copyright © 2007, iAnywhere Solutions, Inc. 161

http://msdn2.microsoft.com/en-us/library/System.Data.DataTable.aspx

Remarks
The receipt of an SARowsCopied event does not imply that any rows have been sent to the database server
or committed. You cannot call the Close method from this event.

See also
♦ “SABulkCopy class” on page 151
♦ “SABulkCopy members” on page 151
♦ “NotifyAfter property” on page 157

SQL Anywhere .NET 2.0 API Reference

162 Copyright © 2007, iAnywhere Solutions, Inc.

SABulkCopyColumnMapping class
Defines the mapping between a column in an SABulkCopy instance's data source and a column in the
instance's destination table. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SABulkCopyColumnMapping

C#

public sealed class SABulkCopyColumnMapping

Remarks
Restrictions: The SABulkCopyColumnMapping class is not available in the .NET Compact Framework
2.0.

See also
♦ “SABulkCopyColumnMapping members” on page 163

SABulkCopyColumnMapping members

Public constructors

Member name Description

SABulkCopyColumnMapping
constructors

Initializes a new instance of the “SABulkCopyColumnMapping
class” on page 163.

Public properties

Member name Description

DestinationColumn property Gets or sets the name of the column in the destination database table
being mapped to.

DestinationOrdinal property Gets or sets the ordinal value of the column in the destination table
being mapped to.

SourceColumn property Gets or sets the name of the column being mapped in the data source.

SourceOrdinal property Gets or sets ordinal position of the source column within the data
source.

See also
♦ “SABulkCopyColumnMapping class” on page 163

SABulkCopyColumnMapping class

Copyright © 2007, iAnywhere Solutions, Inc. 163

SABulkCopyColumnMapping constructors

Initializes a new instance of the “SABulkCopyColumnMapping class” on page 163.

SABulkCopyColumnMapping() constructor

Creates a new column mapping, using column ordinals or names to refer to source and destination columns.

Syntax
Visual Basic

Public Sub New()

C#

public SABulkCopyColumnMapping();

Remarks
Restrictions: The SABulkCopyColumnMapping class is not available in the .NET Compact Framework
2.0.

See also
♦ “SABulkCopyColumnMapping class” on page 163
♦ “SABulkCopyColumnMapping members” on page 163
♦ “SABulkCopyColumnMapping constructors” on page 164

SABulkCopyColumnMapping(Int32, Int32) constructor

Creates a new column mapping, using column ordinals to refer to source and destination columns.

Syntax
Visual Basic

Public Sub New(_
 ByVal sourceColumnOrdinal As Integer, _
 ByVal destinationColumnOrdinal As Integer _
)

C#

public SABulkCopyColumnMapping(
 int sourceColumnOrdinal,
 int destinationColumnOrdinal
);

Parameters
♦ sourceColumnOrdinal The ordinal position of the source column within the data source. The first

column in a data source has ordinal position zero.

SQL Anywhere .NET 2.0 API Reference

164 Copyright © 2007, iAnywhere Solutions, Inc.

♦ destinationColumnOrdinal The ordinal position of the destination column within the destination
table. The first column in a table has ordinal position zero.

Remarks
Restrictions: The SABulkCopyColumnMapping class is not available in the .NET Compact Framework
2.0.

See also
♦ “SABulkCopyColumnMapping class” on page 163
♦ “SABulkCopyColumnMapping members” on page 163
♦ “SABulkCopyColumnMapping constructors” on page 164

SABulkCopyColumnMapping(Int32, String) constructor

Creates a new column mapping, using a column ordinal to refer to the source column and a column name
to refer to the destination column.

Syntax
Visual Basic

Public Sub New(_
 ByVal sourceColumnOrdinal As Integer, _
 ByVal destinationColumn As String _
)

C#

public SABulkCopyColumnMapping(
 int sourceColumnOrdinal,
 string destinationColumn
);

Parameters
♦ sourceColumnOrdinal The ordinal position of the source column within the data source. The first

column in a data source has ordinal position zero.

♦ destinationColumn The name of the destination column within the destination table.

Remarks
Restrictions: The SABulkCopyColumnMapping class is not available in the .NET Compact Framework
2.0.

See also
♦ “SABulkCopyColumnMapping class” on page 163
♦ “SABulkCopyColumnMapping members” on page 163
♦ “SABulkCopyColumnMapping constructors” on page 164

SABulkCopyColumnMapping class

Copyright © 2007, iAnywhere Solutions, Inc. 165

SABulkCopyColumnMapping(String, Int32) constructor

Creates a new column mapping, using a column name to refer to the source column and a column ordinal
to refer to the destination column.

Syntax
Visual Basic

Public Sub New(_
 ByVal sourceColumn As String, _
 ByVal destinationColumnOrdinal As Integer _
)

C#

public SABulkCopyColumnMapping(
 string sourceColumn,
 int destinationColumnOrdinal
);

Parameters
♦ sourceColumn The name of the source column within the data source.

♦ destinationColumnOrdinal The ordinal position of the destination column within the destination
table. The first column in a table has ordinal position zero.

Remarks
Restrictions: The SABulkCopyColumnMapping class is not available in the .NET Compact Framework
2.0.

See also
♦ “SABulkCopyColumnMapping class” on page 163
♦ “SABulkCopyColumnMapping members” on page 163
♦ “SABulkCopyColumnMapping constructors” on page 164

SABulkCopyColumnMapping(String, String) constructor

Creates a new column mapping, using column names to refer to source and destination columns.

Syntax
Visual Basic

Public Sub New(_
 ByVal sourceColumn As String, _
 ByVal destinationColumn As String _
)

C#

public SABulkCopyColumnMapping(

SQL Anywhere .NET 2.0 API Reference

166 Copyright © 2007, iAnywhere Solutions, Inc.

 string sourceColumn,
 string destinationColumn
);

Parameters
♦ sourceColumn The name of the source column within the data source.

♦ destinationColumn The name of the destination column within the destination table.

Remarks
Restrictions: The SABulkCopyColumnMapping class is not available in the .NET Compact Framework
2.0.

See also
♦ “SABulkCopyColumnMapping class” on page 163
♦ “SABulkCopyColumnMapping members” on page 163
♦ “SABulkCopyColumnMapping constructors” on page 164

DestinationColumn property

Gets or sets the name of the column in the destination database table being mapped to.

Syntax
Visual Basic

Public Property DestinationColumn As String

C#

public string DestinationColumn { get; set; }

Property value
A string specifying the name of the column in the destination table or a null reference (Nothing in Visual
Basic) if the DestinationOrdinal property has priority.

Remarks
The DestinationColumn property and DestinationOrdinal property are mutually exclusive. The most recently
set value takes priority.

Setting the DestinationColumn property causes the DestinationOrdinal property to be set to -1. Setting the
DestinationOrdinal property causes the DestinationColumn property to be set to a null reference (Nothing
in Visual Basic).

It is an error to set DestinationColumn to null or the empty string.

See also
♦ “SABulkCopyColumnMapping class” on page 163
♦ “SABulkCopyColumnMapping members” on page 163
♦ “DestinationOrdinal property” on page 168

SABulkCopyColumnMapping class

Copyright © 2007, iAnywhere Solutions, Inc. 167

DestinationOrdinal property

Gets or sets the ordinal value of the column in the destination table being mapped to.

Syntax
Visual Basic

Public Property DestinationOrdinal As Integer

C#

public int DestinationOrdinal { get; set; }

Property value
An integer specifying the ordinal of the column being mapped to in the destination table or -1 if the property
is not set.

Remarks
The DestinationColumn property and DestinationOrdinal property are mutually exclusive. The most recently
set value takes priority.

Setting the DestinationColumn property causes the DestinationOrdinal property to be set to -1. Setting the
DestinationOrdinal property causes the DestinationColumn property to be set to a null reference (Nothing
in Visual Basic).

See also
♦ “SABulkCopyColumnMapping class” on page 163
♦ “SABulkCopyColumnMapping members” on page 163
♦ “DestinationColumn property” on page 167

SourceColumn property

Gets or sets the name of the column being mapped in the data source.

Syntax
Visual Basic

Public Property SourceColumn As String

C#

public string SourceColumn { get; set; }

Property value
A string specifying the name of the column in the data source or a null reference (Nothing in Visual Basic)
if the SourceOrdinal property has priority.

SQL Anywhere .NET 2.0 API Reference

168 Copyright © 2007, iAnywhere Solutions, Inc.

Remarks
The SourceColumn property and SourceOrdinal property are mutually exclusive. The most recently set value
takes priority.

Setting the SourceColumn property causes the SourceOrdinal property to be set to -1. Setting the
SourceOrdinal property causes the SourceColumn property to be set to a null reference (Nothing in Visual
Basic).

It is an error to set SourceColumn to null or the empty string.

See also
♦ “SABulkCopyColumnMapping class” on page 163
♦ “SABulkCopyColumnMapping members” on page 163
♦ “SourceOrdinal property” on page 169

SourceOrdinal property

Gets or sets ordinal position of the source column within the data source.

Syntax
Visual Basic

Public Property SourceOrdinal As Integer

C#

public int SourceOrdinal { get; set; }

Property value
An integer specifying the ordinal of the column in the data source or -1 if the property is not set.

Remarks
The SourceColumn property and SourceOrdinal property are mutually exclusive. The most recently set value
takes priority.

Setting the SourceColumn property causes the SourceOrdinal property to be set to -1. Setting the
SourceOrdinal property causes the SourceColumn property to be set to a null reference (Nothing in Visual
Basic).

See also
♦ “SABulkCopyColumnMapping class” on page 163
♦ “SABulkCopyColumnMapping members” on page 163
♦ “SourceColumn property” on page 168

SABulkCopyColumnMapping class

Copyright © 2007, iAnywhere Solutions, Inc. 169

SABulkCopyColumnMappingCollection class
A collection of SABulkCopyColumnMapping objects that inherits from System.Collections.CollectionBase.
This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SABulkCopyColumnMappingCollection
 Inherits CollectionBase

C#

public sealed class SABulkCopyColumnMappingCollection : CollectionBase

Remarks
Restrictions: The SABulkCopyColumnMappingCollection class is not available in the .NET Compact
Framework 2.0.

See also
♦ “SABulkCopyColumnMappingCollection members” on page 170

SABulkCopyColumnMappingCollection members

Public properties

Member name Description

Capacity (inherited from Collec-
tionBase)

Count (inherited from Collec-
tionBase)

Item property Gets the SABulkCopyColumnMapping object at the specified index.

Public methods

Member name Description

Add methods Adds the specified SABulkCopyColumnMapping object to the col-
lection.

Clear (inherited from Collection-
Base)

Contains method Gets a value indicating whether a specified SABulkCopyColumn-
Mapping object exists in the collection.

SQL Anywhere .NET 2.0 API Reference

170 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Collections.CollectionBase.Capacity.aspx
http://msdn2.microsoft.com/en-us/library/System.Collections.CollectionBase.Count.aspx
http://msdn2.microsoft.com/en-us/library/System.Collections.CollectionBase.Clear.aspx

Member name Description

CopyTo method Copies the elements of the SABulkCopyColumnMappingCollection
to an array of SABulkCopyColumnMapping items, starting at a par-
ticular index.

GetEnumerator (inherited from
CollectionBase)

IndexOf method Gets or sets the index of the specified SABulkCopyColumnMapping
object within the collection.

Remove method Removes the specified SABulkCopyColumnMapping element from
the SABulkCopyColumnMappingCollection.

RemoveAt method Removes the mapping at the specified index from the collection.

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170

Item property

Gets the SABulkCopyColumnMapping object at the specified index.

Syntax
Visual Basic

Public Readonly Property Item (_
 ByVal index As Integer _
) As SABulkCopyColumnMapping

C#

public SABulkCopyColumnMapping this [
 int index
] { get;}

Parameters
♦ index The zero-based index of the SABulkCopyColumnMapping object to find.

Property value
An SABulkCopyColumnMapping object is returned.

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170
♦ “SABulkCopyColumnMappingCollection members” on page 170

SABulkCopyColumnMappingCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 171

http://msdn2.microsoft.com/en-us/library/System.Collections.CollectionBase.GetEnumerator.aspx

Add methods

Adds the specified SABulkCopyColumnMapping object to the collection.

Add(SABulkCopyColumnMapping) method

Adds the specified SABulkCopyColumnMapping object to the collection.

Syntax
Visual Basic

Public Function Add(_
 ByVal bulkCopyColumnMapping As SABulkCopyColumnMapping _
) As SABulkCopyColumnMapping

C#

public SABulkCopyColumnMapping Add(
 SABulkCopyColumnMapping bulkCopyColumnMapping
);

Parameters
♦ bulkCopyColumnMapping The SABulkCopyColumnMapping object that describes the mapping

to be added to the collection.

Remarks
Restrictions: The SABulkCopyColumnMappingCollection class is not available in the .NET Compact
Framework 2.0.

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170
♦ “SABulkCopyColumnMappingCollection members” on page 170
♦ “Add methods” on page 172
♦ “SABulkCopyColumnMapping class” on page 163

Add(Int32, Int32) method

Creates a new SABulkCopyColumnMapping object using ordinals to specify both source and destination
columns, and adds the mapping to the collection.

Syntax
Visual Basic

Public Function Add(_
 ByVal sourceColumnOrdinal As Integer, _
 ByVal destinationColumnOrdinal As Integer _
) As SABulkCopyColumnMapping

SQL Anywhere .NET 2.0 API Reference

172 Copyright © 2007, iAnywhere Solutions, Inc.

C#

public SABulkCopyColumnMapping Add(
 int sourceColumnOrdinal,
 int destinationColumnOrdinal
);

Parameters
♦ sourceColumnOrdinal The ordinal position of the source column within the data source.

♦ destinationColumnOrdinal The ordinal position of the destination column within the destination
table.

Remarks
Restrictions: The SABulkCopyColumnMappingCollection class is not available in the .NET Compact
Framework 2.0.

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170
♦ “SABulkCopyColumnMappingCollection members” on page 170
♦ “Add methods” on page 172

Add(Int32, String) method

Creates a new SABulkCopyColumnMapping object using a column ordinal to refer to the source column
and a column name to refer to the destination column, and adds mapping to the collection.

Syntax
Visual Basic

Public Function Add(_
 ByVal sourceColumnOrdinal As Integer, _
 ByVal destinationColumn As String _
) As SABulkCopyColumnMapping

C#

public SABulkCopyColumnMapping Add(
 int sourceColumnOrdinal,
 string destinationColumn
);

Parameters
♦ sourceColumnOrdinal The ordinal position of the source column within the data source.

♦ destinationColumn The name of the destination column within the destination table.

Remarks
Restrictions: The SABulkCopyColumnMappingCollection class is not available in the .NET Compact
Framework 2.0.

SABulkCopyColumnMappingCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 173

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170
♦ “SABulkCopyColumnMappingCollection members” on page 170
♦ “Add methods” on page 172

Add(String, Int32) method

Creates a new SABulkCopyColumnMapping object using a column name to refer to the source column and
a column ordinal to refer to the destination the column, and adds the mapping to the collection.

Creates a new column mapping, using column ordinals or names to refer to source and destination columns.

Syntax
Visual Basic

Public Function Add(_
 ByVal sourceColumn As String, _
 ByVal destinationColumnOrdinal As Integer _
) As SABulkCopyColumnMapping

C#

public SABulkCopyColumnMapping Add(
 string sourceColumn,
 int destinationColumnOrdinal
);

Parameters
♦ sourceColumn The name of the source column within the data source.

♦ destinationColumnOrdinal The ordinal position of the destination column within the destination
table.

Remarks
Restrictions: The SABulkCopyColumnMappingCollection class is not available in the .NET Compact
Framework 2.0.

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170
♦ “SABulkCopyColumnMappingCollection members” on page 170
♦ “Add methods” on page 172

Add(String, String) method

Creates a new SABulkCopyColumnMapping object using column names to specify both source and
destination columns, and adds the mapping to the collection.

SQL Anywhere .NET 2.0 API Reference

174 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Function Add(_
 ByVal sourceColumn As String, _
 ByVal destinationColumn As String _
) As SABulkCopyColumnMapping

C#

public SABulkCopyColumnMapping Add(
 string sourceColumn,
 string destinationColumn
);

Parameters
♦ sourceColumn The name of the source column within the data source.

♦ destinationColumn The name of the destination column within the destination table.

Remarks
Restrictions: The SABulkCopyColumnMappingCollection class is not available in the .NET Compact
Framework 2.0.

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170
♦ “SABulkCopyColumnMappingCollection members” on page 170
♦ “Add methods” on page 172

Contains method

Gets a value indicating whether a specified SABulkCopyColumnMapping object exists in the collection.

Syntax
Visual Basic

Public Function Contains(_
 ByVal value As SABulkCopyColumnMapping _
) As Boolean

C#

public bool Contains(
 SABulkCopyColumnMapping value
);

Parameters
♦ value A valid SABulkCopyColumnMapping object.

SABulkCopyColumnMappingCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 175

Return value
True if the specified mapping exists in the collection; otherwise, false.

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170
♦ “SABulkCopyColumnMappingCollection members” on page 170

CopyTo method

Copies the elements of the SABulkCopyColumnMappingCollection to an array of
SABulkCopyColumnMapping items, starting at a particular index.

Syntax
Visual Basic

Public Sub CopyTo(_
 ByVal array As SABulkCopyColumnMapping(), _
 ByVal index As Integer _
)

C#

public void CopyTo(
 SABulkCopyColumnMapping[] array,
 int index
);

Parameters
♦ array The one-dimensional SABulkCopyColumnMapping array that is the destination of the elements

copied from SABulkCopyColumnMappingCollection. The array must have zero-based indexing.

♦ index The zero-based index in the array at which copying begins.

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170
♦ “SABulkCopyColumnMappingCollection members” on page 170

IndexOf method

Gets or sets the index of the specified SABulkCopyColumnMapping object within the collection.

Syntax
Visual Basic

Public Function IndexOf(_
 ByVal value As SABulkCopyColumnMapping _
) As Integer

SQL Anywhere .NET 2.0 API Reference

176 Copyright © 2007, iAnywhere Solutions, Inc.

C#

public int IndexOf(
 SABulkCopyColumnMapping value
);

Parameters
♦ value The SABulkCopyColumnMapping object to search for.

Return value
The zero-based index of the column mapping is returned, or -1 is returned if the column mapping is not
found in the collection.

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170
♦ “SABulkCopyColumnMappingCollection members” on page 170

Remove method

Removes the specified SABulkCopyColumnMapping element from the
SABulkCopyColumnMappingCollection.

Syntax
Visual Basic

Public Sub Remove(_
 ByVal value As SABulkCopyColumnMapping _
)

C#

public void Remove(
 SABulkCopyColumnMapping value
);

Parameters
♦ value The SABulkCopyColumnMapping object to be removed from the collection.

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170
♦ “SABulkCopyColumnMappingCollection members” on page 170

RemoveAt method

Removes the mapping at the specified index from the collection.

SABulkCopyColumnMappingCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 177

Syntax
Visual Basic

Public Sub RemoveAt(_
 ByVal index As Integer _
)

C#

public void RemoveAt(
 int index
);

Parameters
♦ index The zero-based index of the SABulkCopyColumnMapping object to be removed from the

collection.

See also
♦ “SABulkCopyColumnMappingCollection class” on page 170
♦ “SABulkCopyColumnMappingCollection members” on page 170

SQL Anywhere .NET 2.0 API Reference

178 Copyright © 2007, iAnywhere Solutions, Inc.

SABulkCopyOptions enumeration
A bitwise flag that specifies one or more options to use with an instance of SABulkCopy.

Syntax
Visual Basic

Public Enum SABulkCopyOptions

C#

public enum SABulkCopyOptions

Remarks
The SABulkCopyOptions enumeration is used when you construct an SABulkCopy object to specify how
the WriteToServer methods will behave.

Restrictions: The SABulkCopyOptions class is not available in the .NET Compact Framework 2.0.

The CheckConstraints and KeepNulls options are not supported.

Members

Member name Description Value

Default Specifying only this value causes the default be-
havior to be used. By default, triggers are enabled.

0

DoNotFireTriggers When specified, triggers are not fired. Disabling
triggers requires DBA permission. Triggers are dis-
abled for the connection at the start of WriteToServ-
er and the value is restored at the end of the method.

1

KeepIdentity When specified, the source values to be copied into
an identity column are preserved. By default, new
identity values are generated in the destination ta-
ble.

2

TableLock When specified the table is locked using the com-
mand LOCK TABLE table_name WITH HOLD IN
SHARE MODE. This lock is in place until the con-
nection is closed.

4

UseInternalTransaction When specified, each batch of the bulk-copy oper-
ation is executed within a transaction. When not
specified, transaction aren't used. If you indicate
this option and also provide an SATransaction ob-
ject to the constructor, a System.ArgumentExcep-
tion occurs.

8

See also
♦ “SABulkCopy class” on page 151

SABulkCopyOptions enumeration

Copyright © 2007, iAnywhere Solutions, Inc. 179

SACommand class
A SQL statement or stored procedure that is executed against a SQL Anywhere database. This class cannot
be inherited.

Syntax
Visual Basic

Public NotInheritable Class SACommand
 Inherits DbCommand
 Implements ICloneable

C#

public sealed class SACommand : DbCommand,
 ICloneable

Remarks
Implements:ICloneable

For more information, see “Accessing and manipulating data” on page 111.

See also
♦ “SACommand members” on page 180

SACommand members

Public constructors

Member name Description

SACommand constructors Initializes a new instance of the “SACommand class” on page 180.

Public properties

Member name Description

CommandText property Gets or sets the text of a SQL statement or stored procedure.

CommandTimeout property Gets or sets the wait time in seconds before terminating an attempt to
execute a command and generating an error.

CommandType property Gets or sets the type of command represented by an SACommand.

Connection property Gets or sets the connection object to which the SACommand object
applies.

DesignTimeVisible property Gets or sets a value that indicates if the SACommand should be visible
in a Windows Form Designer control. The default is true.

SQL Anywhere .NET 2.0 API Reference

180 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.ICloneable.aspx

Member name Description

Parameters property A collection of parameters for the current statement. Use question
marks in the CommandText to indicate parameters.

Transaction property Specifies the SATransaction object in which the SACommand exe-
cutes.

UpdatedRowSource property Gets or sets how command results are applied to the DataRow when
used by the Update method of the SADataAdapter.

Public methods

Member name Description

BeginExecuteNonQuery meth-
ods

Initiates the asynchronous execution of a SQL statement or stored
procedure that is described by this SACommand.

BeginExecuteReader methods Initiates the asynchronous execution of a SQL statement or stored
procedure that is described by this SACommand, and retrieves one or
more result sets from the database server.

Cancel method Cancels the execution of an SACommand object.

CreateParameter method Provides an SAParameter object for supplying parameters to SACom-
mand objects.

EndExecuteNonQuery method Finishes asynchronous execution of a SQL statement or stored pro-
cedure.

EndExecuteReader method Finishes asynchronous execution of a SQL statement or stored pro-
cedure, returning the requested SADataReader.

ExecuteNonQuery method Executes a statement that does not return a result set, such as an IN-
SERT, UPDATE, DELETE, or data definition statement.

ExecuteReader methods Executes a SQL statement that returns a result set.

ExecuteScalar method Executes a statement that returns a single value. If this method is
called on a query that returns multiple rows and columns, only the
first column of the first row is returned.

Prepare method Prepares or compiles the SACommand on the data source.

ResetCommandTimeout method Resets the CommandTimeout property to its default value of 30 sec-
onds.

See also
♦ “SACommand class” on page 180

SACommand class

Copyright © 2007, iAnywhere Solutions, Inc. 181

SACommand constructors

Initializes a new instance of the “SACommand class” on page 180.

SACommand() constructor

Initializes an SACommand object.

Syntax
Visual Basic

Public Sub New()

C#

public SACommand();

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “SACommand constructors” on page 182

SACommand(String) constructor

Initializes an SACommand object.

Syntax
Visual Basic

Public Sub New(_
 ByVal cmdText As String _
)

C#

public SACommand(
 string cmdText
);

Parameters
♦ cmdText The text of the SQL statement or stored procedure. For parameterized statements, use a

question mark (?) placeholder to pass parameters.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “SACommand constructors” on page 182

SQL Anywhere .NET 2.0 API Reference

182 Copyright © 2007, iAnywhere Solutions, Inc.

SACommand(String, SAConnection) constructor

A SQL statement or stored procedure that is executed against a SQL Anywhere database.

Syntax
Visual Basic

Public Sub New(_
 ByVal cmdText As String, _
 ByVal connection As SAConnection _
)

C#

public SACommand(
 string cmdText,
 SAConnection connection
);

Parameters
♦ cmdText The text of the SQL statement or stored procedure. For parameterized statements, use a

question mark (?) placeholder to pass parameters.

♦ connection The current connection.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “SACommand constructors” on page 182

SACommand(String, SAConnection, SATransaction) constructor

A SQL statement or stored procedure that is executed against a SQL Anywhere database.

Syntax
Visual Basic

Public Sub New(_
 ByVal cmdText As String, _
 ByVal connection As SAConnection, _
 ByVal transaction As SATransaction _
)

C#

public SACommand(
 string cmdText,
 SAConnection connection,
 SATransaction transaction
);

SACommand class

Copyright © 2007, iAnywhere Solutions, Inc. 183

Parameters
♦ cmdText The text of the SQL statement or stored procedure. For parameterized statements, use a

question mark (?) placeholder to pass parameters.

♦ connection The current connection.

♦ transaction The SATransaction object in which the SAConnection executes.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “SACommand constructors” on page 182
♦ “SATransaction class” on page 419

CommandText property

Gets or sets the text of a SQL statement or stored procedure.

Syntax
Visual Basic

Public Overrides Property CommandText As String

C#

public override string CommandText { get; set; }

Property value
The SQL statement or the name of the stored procedure to execute. The default is an empty string.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “SACommand() constructor” on page 182

CommandTimeout property

Gets or sets the wait time in seconds before terminating an attempt to execute a command and generating
an error.

Syntax
Visual Basic

Public Overrides Property CommandTimeout As Integer

C#

public override int CommandTimeout { get; set; }

SQL Anywhere .NET 2.0 API Reference

184 Copyright © 2007, iAnywhere Solutions, Inc.

Property value
The default value is 30 seconds.

Remarks
A value of 0 indicates no limit. This should be avoided because it may cause the attempt to execute a command
to wait indefinitely.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180

CommandType property

Gets or sets the type of command represented by an SACommand.

Syntax
Visual Basic

Public Overrides Property CommandType As CommandType

C#

public override CommandType CommandType { get; set; }

Property value
One of the CommandType values. The default is CommandType.Text.

Remarks
Supported command types are as follows:

♦ CommandType.StoredProcedure When you specify this CommandType, the command text must be the
name of a stored procedure and you must supply any arguments as SAParameter objects.

♦ CommandType.Text This is the default value.

When the CommandType property is set to StoredProcedure, the CommandText property should be set to
the name of the stored procedure. The command executes this stored procedure when you call one of the
Execute methods.

Use a question mark (?) placeholder to pass parameters. For example:

SELECT * FROM Customers WHERE ID = ?

The order in which SAParameter objects are added to the SAParameterCollection must directly correspond
to the position of the question mark placeholder for the parameter.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180

SACommand class

Copyright © 2007, iAnywhere Solutions, Inc. 185

http://msdn2.microsoft.com/en-us/library/System.Data.CommandType.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.CommandType.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.CommandType.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.CommandType.aspx

Connection property

Gets or sets the connection object to which the SACommand object applies.

Syntax
Visual Basic

Public Property Connection As SAConnection

C#

public SAConnection Connection { get; set; }

Property value
The default value is a null reference. In Visual Basic it is Nothing.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180

DesignTimeVisible property

Gets or sets a value that indicates if the SACommand should be visible in a Windows Form Designer control.
The default is true.

Syntax
Visual Basic

Public Overrides Property DesignTimeVisible As Boolean

C#

public override bool DesignTimeVisible { get; set; }

Property value
True if this SACommand instance should be visible, false if this instance should not be visible. The default
is false.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180

Parameters property

A collection of parameters for the current statement. Use question marks in the CommandText to indicate
parameters.

SQL Anywhere .NET 2.0 API Reference

186 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Readonly Property Parameters As SAParameterCollection

C#

public SAParameterCollection Parameters { get;}

Property value
The parameters of the SQL statement or stored procedure. The default value is an empty collection.

Remarks
When CommandType is set to Text, pass parameters using the question mark placeholder. For example:

SELECT * FROM Customers WHERE ID = ?

The order in which SAParameter objects are added to the SAParameterCollection must directly correspond
to the position of the question mark placeholder for the parameter in the command text.

When the parameters in the collection do not match the requirements of the query to be executed, an error
may result or an exception may be thrown.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “SAParameterCollection class” on page 366

Transaction property

Specifies the SATransaction object in which the SACommand executes.

Syntax
Visual Basic

Public Property Transaction As SATransaction

C#

public SATransaction Transaction { get; set; }

Property value
The default value is a null reference. In Visual Basic, this is Nothing.

Remarks
You cannot set the Transaction property if it is already set to a specific value and the command is executing.
If you set the transaction property to an SATransaction object that is not connected to the same SAConnection
object as the SACommand object, an exception will be thrown the next time you attempt to execute a
statement.

SACommand class

Copyright © 2007, iAnywhere Solutions, Inc. 187

For more information, see “Transaction processing” on page 130.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “SATransaction class” on page 419

UpdatedRowSource property

Gets or sets how command results are applied to the DataRow when used by the Update method of the
SADataAdapter.

Syntax
Visual Basic

Public Overrides Property UpdatedRowSource As UpdateRowSource

C#

public override UpdateRowSource UpdatedRowSource { get; set; }

Property value
One of the UpdatedRowSource values. The default value is UpdateRowSource.OutputParameters. If the
command is automatically generated, this property is UpdateRowSource.None.

Remarks
Both, which returns both resultset and output parameters, is not supported.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180

BeginExecuteNonQuery methods

Initiates the asynchronous execution of a SQL statement or stored procedure that is described by this
SACommand.

BeginExecuteNonQuery() method

Initiates the asynchronous execution of a SQL statement or stored procedure that is described by this
SACommand.

Syntax
Visual Basic

Public Function BeginExecuteNonQuery() As IAsyncResult

SQL Anywhere .NET 2.0 API Reference

188 Copyright © 2007, iAnywhere Solutions, Inc.

C#

public IAsyncResult BeginExecuteNonQuery();

Return value
An IAsyncResult that can be used to poll, wait for results, or both; this value is also needed when invoking
EndExecuteNonQuery(IAsyncResult), which returns the number of affected rows.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “BeginExecuteNonQuery methods” on page 188
♦ “EndExecuteNonQuery method” on page 194

BeginExecuteNonQuery(AsyncCallback, Object) method

Initiates the asynchronous execution of a SQL statement or stored procedure that is described by this
SACommand, given a callback procedure and state information.

Syntax
Visual Basic

Public Function BeginExecuteNonQuery(_
 ByVal callback As AsyncCallback, _
 ByVal stateObject As Object _
) As IAsyncResult

C#

public IAsyncResult BeginExecuteNonQuery(
 AsyncCallback callback,
 object stateObject
);

Parameters
♦ callback An AsyncCallback delegate that is invoked when the command's execution has completed.

Pass null (Nothing in Microsoft Visual Basic) to indicate that no callback is required.

♦ stateObject A user-defined state object that is passed to the callback procedure. Retrieve this object
from within the callback procedure using the IAsyncResult.AsyncState.

Return value
An IAsyncResult that can be used to poll, wait for results, or both; this value is also needed when invoking
EndExecuteNonQuery(IAsyncResult), which returns the number of affected rows.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “BeginExecuteNonQuery methods” on page 188

SACommand class

Copyright © 2007, iAnywhere Solutions, Inc. 189

http://msdn2.microsoft.com/en-us/library/System.IAsyncResult.aspx
http://msdn2.microsoft.com/en-us/library/System.AsyncCallback.aspx
http://msdn2.microsoft.com/en-us/library/System.IAsyncResult.AsyncState.aspx
http://msdn2.microsoft.com/en-us/library/System.IAsyncResult.aspx

♦ “EndExecuteNonQuery method” on page 194

BeginExecuteReader methods

Initiates the asynchronous execution of a SQL statement or stored procedure that is described by this
SACommand, and retrieves one or more result sets from the database server.

BeginExecuteReader() method

Initiates the asynchronous execution of a SQL statement or stored procedure that is described by this
SACommand, and retrieves one or more result sets from the database server.

Syntax
Visual Basic

Public Function BeginExecuteReader() As IAsyncResult

C#

public IAsyncResult BeginExecuteReader();

Return value
An IAsyncResult that can be used to poll, wait for results, or both; this value is also needed when invoking
EndExecuteReader(IAsyncResult), which returns an SADataReader object that can be used to retrieve the
returned rows.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “BeginExecuteReader methods” on page 190
♦ “EndExecuteReader method” on page 196
♦ “SADataReader class” on page 277

BeginExecuteReader(CommandBehavior) method

Initiates the asynchronous execution of a SQL statement or stored procedure that is described by this
SACommand, and retrieves one or more result sets from the server.

Syntax
Visual Basic

Public Function BeginExecuteReader(_
 ByVal behavior As CommandBehavior _
) As IAsyncResult

C#

SQL Anywhere .NET 2.0 API Reference

190 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.IAsyncResult.aspx

public IAsyncResult BeginExecuteReader(
 CommandBehavior behavior
);

Parameters
♦ behavior A bitwise combination of CommandBehavior flags describing the results of the query and

its effect on the connection.

Return value
An IAsyncResult that can be used to poll, wait for results, or both; this value is also needed when invoking
EndExecuteReader(IAsyncResult), which returns an SADataReader object that can be used to retrieve the
returned rows.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “BeginExecuteReader methods” on page 190
♦ “EndExecuteReader method” on page 196
♦ “SADataReader class” on page 277

BeginExecuteReader(AsyncCallback, Object) method

Initiates the asynchronous execution of a SQL statement that is described by this SA Command, and retrieves
the result set, given a callback procedure and state information.

Syntax
Visual Basic

Public Function BeginExecuteReader(_
 ByVal callback As AsyncCallback, _
 ByVal stateObject As Object _
) As IAsyncResult

C#

public IAsyncResult BeginExecuteReader(
 AsyncCallback callback,
 object stateObject
);

Parameters
♦ callback An AsyncCallback delegate that is invoked when the command's execution has completed.

Pass null (Nothing in Microsoft Visual Basic) to indicate that no callback is required.

♦ stateObject A user-defined state object that is passed to the callback procedure. Retrieve this object
from within the callback procedure using the IAsyncResult.AsyncState.

SACommand class

Copyright © 2007, iAnywhere Solutions, Inc. 191

http://msdn2.microsoft.com/en-us/library/System.Data.CommandBehavior.aspx
http://msdn2.microsoft.com/en-us/library/System.IAsyncResult.aspx
http://msdn2.microsoft.com/en-us/library/System.AsyncCallback.aspx
http://msdn2.microsoft.com/en-us/library/System.IAsyncResult.AsyncState.aspx

Return value
An IAsyncResult that can be used to poll, wait for results, or both; this value is also needed when invoking
EndExecuteReader(IAsyncResult), which returns an SADataReader object that can be used to retrieve the
returned rows.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “BeginExecuteReader methods” on page 190
♦ “EndExecuteReader method” on page 196
♦ “SADataReader class” on page 277

BeginExecuteReader(AsyncCallback, Object, CommandBehavior) method

Initiates the asynchronous execution of a SQL statement or stored procedure that is described by this
SACommand, and retrieves one or more result sets from the server.

Syntax
Visual Basic

Public Function BeginExecuteReader(_
 ByVal callback As AsyncCallback, _
 ByVal stateObject As Object, _
 ByVal behavior As CommandBehavior _
) As IAsyncResult

C#

public IAsyncResult BeginExecuteReader(
 AsyncCallback callback,
 object stateObject,
 CommandBehavior behavior
);

Parameters
♦ callback An AsyncCallback delegate that is invoked when the command's execution has completed.

Pass null (Nothing in Microsoft Visual Basic) to indicate that no callback is required.

♦ stateObject A user-defined state object that is passed to the callback procedure. Retrieve this object
from within the callback procedure using the IAsyncResult.AsyncState.

♦ behavior A bitwise combination of CommandBehavior flags describing the results of the query and
its effect on the connection.

Return value
An IAsyncResult that can be used to poll, wait for results, or both; this value is also needed when invoking
EndExecuteReader(IAsyncResult), which returns an SADataReader object that can be used to retrieve the
returned rows.

SQL Anywhere .NET 2.0 API Reference

192 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.IAsyncResult.aspx
http://msdn2.microsoft.com/en-us/library/System.AsyncCallback.aspx
http://msdn2.microsoft.com/en-us/library/System.IAsyncResult.AsyncState.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.CommandBehavior.aspx
http://msdn2.microsoft.com/en-us/library/System.IAsyncResult.aspx

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “BeginExecuteReader methods” on page 190
♦ “EndExecuteReader method” on page 196
♦ “SADataReader class” on page 277

Cancel method

Cancels the execution of an SACommand object.

Syntax
Visual Basic

Public Overrides Sub Cancel()

C#

public override void Cancel();

Remarks
If there is nothing to cancel, nothing happens. If there is a command in process and the attempt to cancel
fails, not exception is generated.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180

CreateParameter method

Provides an SAParameter object for supplying parameters to SACommand objects.

Syntax
Visual Basic

Public Function CreateParameter() As SAParameter

C#

public SAParameter CreateParameter();

Return value
A new parameter, as an SAParameter object.

Remarks
Stored procedures and some other SQL statements can take parameters, indicated in the text of a statement
by a question mark (?).

SACommand class

Copyright © 2007, iAnywhere Solutions, Inc. 193

The CreateParameter method provides an SAParameter object. You can set properties on the SAParameter
to specify the value, data type, and so on for the parameter.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “SAParameter class” on page 352

EndExecuteNonQuery method

Finishes asynchronous execution of a SQL statement or stored procedure.

Syntax
Visual Basic

Public Function EndExecuteNonQuery(_
 ByVal asyncResult As IAsyncResult _
) As Integer

C#

public int EndExecuteNonQuery(
 IAsyncResult asyncResult
);

Parameters
♦ asyncResult The IAsyncResult returned by the call to SACommand.BeginExecuteNonQuery.

Return value
The number of rows affected (the same behavior as SACommand.ExecuteNonQuery).

Remarks
You must call EndExecuteNonQuery once for every call to BeginExecuteNonQuery. The call must be after
BeginExecuteNonQuery has returned. ADO.NET is not thread safe; it is your responsibility to ensure that
BeginExecuteNonQuery has returned. The IAsyncResult passed to EndExecuteNonQuery must be the same
as the one returned from the BeginExecuteNonQuery call that is being completed. It is an error to call
EndExecuteNonQuery to end a call to BeginExecuteReader, and vice versa.

If an error occurs while executing the command, the exception is thrown when EndExecuteNonQuery is
called.

There are four ways to wait for execution to complete:

Call EndExecuteNonQuery Calling EndExecuteNonQuery blocks until the command completes. For
example:

SAConnection conn = new SAConnection("DSN=SQL Anywhere 10 Demo");
conn.Open();
SACommand cmd = new SACommand(
 "UPDATE Departments"
 + " SET DepartmentName = 'Engineering'"

SQL Anywhere .NET 2.0 API Reference

194 Copyright © 2007, iAnywhere Solutions, Inc.

 + " WHERE DepartmentID=100",
 conn);
IAsyncResult res = cmd.BeginExecuteNonQuery();
// perform other work
// this will block until the command completes
int rowCount reader = cmd.EndExecuteNonQuery(res);

Poll the IsCompleted property of the IAsyncResult You can poll the IsCompleted property of the
IAsyncResult. For example:

SAConnection conn = new SAConnection("DSN=SQL Anywhere 10 Demo");
conn.Open();
SACommand cmd = new SACommand(
 "UPDATE Departments"
 + " SET DepartmentName = 'Engineering'"
 + " WHERE DepartmentID=100",
 conn
);
IAsyncResult res = cmd.BeginExecuteNonQuery();
while(!res.IsCompleted) {
// do other work
}
// this will not block because the command is finished
int rowCount = cmd.EndExecuteNonQuery(res);

Use the IAsyncResult.AsyncWaitHandle property to get a synchronization object You can use the
IAsyncResult.AsyncWaitHandle property to get a synchronization object, and wait on that. For example:

SAConnection conn = new SAConnection("DSN=SQL Anywhere 10 Demo");
conn.Open();
SACommand cmd = new SACommand(
 "UPDATE Departments"
 + " SET DepartmentName = 'Engineering'"
 + " WHERE DepartmentID=100",
 conn
);
IAsyncResult res = cmd.BeginExecuteNonQuery();
// perform other work
WaitHandle wh = res.AsyncWaitHandle;
wh.WaitOne();
// this will not block because the command is finished
int rowCount = cmd.EndExecuteNonQuery(res);

Specify a callback function when calling BeginExecuteNonQuery You can specify a callback function
when calling BeginExecuteNonQuery. For example:

private void callbackFunction(IAsyncResult ar)
{
 SACommand cmd = (SACommand) ar.AsyncState;
 // this won't block since the command has completed
 int rowCount = cmd.EndExecuteNonQuery();
}
// elsewhere in the code
private void DoStuff()
{
 SAConnection conn = new SAConnection("DSN=SQL Anywhere 10 Demo");
 conn.Open();
 SACommand cmd = new SACommand(
 "UPDATE Departments"
 + " SET DepartmentName = 'Engineering'"
 + " WHERE DepartmentID=100",

SACommand class

Copyright © 2007, iAnywhere Solutions, Inc. 195

 conn
);
 IAsyncResult res = cmd.BeginExecuteNonQuery(callbackFunction, cmd);
 // perform other work. The callback function will be
 // called when the command completes
}

The callback function executes in a separate thread, so the usual caveats related to updating the user interface
in a threaded program apply.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “BeginExecuteNonQuery() method” on page 188

EndExecuteReader method

Finishes asynchronous execution of a SQL statement or stored procedure, returning the requested
SADataReader.

Syntax
Visual Basic

Public Function EndExecuteReader(_
 ByVal asyncResult As IAsyncResult _
) As SADataReader

C#

public SADataReader EndExecuteReader(
 IAsyncResult asyncResult
);

Parameters
♦ asyncResult The IAsyncResult returned by the call to SACommand.BeginExecuteReader.

Return value
An SADataReader object that can be used to retrieve the requested rows (the same behavior as
SACommand.ExecuteReader).

Remarks
You must call EndExecuteReader once for every call to BeginExecuteReader. The call must be after
BeginExecuteReader has returned. ADO.NET is not thread safe; it is your responsibility to ensure that
BeginExecuteReader has returned. The IAsyncResult passed to EndExecuteReader must be the same as the
one returned from the BeginExecuteReader call that is being completed. It is an error to call
EndExecuteReader to end a call to BeginExecuteNonQuery, and vice versa.

If an error occurs while executing the command, the exception is thrown when EndExecuteReader is called.

There are four ways to wait for execution to complete:

SQL Anywhere .NET 2.0 API Reference

196 Copyright © 2007, iAnywhere Solutions, Inc.

Call EndExecuteReader Calling EndExecuteReader blocks until the command completes. For example:

SAConnection conn = new SAConnection("DSN=SQL Anywhere 10 Demo");
conn.Open();
SACommand cmd = new SACommand("SELECT * FROM Departments",
 conn);
IAsyncResult res = cmd.BeginExecuteReader();
// perform other work
// this will block until the command completes
SADataReader reader = cmd.EndExecuteReader(res);

Poll the IsCompleted property of the IAsyncResult You can poll the IsCompleted property of the
IAsyncResult. For example:

SAConnection conn = new SAConnection("DSN=SQL Anywhere 10 Demo");
conn.Open();
SACommand cmd = new SACommand("SELECT * FROM Departments",
 conn);
IAsyncResult res = cmd.BeginExecuteReader();
while(!res.IsCompleted) {
// do other work
}
// this will not block because the command is finished
SADataReader reader = cmd.EndExecuteReader(res);

Use the IAsyncResult.AsyncWaitHandle property to get a synchronization object You can use the
IAsyncResult.AsyncWaitHandle property to get a synchronization object, and wait on that. For example:

SAConnection conn = new SAConnection("DSN=SQL Anywhere 10 Demo");
conn.Open();
SACommand cmd = new SACommand("SELECT * FROM Departments",
 conn);
IAsyncResult res = cmd.BeginExecuteReader();
// perform other work
WaitHandle wh = res.AsyncWaitHandle;
wh.WaitOne();
// this will not block because the command is finished
SADataReader reader = cmd.EndExecuteReader(res);

Specify a callback function when calling BeginExecuteReader You can specify a callback function when
calling BeginExecuteReader. For example:

private void callbackFunction(IAsyncResult ar)
{
 SACommand cmd = (SACommand) ar.AsyncState;
 // this wonât block since the command has completed
 SADataReader reader = cmd.EndExecuteReader();
}
// elsewhere in the code
private void DoStuff()
{
 SAConnection conn = new SAConnection("DSN=SQL Anywhere 10 Demo");
 conn.Open();
 SACommand cmd = new SACommand("SELECT * FROM Departments",
 conn);
 IAsyncResult res = cmd.BeginExecuteReader(callbackFunction, cmd);
 // perform other work. The callback function will be
 // called when the command completes
}

SACommand class

Copyright © 2007, iAnywhere Solutions, Inc. 197

The callback function executes in a separate thread, so the usual caveats related to updating the user interface
in a threaded program apply.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “BeginExecuteReader() method” on page 190
♦ “SADataReader class” on page 277

ExecuteNonQuery method

Executes a statement that does not return a result set, such as an INSERT, UPDATE, DELETE, or data
definition statement.

Syntax
Visual Basic

Public Overrides Function ExecuteNonQuery() As Integer

C#

public override int ExecuteNonQuery();

Return value
The number of rows affected.

Remarks
You can use ExecuteNonQuery to change the data in a database without using a DataSet. Do this by executing
UPDATE, INSERT, or DELETE statements.

Although ExecuteNonQuery does not return any rows, output parameters or return values that are mapped
to parameters are populated with data.

For UPDATE, INSERT, and DELETE statements, the return value is the number of rows affected by the
command. For all other types of statements, and for rollbacks, the return value is -1.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “ExecuteReader() method” on page 199

ExecuteReader methods

Executes a SQL statement that returns a result set.

SQL Anywhere .NET 2.0 API Reference

198 Copyright © 2007, iAnywhere Solutions, Inc.

ExecuteReader() method

Executes a SQL statement that returns a result set.

Syntax
Visual Basic

Public Function ExecuteReader() As SADataReader

C#

public SADataReader ExecuteReader();

Return value
The result set as an SADataReader object.

Remarks
The statement is the current SACommand object, with CommandText and Parameters as needed. The
SADataReader object is a read-only, forward-only result set. For modifiable result sets, use an
SADataAdapter.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “ExecuteReader methods” on page 198
♦ “ExecuteNonQuery method” on page 198
♦ “SADataReader class” on page 277
♦ “SADataAdapter class” on page 266
♦ “CommandText property” on page 184
♦ “Parameters property” on page 186

ExecuteReader(CommandBehavior) method

Executes a SQL statement that returns a result set.

Syntax
Visual Basic

Public Function ExecuteReader(_
 ByVal behavior As CommandBehavior _
) As SADataReader

C#

public SADataReader ExecuteReader(
 CommandBehavior behavior
);

SACommand class

Copyright © 2007, iAnywhere Solutions, Inc. 199

Parameters
♦ behavior One of CloseConnection, Default, KeyInfo, SchemaOnly, SequentialAccess, SingleResult,

or SingleRow.

For more information about this parameter, see the .NET Framework documentation for
CommandBehavior Enumeration.

Return value
The result set as an SADataReader object.

Remarks
The statement is the current SACommand object, with CommandText and Parameters as needed. The
SADataReader object is a read-only, forward-only result set. For modifiable result sets, use an
SADataAdapter.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “ExecuteReader methods” on page 198
♦ “ExecuteNonQuery method” on page 198
♦ “SADataReader class” on page 277
♦ “SADataAdapter class” on page 266
♦ “CommandText property” on page 184
♦ “Parameters property” on page 186

ExecuteScalar method

Executes a statement that returns a single value. If this method is called on a query that returns multiple rows
and columns, only the first column of the first row is returned.

Syntax
Visual Basic

Public Overrides Function ExecuteScalar() As Object

C#

public override object ExecuteScalar();

Return value
The first column of the first row in the result set, or a null reference if the result set is empty.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180

SQL Anywhere .NET 2.0 API Reference

200 Copyright © 2007, iAnywhere Solutions, Inc.

Prepare method

Prepares or compiles the SACommand on the data source.

Syntax
Visual Basic

Public Overrides Sub Prepare()

C#

public override void Prepare();

Remarks
If you call one of the ExecuteNonQuery, ExecuteReader, or ExecuteScalar methods after calling Prepare,
any parameter value that is larger than the value specified by the Size property is automatically truncated to
the original specified size of the parameter, and no truncation errors are returned.

The truncation only happens for the following data types:

♦ CHAR
♦ VARCHAR
♦ LONG VARCHAR
♦ TEXT
♦ NCHAR
♦ NVARCHAR
♦ LONG NVARCHAR
♦ NTEXT
♦ BINARY
♦ LONG BINARY
♦ VARBINARY
♦ IMAGE

If the size property is not specified, and so is using the default value, the data is not truncated.

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180
♦ “ExecuteNonQuery method” on page 198
♦ “ExecuteReader() method” on page 199
♦ “ExecuteScalar method” on page 200

ResetCommandTimeout method

Resets the CommandTimeout property to its default value of 30 seconds.

SACommand class

Copyright © 2007, iAnywhere Solutions, Inc. 201

Syntax
Visual Basic

Public Sub ResetCommandTimeout()

C#

public void ResetCommandTimeout();

See also
♦ “SACommand class” on page 180
♦ “SACommand members” on page 180

SQL Anywhere .NET 2.0 API Reference

202 Copyright © 2007, iAnywhere Solutions, Inc.

SACommandBuilder class
A way to generate single-table SQL statements that reconcile changes made to a DataSet with the data in
the associated database. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SACommandBuilder
 Inherits DbCommandBuilder

C#

public sealed class SACommandBuilder : DbCommandBuilder

See also
♦ “SACommandBuilder members” on page 203

SACommandBuilder members

Public constructors

Member name Description

SACommandBuilder construc-
tors

Initializes a new instance of the “SACommandBuilder
class” on page 203.

Public properties

Member name Description

CatalogLocation (inherited from
DbCommandBuilder)

CatalogSeparator (inherited from
DbCommandBuilder)

ConflictOption (inherited from
DbCommandBuilder)

DataAdapter property Specifies the SADataAdapter for which to generate statements.

QuotePrefix (inherited from Db-
CommandBuilder)

QuoteSuffix (inherited from Db-
CommandBuilder)

SchemaSeparator (inherited
from DbCommandBuilder)

SACommandBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 203

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.CatalogLocation.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.CatalogSeparator.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.ConflictOption.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.QuotePrefix.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.QuoteSuffix.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.SchemaSeparator.aspx

Member name Description

SetAllValues (inherited from
DbCommandBuilder)

Public methods

Member name Description

DeriveParameters method Populates the Parameters collection of the specified SACommand
object. This is used for the stored procedure specified in the SACom-
mand.

GetDeleteCommand methods Gets the automatically generated DbCommand object required to
perform deletions at the data source.

GetInsertCommand methods Gets the automatically generated DbCommand object required to
perform insertions at the data source.

GetUpdateCommand methods Gets the automatically generated DbCommand object required to
perform updates at the data source.

QuoteIdentifier (inherited from
DbCommandBuilder)

RefreshSchema (inherited from
DbCommandBuilder)

UnquoteIdentifier method Returns the correct unquoted form of a quoted identifier, including
properly un-escaping any embedded quotes in the identifier.

See also
♦ “SACommandBuilder class” on page 203

SACommandBuilder constructors

Initializes a new instance of the “SACommandBuilder class” on page 203.

SACommandBuilder() constructor

Initializes an SACommandBuilder object.

Syntax
Visual Basic

Public Sub New()

C#

public SACommandBuilder();

SQL Anywhere .NET 2.0 API Reference

204 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.SetAllValues.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommand.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommand.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommand.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.QuoteIdentifier.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.RefreshSchema.aspx

See also
♦ “SACommandBuilder class” on page 203
♦ “SACommandBuilder members” on page 203
♦ “SACommandBuilder constructors” on page 204

SACommandBuilder(SADataAdapter) constructor

Initializes an SACommandBuilder object.

Syntax
Visual Basic

Public Sub New(_
 ByVal adapter As SADataAdapter _
)

C#

public SACommandBuilder(
 SADataAdapter adapter
);

Parameters
♦ adapter An SADataAdapter object for which to generate reconciliation statements.

See also
♦ “SACommandBuilder class” on page 203
♦ “SACommandBuilder members” on page 203
♦ “SACommandBuilder constructors” on page 204

DataAdapter property

Specifies the SADataAdapter for which to generate statements.

Syntax
Visual Basic

Public Property DataAdapter As SADataAdapter

C#

public SADataAdapter DataAdapter { get; set; }

Property value
An SADataAdapter object.

SACommandBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 205

Remarks
When you create a new instance of SACommandBuilder, any existing SACommandBuilder that is associated
with this SADataAdapter is released.

See also
♦ “SACommandBuilder class” on page 203
♦ “SACommandBuilder members” on page 203

DeriveParameters method

Populates the Parameters collection of the specified SACommand object. This is used for the stored
procedure specified in the SACommand.

Syntax
Visual Basic

Public Shared Sub DeriveParameters(_
 ByVal command As SACommand _
)

C#

public static void DeriveParameters(
 SACommand command
);

Parameters
♦ command An SACommand object for which to derive parameters.

Remarks
DeriveParameters overwrites any existing parameter information for the SACommand.

DeriveParameters requires an extra call to the database server. If the parameter information is known in
advance, it is more efficient to populate the Parameters collection by setting the information explicitly.

See also
♦ “SACommandBuilder class” on page 203
♦ “SACommandBuilder members” on page 203

GetDeleteCommand methods

Gets the automatically generated DbCommand object required to perform deletions at the data source.

SQL Anywhere .NET 2.0 API Reference

206 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommand.aspx

GetDeleteCommand(Boolean) method

Returns the generated SACommand object that performs DELETE operations on the database when
SADataAdapter.Update is called.

Syntax
Visual Basic

Public Function GetDeleteCommand(_
 ByVal useColumnsForParameterNames As Boolean _
) As SACommand

C#

public SACommand GetDeleteCommand(
 bool useColumnsForParameterNames
);

Parameters
♦ useColumnsForParameterNames If true, generate parameter names matching column names if

possible. If false, generate @p1, @p2, and so on.

Return value
The automatically generated SACommand object required to perform deletions.

Remarks
The GetDeleteCommand method returns the SACommand object to be executed, so it may be useful for
informational or troubleshooting purposes.

You can also use GetDeleteCommand as the basis of a modified command. For example, you might call
GetDeleteCommand and modify the CommandTimeout value, and then explicitly set that value on the
SADataAdapter.

SQL statements are first generated when the application calls Update or GetDeleteCommand. After the SQL
statement is first generated, the application must explicitly call RefreshSchema if it changes the statement
in any way. Otherwise, the GetDeleteCommand will still be using information from the previous statement.

See also
♦ “SACommandBuilder class” on page 203
♦ “SACommandBuilder members” on page 203
♦ “GetDeleteCommand methods” on page 206
♦ DbCommandBuilder.RefreshSchema

GetDeleteCommand() method

Returns the generated SACommand object that performs DELETE operations on the database when
SADataAdapter.Update is called.

SACommandBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 207

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.RefreshSchema.aspx

Syntax
Visual Basic

Public Function GetDeleteCommand() As SACommand

C#

public SACommand GetDeleteCommand();

Return value
The automatically generated SACommand object required to perform deletions.

Remarks
The GetDeleteCommand method returns the SACommand object to be executed, so it may be useful for
informational or troubleshooting purposes.

You can also use GetDeleteCommand as the basis of a modified command. For example, you might call
GetDeleteCommand and modify the CommandTimeout value, and then explicitly set that value on the
SADataAdapter.

SQL statements are first generated when the application calls Update or GetDeleteCommand. After the SQL
statement is first generated, the application must explicitly call RefreshSchema if it changes the statement
in any way. Otherwise, the GetDeleteCommand will still be using information from the previous statement.

See also
♦ “SACommandBuilder class” on page 203
♦ “SACommandBuilder members” on page 203
♦ “GetDeleteCommand methods” on page 206
♦ DbCommandBuilder.RefreshSchema

GetInsertCommand methods

Gets the automatically generated DbCommand object required to perform insertions at the data source.

GetInsertCommand(Boolean) method

Returns the generated SACommand object that performs INSERT operations on the database when an
Update is called.

Syntax
Visual Basic

Public Function GetInsertCommand(_
 ByVal useColumnsForParameterNames As Boolean _
) As SACommand

C#

SQL Anywhere .NET 2.0 API Reference

208 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.RefreshSchema.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommand.aspx

public SACommand GetInsertCommand(
 bool useColumnsForParameterNames
);

Parameters
♦ useColumnsForParameterNames If true, generate parameter names matching column names if

possible. If false, generate @p1, @p2, and so on.

Return value
The automatically generated SACommand object required to perform insertions.

Remarks
The GetInsertCommand method returns the SACommand object to be executed, so it may be useful for
informational or troubleshooting purposes.

You can also use GetInsertCommand as the basis of a modified command. For example, you might call
GetInsertCommand and modify the CommandTimeout value, and then explicitly set that value on the
SADataAdapter.

SQL statements are first generated either when the application calls Update or GetInsertCommand. After
the SQL statement is first generated, the application must explicitly call RefreshSchema if it changes the
statement in any way. Otherwise, the GetInsertCommand will be still be using information from the previous
statement, which might not be correct.

See also
♦ “SACommandBuilder class” on page 203
♦ “SACommandBuilder members” on page 203
♦ “GetInsertCommand methods” on page 208
♦ “GetDeleteCommand() method” on page 207

GetInsertCommand() method

Returns the generated SACommand object that performs INSERT operations on the database when an
Update is called.

Syntax
Visual Basic

Public Function GetInsertCommand() As SACommand

C#

public SACommand GetInsertCommand();

Return value
The automatically generated SACommand object required to perform insertions.

SACommandBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 209

Remarks
The GetInsertCommand method returns the SACommand object to be executed, so it may be useful for
informational or troubleshooting purposes.

You can also use GetInsertCommand as the basis of a modified command. For example, you might call
GetInsertCommand and modify the CommandTimeout value, and then explicitly set that value on the
SADataAdapter.

SQL statements are first generated either when the application calls Update or GetInsertCommand. After
the SQL statement is first generated, the application must explicitly call RefreshSchema if it changes the
statement in any way. Otherwise, the GetInsertCommand will be still be using information from the previous
statement, which might not be correct.

See also
♦ “SACommandBuilder class” on page 203
♦ “SACommandBuilder members” on page 203
♦ “GetInsertCommand methods” on page 208
♦ “GetDeleteCommand() method” on page 207

GetUpdateCommand methods

Gets the automatically generated DbCommand object required to perform updates at the data source.

GetUpdateCommand(Boolean) method

Returns the generated SACommand object that performs UPDATE operations on the database when an
Update is called.

Syntax
Visual Basic

Public Function GetUpdateCommand(_
 ByVal useColumnsForParameterNames As Boolean _
) As SACommand

C#

public SACommand GetUpdateCommand(
 bool useColumnsForParameterNames
);

Parameters
♦ useColumnsForParameterNames If true, generate parameter names matching column names if

possible. If false, generate @p1, @p2, and so on.

Return value
The automatically generated SACommand object required to perform updates.

SQL Anywhere .NET 2.0 API Reference

210 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommand.aspx

Remarks
The GetUpdateCommand method returns the SACommand object to be executed, so it may be useful for
informational or troubleshooting purposes.

You can also use GetUpdateCommand as the basis of a modified command. For example, you might call
GetUpdateCommand and modify the CommandTimeout value, and then explicitly set that value on the
SADataAdapter.

SQL statements are first generated when the application calls Update or GetUpdateCommand. After the
SQL statement is first generated, the application must explicitly call RefreshSchema if it changes the
statement in any way. Otherwise, the GetUpdateCommand will be still be using information from the
previous statement, which might not be correct.

See also
♦ “SACommandBuilder class” on page 203
♦ “SACommandBuilder members” on page 203
♦ “GetUpdateCommand methods” on page 210
♦ DbCommandBuilder.RefreshSchema

GetUpdateCommand() method

Returns the generated SACommand object that performs UPDATE operations on the database when an
Update is called.

Syntax
Visual Basic

Public Function GetUpdateCommand() As SACommand

C#

public SACommand GetUpdateCommand();

Return value
The automatically generated SACommand object required to perform updates.

Remarks
The GetUpdateCommand method returns the SACommand object to be executed, so it may be useful for
informational or troubleshooting purposes.

You can also use GetUpdateCommand as the basis of a modified command. For example, you might call
GetUpdateCommand and modify the CommandTimeout value, and then explicitly set that value on the
SADataAdapter.

SQL statements are first generated when the application calls Update or GetUpdateCommand. After the
SQL statement is first generated, the application must explicitly call RefreshSchema if it changes the
statement in any way. Otherwise, the GetUpdateCommand will be still be using information from the
previous statement, which might not be correct.

SACommandBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 211

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.RefreshSchema.aspx

See also
♦ “SACommandBuilder class” on page 203
♦ “SACommandBuilder members” on page 203
♦ “GetUpdateCommand methods” on page 210
♦ DbCommandBuilder.RefreshSchema

UnquoteIdentifier method

Returns the correct unquoted form of a quoted identifier, including properly un-escaping any embedded
quotes in the identifier.

Syntax
Visual Basic

Public Overrides Function UnquoteIdentifier(_
 ByVal quotedIdentifier As String _
) As String

C#

public override string UnquoteIdentifier(
 string quotedIdentifier
);

Parameters
♦ quotedIdentifier The string representing the quoted identifier that will have its embedded quotes

removed.

Return value
Returns a string representing the unquoted form of a quoted identifier with embedded quotes properly un-
escaped.

See also
♦ “SACommandBuilder class” on page 203
♦ “SACommandBuilder members” on page 203

SQL Anywhere .NET 2.0 API Reference

212 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.RefreshSchema.aspx

SACommLinksOptionsBuilder class
Provides a simple way to create and manage the CommLinks options portion of connection strings used by
the SAConnection class. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SACommLinksOptionsBuilder

C#

public sealed class SACommLinksOptionsBuilder

Remarks
The SACommLinksOptionsBuilder class is not available in the .NET Compact Framework 2.0.

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

See also
♦ “SACommLinksOptionsBuilder members” on page 213

SACommLinksOptionsBuilder members

Public constructors

Member name Description

SACommLinksOptionsBuilder
constructors

Initializes a new instance of the “SACommLinksOptionsBuilder
class” on page 213.

Public properties

Member name Description

All property Gets or sets the ALL CommLinks option.

ConnectionString property Gets or sets the connection string being built.

SharedMemory property Gets or sets the SharedMemory protocol.

SpxOptionsBuilder property Gets or sets the an SpxOptionsBuilder object used to create an SPX
options string.

SpxOptionsString property Gets or sets a string of SPX options.

TcpOptionsBuilder property Gets or sets a TcpOptionsBuilder object used to create a TCP options
string.

SACommLinksOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 213

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Member name Description

TcpOptionsString property Gets or sets a string of TCP options.

Public methods

Member name Description

GetUseLongNameAsKeyword
method

Gets a boolean values that indicates whether long connection param-
eter names are used in the connection string.

SetUseLongNameAsKeyword
method

Sets a boolean value that indicates whether long connection parameter
names are used in the connection string. Long connection parameter
names are used by default.

ToString method Converts the SACommLinksOptionsBuilder object to a string repre-
sentation.

See also
♦ “SACommLinksOptionsBuilder class” on page 213

SACommLinksOptionsBuilder constructors

Initializes a new instance of the “SACommLinksOptionsBuilder class” on page 213.

SACommLinksOptionsBuilder() constructor

Initializes an SACommLinksOptionsBuilder object.

Syntax
Visual Basic

Public Sub New()

C#

public SACommLinksOptionsBuilder();

Remarks
The SACommLinksOptionsBuilder class is not available in the .NET Compact Framework 2.0.

Example
The following statement initializes an SACommLinksOptionsBuilder object.

SACommLinksOptionsBuilder commLinks =
 new SACommLinksOptionsBuilder();

SQL Anywhere .NET 2.0 API Reference

214 Copyright © 2007, iAnywhere Solutions, Inc.

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213
♦ “SACommLinksOptionsBuilder constructors” on page 214

SACommLinksOptionsBuilder(String) constructor

Initializes an SACommLinksOptionsBuilder object.

Syntax
Visual Basic

Public Sub New(_
 ByVal options As String _
)

C#

public SACommLinksOptionsBuilder(
 string options
);

Parameters
♦ options A SQL Anywhere CommLinks connection parameter string.

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

Remarks
The SACommLinksOptionsBuilder class is not available in the .NET Compact Framework 2.0.

Example
The following statement initializes an SACommLinksOptionsBuilder object.

SACommLinksOptionsBuilder commLinks =
 new SACommLinksOptionsBuilder("TCPIP(DoBroadcast=ALL;Timeout=20)");

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213
♦ “SACommLinksOptionsBuilder constructors” on page 214

All property

Gets or sets the ALL CommLinks option.

SACommLinksOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 215

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Syntax
Visual Basic

Public Property All As Boolean

C#

public bool All { get; set; }

Remarks
Attempt to connect using the shared memory protocol first, followed by all remaining and available
communication protocols. Use this setting if you are unsure of which communication protocol(s) to use.

The SACommLinksOptionsBuilder class is not available in the .NET Compact Framework 2.0.

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213

ConnectionString property

Gets or sets the connection string being built.

Syntax
Visual Basic

Public Property ConnectionString As String

C#

public string ConnectionString { get; set; }

Remarks
The SACommLinksOptionsBuilder class is not available in the .NET Compact Framework 2.0.

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213

SharedMemory property

Gets or sets the SharedMemory protocol.

Syntax
Visual Basic

Public Property SharedMemory As Boolean

SQL Anywhere .NET 2.0 API Reference

216 Copyright © 2007, iAnywhere Solutions, Inc.

C#

public bool SharedMemory { get; set; }

Remarks
The SACommLinksOptionsBuilder class is not available in the .NET Compact Framework 2.0.

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213

SpxOptionsBuilder property

Gets or sets the an SpxOptionsBuilder object used to create an SPX options string.

Syntax
Visual Basic

Public Property SpxOptionsBuilder As SASpxOptionsBuilder

C#

public SASpxOptionsBuilder SpxOptionsBuilder { get; set; }

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213

SpxOptionsString property

Gets or sets a string of SPX options.

Syntax
Visual Basic

Public Property SpxOptionsString As String

C#

public string SpxOptionsString { get; set; }

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213

SACommLinksOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 217

TcpOptionsBuilder property

Gets or sets a TcpOptionsBuilder object used to create a TCP options string.

Syntax
Visual Basic

Public Property TcpOptionsBuilder As SATcpOptionsBuilder

C#

public SATcpOptionsBuilder TcpOptionsBuilder { get; set; }

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213

TcpOptionsString property

Gets or sets a string of TCP options.

Syntax
Visual Basic

Public Property TcpOptionsString As String

C#

public string TcpOptionsString { get; set; }

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213

GetUseLongNameAsKeyword method

Gets a boolean values that indicates whether long connection parameter names are used in the connection
string.

Syntax
Visual Basic

Public Function GetUseLongNameAsKeyword() As Boolean

C#

public bool GetUseLongNameAsKeyword();

SQL Anywhere .NET 2.0 API Reference

218 Copyright © 2007, iAnywhere Solutions, Inc.

Return value
True if long connection parameter names are used to build connection strings; otherwise, false.

Remarks
SQL Anywhere connection parameters have both long and short forms of their names. For example, to
specify the name of an ODBC data source in your connection string, you can use either of the following
values: DataSourceName or DSN. By default, long connection parameter names are used to build connection
strings.

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213
♦ “SetUseLongNameAsKeyword method” on page 219

SetUseLongNameAsKeyword method

Sets a boolean value that indicates whether long connection parameter names are used in the connection
string. Long connection parameter names are used by default.

Syntax
Visual Basic

Public Sub SetUseLongNameAsKeyword(_
 ByVal useLongNameAsKeyword As Boolean _
)

C#

public void SetUseLongNameAsKeyword(
 bool useLongNameAsKeyword
);

Parameters
♦ useLongNameAsKeyword A boolean value that indicates whether the long connection parameter

name is used in the connection string.

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213
♦ “GetUseLongNameAsKeyword method” on page 218

ToString method

Converts the SACommLinksOptionsBuilder object to a string representation.

SACommLinksOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 219

Syntax
Visual Basic

Public Overrides Function ToString() As String

C#

public override string ToString();

Return value
The options string being built.

See also
♦ “SACommLinksOptionsBuilder class” on page 213
♦ “SACommLinksOptionsBuilder members” on page 213

SQL Anywhere .NET 2.0 API Reference

220 Copyright © 2007, iAnywhere Solutions, Inc.

SAConnection class
Represents a connection to a SQL Anywhere database. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SAConnection
 Inherits DbConnection

C#

public sealed class SAConnection : DbConnection

Remarks
For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

See also
♦ “SAConnection members” on page 221

SAConnection members

Public constructors

Member name Description

SAConnection constructors Initializes a new instance of the “SAConnection class” on page 221.

Public properties

Member name Description

ConnectionString property Provides the database connection string.

ConnectionTimeout property Gets the number of seconds before a connection attempt times out
with an error.

DataSource property Gets the name of the database server.

Database property Gets the name of the current database.

InitString property A command that is executed immediately after the connection is es-
tablished.

ServerVersion property Gets a string that contains the version of the instance of SQL Any-
where to which the client is connected.

State property Indicates the state of the SAConnection object.

SAConnection class

Copyright © 2007, iAnywhere Solutions, Inc. 221

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Public methods

Member name Description

BeginTransaction methods Starts a database transaction.

ChangeDatabase method Changes the current database for an open SAConnection.

ChangePassword method Changes the password for the user indicated in the connection string
to the supplied new password.

ClearAllPools method Empties the connection pool.

ClearPool method Empties the connection pool associated with the specified connection.

Close method Closes a database connection.

CreateCommand method Initializes an SACommand object.

EnlistTransaction (inherited
from DbConnection)

GetSchema methods Returns schema information for the data source of this DbConnec-
tion.

Open method Opens a database connection with the property settings specified by
the SAConnection.ConnectionString.

Public events

Member name Description

InfoMessage event Occurs when the SQL Anywhere database server returns a warning
or informational message.

StateChange event Occurs when the state of the SAConnection object changes.

See also
♦ “SAConnection class” on page 221

SAConnection constructors

Initializes a new instance of the “SAConnection class” on page 221.

SAConnection() constructor

Initializes an SAConnection object. The connection must be opened before you can perform any operations
against the database.

SQL Anywhere .NET 2.0 API Reference

222 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnection.EnlistTransaction.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnection.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnection.aspx

Syntax
Visual Basic

Public Sub New()

C#

public SAConnection();

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “SAConnection constructors” on page 222

SAConnection(String) constructor

Initializes an SAConnection object. The connection must then be opened before you can perform any
operations against the database.

Syntax
Visual Basic

Public Sub New(_
 ByVal connectionString As String _
)

C#

public SAConnection(
 string connectionString
);

Parameters
♦ connectionString A SQL Anywhere connection string. A connection string is a semicolon-separated

list of keyword=value pairs.

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

Example
The following statement initializes an SAConnection object for a connection to a database named policies
running on a SQL Anywhere database server named hr. The connection uses the user ID admin and the
password money.

SAConnection conn = new SAConnection(
"UID=admin;PWD=money;ENG=hr;DBN=policies");
conn.Open();

See also
♦ “SAConnection class” on page 221

SAConnection class

Copyright © 2007, iAnywhere Solutions, Inc. 223

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

♦ “SAConnection members” on page 221
♦ “SAConnection constructors” on page 222
♦ “SAConnection class” on page 221

ConnectionString property

Provides the database connection string.

Syntax
Visual Basic

Public Overrides Property ConnectionString As String

C#

public override string ConnectionString { get; set; }

Remarks
The ConnectionString is designed to match the SQL Anywhere connection string format as closely as
possible with the following exception: when the Persist Security Info value is set to false (the default), the
connection string that is returned is the same as the user-set ConnectionString minus security information.
The SQL Anywhere SQL Anywhere .NET Data Provider does not persist the password in a returned
connection string unless you set Persist Security Info to true.

You can use the ConnectionString property to connect to a variety of data sources.

You can set the ConnectionString property only when the connection is closed. Many of the connection
string values have corresponding read-only properties. When the connection string is set, all of these
properties are updated, unless an error is detected. If an error is detected, none of the properties are updated.
SAConnection properties return only those settings contained in the ConnectionString.

If you reset the ConnectionString on a closed connection, all connection string values and related properties
are reset, including the password.

When the property is set, a preliminary validation of the connection string is performed. When an application
calls the Open method, the connection string is fully validated. A runtime exception is generated if the
connection string contains invalid or unsupported properties.

Values can be delimited by single or double quotes. Either single or double quotes may be used within a
connection string by using the other delimiter, for example, name="value's" or name= 'value"s', but not
name='value's' or name= ""value"". Blank characters are ignored unless they are placed within a value or
within quotes. keyword=value pairs must be separated by a semicolon. If a semicolon is part of a value, it
must also be delimited by quotes. Escape sequences are not supported, and the value type is irrelevant. Names
are not case sensitive. If a property name occurs more than once in the connection string, the value associated
with the last occurrence is used.

You should use caution when constructing a connection string based on user input, such as when retrieving
a user ID and password from a dialog, and appending it to the connection string. The application should not
allow a user to embed extra connection string parameters in these values.

SQL Anywhere .NET 2.0 API Reference

224 Copyright © 2007, iAnywhere Solutions, Inc.

The default value of connection pooling is true (pooling=true).

Example
The following statements set a connection string for an ODBC data source named SQL Anywhere 10 Demo
and open the connection.

SAConnection conn = new SAConnection();
conn.ConnectionString = "DSN=SQL Anywhere 10 Demo";
conn.Open();

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “SAConnection class” on page 221
♦ “Open method” on page 235

ConnectionTimeout property

Gets the number of seconds before a connection attempt times out with an error.

Syntax
Visual Basic

Public Overrides Readonly Property ConnectionTimeout As Integer

C#

public override int ConnectionTimeout { get;}

Property value
15 seconds

Example
The following statement displays the value of the ConnectionTimeout.

MessageBox.Show(conn.ConnectionTimeout.ToString());

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221

DataSource property

Gets the name of the database server.

SAConnection class

Copyright © 2007, iAnywhere Solutions, Inc. 225

Syntax
Visual Basic

Public Overrides Readonly Property DataSource As String

C#

public override string DataSource { get;}

Remarks
If the connection is opened, the SAConnection object returns the ServerName server property. Otherwise,
the SAConnection object looks in the connection string in the following order: EngineName, ServerName,
ENG.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “SAConnection class” on page 221

Database property

Gets the name of the current database.

Syntax
Visual Basic

Public Overrides Readonly Property Database As String

C#

public override string Database { get;}

Remarks
If the connection is opened, SAConnection returns the name of the current database. Otherwise,
SAConnection looks in the connection string in the following order: DatabaseName, DBN,
DataSourceName, DataSource, DSN, DatabaseFile, DBF.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221

InitString property

A command that is executed immediately after the connection is established.

SQL Anywhere .NET 2.0 API Reference

226 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Property InitString As String

C#

public string InitString { get; set; }

Remarks
The InitString will be executed immediately after the connection is opened.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221

ServerVersion property

Gets a string that contains the version of the instance of SQL Anywhere to which the client is connected.

Syntax
Visual Basic

Public Overrides Readonly Property ServerVersion As String

C#

public override string ServerVersion { get;}

Property value
The version of the instance of SQL Anywhere.

Remarks
The version is ##.##.####, where the first two digits are the major version, the next two digits are the minor
version, and the last four digits are the release version. The appended string is of the form major.minor.build,
where major and minor are two digits, and build is four digits.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221

State property

Indicates the state of the SAConnection object.

SAConnection class

Copyright © 2007, iAnywhere Solutions, Inc. 227

Syntax
Visual Basic

Public Overrides Readonly Property State As ConnectionState

C#

public override ConnectionState State { get;}

Property value
A ConnectionState enumeration.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221

BeginTransaction methods

Starts a database transaction.

BeginTransaction() method

Returns a transaction object. Commands associated with a transaction object are executed as a single
transaction. The transaction is terminated with a call to the Commit or Rollback methods.

Syntax
Visual Basic

Public Function BeginTransaction() As SATransaction

C#

public SATransaction BeginTransaction();

Return value
An SATransaction object representing the new transaction.

Remarks
To associate a command with a transaction object, use the SACommand.Transaction property.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “BeginTransaction methods” on page 228
♦ “SATransaction class” on page 419
♦ “Transaction property” on page 187

SQL Anywhere .NET 2.0 API Reference

228 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.ConnectionState.aspx

BeginTransaction(IsolationLevel) method

Returns a transaction object. Commands associated with a transaction object are executed as a single
transaction. The transaction is terminated with a call to the Commit or Rollback methods.

Syntax
Visual Basic

Public Function BeginTransaction(_
 ByVal isolationLevel As IsolationLevel _
) As SATransaction

C#

public SATransaction BeginTransaction(
 IsolationLevel isolationLevel
);

Parameters
♦ isolationLevel A member of the SAIsolationLevel enumeration. The default value is

ReadCommitted.

Return value
An SATransaction object representing the new transaction.

Remarks
To associate a command with a transaction object, use the SACommand.Transaction property.

Example
SATransaction tx = conn.BeginTransaction(
 SAIsolationLevel.ReadUncommitted);

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “BeginTransaction methods” on page 228
♦ “SATransaction class” on page 419
♦ “Transaction property” on page 187
♦ “SAIsolationLevel enumeration” on page 339

BeginTransaction(SAIsolationLevel) method

Returns a transaction object. Commands associated with a transaction object are executed as a single
transaction. The transaction is terminated with a call to the Commit or Rollback methods.

Syntax
Visual Basic

Public Function BeginTransaction(_

SAConnection class

Copyright © 2007, iAnywhere Solutions, Inc. 229

 ByVal isolationLevel As SAIsolationLevel _
) As SATransaction

C#

public SATransaction BeginTransaction(
 SAIsolationLevel isolationLevel
);

Parameters
♦ isolationLevel A member of the SAIsolationLevel enumeration. The default value is

ReadCommitted.

Return value
An SATransaction object representing the new transaction.

For more information, see “Transaction processing” on page 130.

For more information, see “Typical types of inconsistency” [SQL Anywhere Server - SQL Usage].

Remarks
To associate a command with a transaction object, use the SACommand.Transaction property.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “BeginTransaction methods” on page 228
♦ “SATransaction class” on page 419
♦ “Transaction property” on page 187
♦ “SAIsolationLevel enumeration” on page 339
♦ “Commit method” on page 422
♦ “Rollback() method” on page 422
♦ “Rollback(String) method” on page 423

ChangeDatabase method

Changes the current database for an open SAConnection.

Syntax
Visual Basic

Public Overrides Sub ChangeDatabase(_
 ByVal database As String _
)

C#

public override void ChangeDatabase(
 string database
);

SQL Anywhere .NET 2.0 API Reference

230 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf

Parameters
♦ database The name of the database to use instead of the current database.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221

ChangePassword method

Changes the password for the user indicated in the connection string to the supplied new password.

Syntax
Visual Basic

Public Shared Sub ChangePassword(_
 ByVal connectionString As String, _
 ByVal newPassword As String _
)

C#

public static void ChangePassword(
 string connectionString,
 string newPassword
);

Parameters
♦ connectionString The connection string that contains enough information to connect to the database

server that you want. The connection string may contain the user ID and the current password.

♦ newPassword The new password to set. This password must comply with any password security
policy set on the server, including minimum length, requirements for specific characters, and so on.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221

ClearAllPools method

Empties the connection pool.

Syntax
Visual Basic

Public Shared Sub ClearAllPools()

SAConnection class

Copyright © 2007, iAnywhere Solutions, Inc. 231

C#

public static void ClearAllPools();

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221

ClearPool method

Empties the connection pool associated with the specified connection.

Syntax
Visual Basic

Public Shared Sub ClearPool(_
 ByVal connection As SAConnection _
)

C#

public static void ClearPool(
 SAConnection connection
);

Parameters
♦ connection The SAConnection object to be cleared from the pool.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “SAConnection class” on page 221

Close method

Closes a database connection.

Syntax
Visual Basic

Public Overrides Sub Close()

C#

public override void Close();

SQL Anywhere .NET 2.0 API Reference

232 Copyright © 2007, iAnywhere Solutions, Inc.

Remarks
The Close method rolls back any pending transactions. It then releases the connection to the connection pool,
or closes the connection if connection pooling is disabled. If Close is called while handling a StateChange
event, no additional StateChange events are fired. An application can call Close multiple times.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221

CreateCommand method

Initializes an SACommand object.

Syntax
Visual Basic

Public Function CreateCommand() As SACommand

C#

public SACommand CreateCommand();

Return value
An SACommand object.

Remarks
The command object is associated with the SAConnection object.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “SACommand class” on page 180
♦ “SAConnection class” on page 221

GetSchema methods

Returns schema information for the data source of this DbConnection.

GetSchema() method

Returns the list of supported schema collections.

SAConnection class

Copyright © 2007, iAnywhere Solutions, Inc. 233

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnection.aspx

Syntax
Visual Basic

Public Overrides Function GetSchema() As DataTable

C#

public override DataTable GetSchema();

Remarks
See GetSchema(string,string[]) for a description of the available metadata.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “GetSchema methods” on page 233
♦ “GetSchema(String, String[]) method” on page 234

GetSchema(String) method

Returns the list of supported schema collections.

Syntax
Visual Basic

Public Overrides Function GetSchema(_
 ByVal collection As String _
) As DataTable

C#

public override DataTable GetSchema(
 string collection
);

Remarks
See GetSchema(string,string[]) for a description of the available metadata.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “GetSchema methods” on page 233
♦ “GetSchema(String, String[]) method” on page 234

GetSchema(String, String[]) method

Returns the list of supported schema collections.

SQL Anywhere .NET 2.0 API Reference

234 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Overrides Function GetSchema(_
 ByVal collection As String, _
 ByVal restrictions As String() _
) As DataTable

C#

public override DataTable GetSchema(
 string collection,
 string [] restrictions
);

Remarks
See GetSchema(string,string[]) for a description of the available metadata.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “GetSchema methods” on page 233
♦ “GetSchema(String, String[]) method” on page 234

Open method

Opens a database connection with the property settings specified by the SAConnection.ConnectionString.

Syntax
Visual Basic

Public Overrides Sub Open()

C#

public override void Open();

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221
♦ “ConnectionString property” on page 224

InfoMessage event

Occurs when the SQL Anywhere database server returns a warning or informational message.

SAConnection class

Copyright © 2007, iAnywhere Solutions, Inc. 235

Syntax
Visual Basic

Public Event InfoMessage As SAInfoMessageEventHandler

C#

public event SAInfoMessageEventHandler InfoMessage ;

Remarks
The event handler receives an argument of type SaInfoMessageEventArgs containing data related to this
event. The following SAaInfoMessageEventArgs properties provide information specific to this event:
NativeError, Errors, Message, MessageType, and Source.

For more information, see the .NET Framework documentation for OleDbConnection.InfoMessage Event.

Event data
♦ MessageType Returns the type of the message. This can be one of: Action, Info, Status, or Warning.

♦ Errors Returns the collection of messages sent from the data source.

♦ Message Returns the full text of the error sent from the data source.

♦ Source Returns the name of the SQL Anywhere .NET Data Provider.

♦ NativeError Returns the SQL code returned by the database.

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221

StateChange event

Occurs when the state of the SAConnection object changes.

Syntax
Visual Basic

Public Overrides Event StateChange As StateChangeEventHandler

C#

public event override StateChangeEventHandler StateChange ;

Remarks
The event handler receives an argument of type StateChangeEventArgs with data related to this event. The
following StateChangeEventArgs properties provide information specific to this event: CurrentState and
OriginalState.

For more information, see the .NET Framework documentation for OleDbConnection.StateChange Event.

SQL Anywhere .NET 2.0 API Reference

236 Copyright © 2007, iAnywhere Solutions, Inc.

Event data
♦ CurrentState

♦ OriginalState

See also
♦ “SAConnection class” on page 221
♦ “SAConnection members” on page 221

SAConnection class

Copyright © 2007, iAnywhere Solutions, Inc. 237

SAConnectionStringBuilder class
Provides a simple way to create and manage the contents of connection strings used by the SAConnection
class. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SAConnectionStringBuilder
 Inherits SAConnectionStringBuilderBase

C#

public sealed class SAConnectionStringBuilder : SAConnectionstring BuilderBase

Remarks
The SA ConnectionStringBuilder class inherits SAConnectionStringBuilderBase, which inherits
DbConnectionStringBuilder.

Restrictions: The SAConnectionStringBuilder class is not available in the .NET Compact Framework 2.0.

Inherits:“SAConnectionStringBuilderBase class” on page 259

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

See also
♦ “SAConnectionStringBuilder members” on page 238

SAConnectionStringBuilder members

Public constructors

Member name Description

SAConnectionStringBuilder
constructors

Initializes a new instance of the “SAConnectionStringBuilder
class” on page 238.

Public properties

Member name Description

AppInfo property Gets or sets the AppInfo connection property.

AutoStart property Gets or sets the AutoStart connection property.

AutoStop property Gets or sets the AutoStop connection property.

SQL Anywhere .NET 2.0 API Reference

238 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Member name Description

BrowsableConnectionString (in-
herited from DbConnection-
StringBuilder)

Charset property Gets or sets the Charset connection property.

CommBufferSize property Gets or sets the CommBufferSize connection property.

CommLinks property Gets or sets the CommLinks property.

Compress property Gets or sets the Compress connection property.

CompressionThreshold property Gets or sets the CompressionThreshold connection property.

ConnectionLifetime property Gets or sets the ConnectionLifetime connection property.

ConnectionName property Gets or sets the ConnectionName connection property.

ConnectionReset property Gets or sets the ConnectionReset connection property.

ConnectionString (inherited
from DbConnectionString-
Builder)

ConnectionTimeout property Gets or sets the ConnectionTimeout connection property.

Count (inherited from DbCon-
nectionStringBuilder)

DataSourceName property Gets or sets the DataSourceName connection property.

DatabaseFile property Gets or sets the DatabaseFile connection property.

DatabaseKey property Gets or sets the DatabaseKey connection property.

DatabaseName property Gets or sets the DatabaseName connection property.

DatabaseSwitches property Gets or sets the DatabaseSwitches connection property.

DisableMultiRowFetch property Gets or sets the DisableMultiRowFetch connection property.

EncryptedPassword property Gets or sets the EncryptedPassword connection property.

Encryption property Gets or sets the Encryption connection property.

Enlist property Gets or sets the Enlist connection property.

FileDataSourceName property Gets or sets the FileDataSourceName connection property.

ForceStart property Gets or sets the ForceStart connection property.

IdleTimeout property Gets or sets the IdleTimeout connection property.

SAConnectionStringBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 239

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.BrowsableConnectionString.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.ConnectionString.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Count.aspx

Member name Description

Integrated property Gets or sets the Integrated connection property.

IsFixedSize (inherited from Db-
ConnectionStringBuilder)

IsReadOnly (inherited from Db-
ConnectionStringBuilder)

Item property (inherited from
SAConnectionStringBuilder-
Base)

Gets or sets the value of the connection keyword.

Kerberos property Gets or sets the Kerberos connection property.

Keys property (inherited from
SAConnectionStringBuilder-
Base)

Gets an System.Collections.ICollection that contains the keys in the
SAConnectionStringBuilder.

Language property Gets or sets the Language connection property.

LazyClose property Gets or sets the LazyClose connection property.

LivenessTimeout property Gets or sets the LivenessTimeout connection property.

LogFile property Gets or sets the LogFile connection property.

MaxPoolSize property Gets or sets the MaxPoolSize connection property.

MinPoolSize property Gets or sets the MinPoolSize connection property.

Password property Gets or sets the Password connection property.

PersistSecurityInfo property Gets or sets the PersistSecurityInfo connection property.

Pooling property Gets or sets the Pooling connection property.

PrefetchBuffer property Gets or sets the PrefetchBuffer connection property.

PrefetchRows property Gets or sets the PrefetchRows connection property. The default value
is 200.

RetryConnectionTimeout prop-
erty

Gets or sets the RetryConnectionTimeout property.

ServerName property Gets or sets the ServerName connection property.

StartLine property Gets or sets the StartLine connection property.

Unconditional property Gets or sets the Unconditional connection property.

UserID property Gets or sets the UserID connection property.

SQL Anywhere .NET 2.0 API Reference

240 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.IsFixedSize.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.IsReadOnly.aspx

Member name Description

Values (inherited from DbCon-
nectionStringBuilder)

Public methods

Member name Description

Add (inherited from DbConnec-
tionStringBuilder)

Clear (inherited from DbConnec-
tionStringBuilder)

ContainsKey method (inherited
from SAConnectionString-
BuilderBase)

Determines whether the SAConnectionStringBuilder object contains
a specific keyword.

EquivalentTo (inherited from
DbConnectionStringBuilder)

GetKeyword method (inherited
from SAConnectionString-
BuilderBase)

Gets the keyword for specified SAConnectionStringBuilder property.

GetUseLongNameAsKeyword
method (inherited from SACon-
nectionStringBuilderBase)

Gets a boolean values that indicates whether long connection param-
eter names are used in the connection string.

Remove method (inherited from
SAConnectionStringBuilder-
Base)

Removes the entry with the specified key from the SAConnection-
StringBuilder instance.

SetUseLongNameAsKeyword
method (inherited from SACon-
nectionStringBuilderBase)

Sets a boolean value that indicates whether long connection parameter
names are used in the connection string. Long connection parameter
names are used by default.

ShouldSerialize method (inherit-
ed from SAConnectionString-
BuilderBase)

Indicates whether the specified key exists in this SAConnection-
StringBuilder instance.

ToString (inherited from DbCon-
nectionStringBuilder)

TryGetValue method (inherited
from SAConnectionString-
BuilderBase)

Retrieves a value corresponding to the supplied key from this SACon-
nectionStringBuilder.

See also
♦ “SAConnectionStringBuilder class” on page 238

SAConnectionStringBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 241

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Values.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Add.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Clear.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.EquivalentTo.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.ToString.aspx

SAConnectionStringBuilder constructors

Initializes a new instance of the “SAConnectionStringBuilder class” on page 238.

SAConnectionStringBuilder() constructor

Initializes a new instance of the SAConnectionStringBuilder class.

Syntax
Visual Basic

Public Sub New()

C#

public SAConnectionStringBuilder();

Remarks
Restrictions: The SAConnectionStringBuilder class is not available in the .NET Compact Framework 2.0.

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238
♦ “SAConnectionStringBuilder constructors” on page 242

SAConnectionStringBuilder(String) constructor

Initializes a new instance of the SAConnectionStringBuilder class.

Syntax
Visual Basic

Public Sub New(_
 ByVal connectionString As String _
)

C#

public SAConnectionStringBuilder(
 string connectionString
);

Parameters
♦ connectionString The basis for the object's internal connection information. Parsed into

keyword=value pairs.

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

SQL Anywhere .NET 2.0 API Reference

242 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Remarks
Restrictions: The SAConnectionStringBuilder class is not available in the .NET Compact Framework 2.0.

Example
The following statement initializes an SAConnection object for a connection to a database named policies
running on a SQL Anywhere database server named hr. The connection uses the user ID admin and the
password money.

SAConnectionStringBuilder conn = new SAConnectionStringBuilder
("UID=admin;PWD=money;ENG=hr;DBN=policies");

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238
♦ “SAConnectionStringBuilder constructors” on page 242

AppInfo property

Gets or sets the AppInfo connection property.

Syntax
Visual Basic

Public Property AppInfo As String

C#

public string AppInfo { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

AutoStart property

Gets or sets the AutoStart connection property.

Syntax
Visual Basic

Public Property AutoStart As String

C#

public string AutoStart { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238

SAConnectionStringBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 243

♦ “SAConnectionStringBuilder members” on page 238

AutoStop property

Gets or sets the AutoStop connection property.

Syntax
Visual Basic

Public Property AutoStop As String

C#

public string AutoStop { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

Charset property

Gets or sets the Charset connection property.

Syntax
Visual Basic

Public Property Charset As String

C#

public string Charset { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

CommBufferSize property

Gets or sets the CommBufferSize connection property.

Syntax
Visual Basic

Public Property CommBufferSize As Integer

SQL Anywhere .NET 2.0 API Reference

244 Copyright © 2007, iAnywhere Solutions, Inc.

C#

public int CommBufferSize { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

CommLinks property

Gets or sets the CommLinks property.

Syntax
Visual Basic

Public Property CommLinks As String

C#

public string CommLinks { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

Compress property

Gets or sets the Compress connection property.

Syntax
Visual Basic

Public Property Compress As String

C#

public string Compress { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

CompressionThreshold property

Gets or sets the CompressionThreshold connection property.

SAConnectionStringBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 245

Syntax
Visual Basic

Public Property CompressionThreshold As Integer

C#

public int CompressionThreshold { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

ConnectionLifetime property

Gets or sets the ConnectionLifetime connection property.

Syntax
Visual Basic

Public Property ConnectionLifetime As Integer

C#

public int ConnectionLifetime { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

ConnectionName property

Gets or sets the ConnectionName connection property.

Syntax
Visual Basic

Public Property ConnectionName As String

C#

public string ConnectionName { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

SQL Anywhere .NET 2.0 API Reference

246 Copyright © 2007, iAnywhere Solutions, Inc.

ConnectionReset property

Gets or sets the ConnectionReset connection property.

Syntax
Visual Basic

Public Property ConnectionReset As Boolean

C#

public bool ConnectionReset { get; set; }

Property value
A DataTable that contains schema information.

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

ConnectionTimeout property

Gets or sets the ConnectionTimeout connection property.

Syntax
Visual Basic

Public Property ConnectionTimeout As Integer

C#

public int ConnectionTimeout { get; set; }

Example
The following statement displays the value of the ConnectionTimeout property.

MessageBox.Show(connString.ConnectionTimeout.ToString());

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

DataSourceName property

Gets or sets the DataSourceName connection property.

SAConnectionStringBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 247

Syntax
Visual Basic

Public Property DataSourceName As String

C#

public string DataSourceName { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

DatabaseFile property

Gets or sets the DatabaseFile connection property.

Syntax
Visual Basic

Public Property DatabaseFile As String

C#

public string DatabaseFile { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

DatabaseKey property

Gets or sets the DatabaseKey connection property.

Syntax
Visual Basic

Public Property DatabaseKey As String

C#

public string DatabaseKey { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

SQL Anywhere .NET 2.0 API Reference

248 Copyright © 2007, iAnywhere Solutions, Inc.

DatabaseName property

Gets or sets the DatabaseName connection property.

Syntax
Visual Basic

Public Property DatabaseName As String

C#

public string DatabaseName { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

DatabaseSwitches property

Gets or sets the DatabaseSwitches connection property.

Syntax
Visual Basic

Public Property DatabaseSwitches As String

C#

public string DatabaseSwitches { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

DisableMultiRowFetch property

Gets or sets the DisableMultiRowFetch connection property.

Syntax
Visual Basic

Public Property DisableMultiRowFetch As String

C#

public string DisableMultiRowFetch { get; set; }

SAConnectionStringBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 249

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

EncryptedPassword property

Gets or sets the EncryptedPassword connection property.

Syntax
Visual Basic

Public Property EncryptedPassword As String

C#

public string EncryptedPassword { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

Encryption property

Gets or sets the Encryption connection property.

Syntax
Visual Basic

Public Property Encryption As String

C#

public string Encryption { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

Enlist property

Gets or sets the Enlist connection property.

Syntax
Visual Basic

Public Property Enlist As Boolean

SQL Anywhere .NET 2.0 API Reference

250 Copyright © 2007, iAnywhere Solutions, Inc.

C#

public bool Enlist { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

FileDataSourceName property

Gets or sets the FileDataSourceName connection property.

Syntax
Visual Basic

Public Property FileDataSourceName As String

C#

public string FileDataSourceName { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

ForceStart property

Gets or sets the ForceStart connection property.

Syntax
Visual Basic

Public Property ForceStart As String

C#

public string ForceStart { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

IdleTimeout property

Gets or sets the IdleTimeout connection property.

SAConnectionStringBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 251

Syntax
Visual Basic

Public Property IdleTimeout As Integer

C#

public int IdleTimeout { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

Integrated property

Gets or sets the Integrated connection property.

Syntax
Visual Basic

Public Property Integrated As String

C#

public string Integrated { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

Kerberos property

Gets or sets the Kerberos connection property.

Syntax
Visual Basic

Public Property Kerberos As String

C#

public string Kerberos { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

SQL Anywhere .NET 2.0 API Reference

252 Copyright © 2007, iAnywhere Solutions, Inc.

Language property

Gets or sets the Language connection property.

Syntax
Visual Basic

Public Property Language As String

C#

public string Language { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

LazyClose property

Gets or sets the LazyClose connection property.

Syntax
Visual Basic

Public Property LazyClose As String

C#

public string LazyClose { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

LivenessTimeout property

Gets or sets the LivenessTimeout connection property.

Syntax
Visual Basic

Public Property LivenessTimeout As Integer

C#

public int LivenessTimeout { get; set; }

SAConnectionStringBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 253

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

LogFile property

Gets or sets the LogFile connection property.

Syntax
Visual Basic

Public Property LogFile As String

C#

public string LogFile { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

MaxPoolSize property

Gets or sets the MaxPoolSize connection property.

Syntax
Visual Basic

Public Property MaxPoolSize As Integer

C#

public int MaxPoolSize { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

MinPoolSize property

Gets or sets the MinPoolSize connection property.

Syntax
Visual Basic

Public Property MinPoolSize As Integer

SQL Anywhere .NET 2.0 API Reference

254 Copyright © 2007, iAnywhere Solutions, Inc.

C#

public int MinPoolSize { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

Password property

Gets or sets the Password connection property.

Syntax
Visual Basic

Public Property Password As String

C#

public string Password { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

PersistSecurityInfo property

Gets or sets the PersistSecurityInfo connection property.

Syntax
Visual Basic

Public Property PersistSecurityInfo As Boolean

C#

public bool PersistSecurityInfo { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

Pooling property

Gets or sets the Pooling connection property.

SAConnectionStringBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 255

Syntax
Visual Basic

Public Property Pooling As Boolean

C#

public bool Pooling { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

PrefetchBuffer property

Gets or sets the PrefetchBuffer connection property.

Syntax
Visual Basic

Public Property PrefetchBuffer As Integer

C#

public int PrefetchBuffer { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

PrefetchRows property

Gets or sets the PrefetchRows connection property. The default value is 200.

Syntax
Visual Basic

Public Property PrefetchRows As Integer

C#

public int PrefetchRows { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

SQL Anywhere .NET 2.0 API Reference

256 Copyright © 2007, iAnywhere Solutions, Inc.

RetryConnectionTimeout property

Gets or sets the RetryConnectionTimeout property.

Syntax
Visual Basic

Public Property RetryConnectionTimeout As Integer

C#

public int RetryConnectionTimeout { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

ServerName property

Gets or sets the ServerName connection property.

Syntax
Visual Basic

Public Property ServerName As String

C#

public string ServerName { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

StartLine property

Gets or sets the StartLine connection property.

Syntax
Visual Basic

Public Property StartLine As String

C#

public string StartLine { get; set; }

SAConnectionStringBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 257

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

Unconditional property

Gets or sets the Unconditional connection property.

Syntax
Visual Basic

Public Property Unconditional As String

C#

public string Unconditional { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

UserID property

Gets or sets the UserID connection property.

Syntax
Visual Basic

Public Property UserID As String

C#

public string UserID { get; set; }

See also
♦ “SAConnectionStringBuilder class” on page 238
♦ “SAConnectionStringBuilder members” on page 238

SQL Anywhere .NET 2.0 API Reference

258 Copyright © 2007, iAnywhere Solutions, Inc.

SAConnectionStringBuilderBase class
Base class of the SAConnectionStringBuilder class. This class is abstract and so cannot be instantiated.

Syntax
Visual Basic

MustInherit Public Class SAConnectionStringBuilderBase
 Inherits DbConnectionStringBuilder

C#

public abstract class SAConnectionStringBuilderBase : DbConnectionstring Builder

See also
♦ “SAConnectionStringBuilderBase members” on page 259

SAConnectionStringBuilderBase members

Public properties

Member name Description

BrowsableConnectionString (in-
herited from DbConnection-
StringBuilder)

ConnectionString (inherited
from DbConnectionString-
Builder)

Count (inherited from DbCon-
nectionStringBuilder)

IsFixedSize (inherited from Db-
ConnectionStringBuilder)

IsReadOnly (inherited from Db-
ConnectionStringBuilder)

Item property Gets or sets the value of the connection keyword.

Keys property Gets an System.Collections.ICollection that contains the keys in the
SAConnectionStringBuilder.

Values (inherited from DbCon-
nectionStringBuilder)

SAConnectionStringBuilderBase class

Copyright © 2007, iAnywhere Solutions, Inc. 259

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.BrowsableConnectionString.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.ConnectionString.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Count.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.IsFixedSize.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.IsReadOnly.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Values.aspx

Public methods

Member name Description

Add (inherited from DbConnec-
tionStringBuilder)

Clear (inherited from DbConnec-
tionStringBuilder)

ContainsKey method Determines whether the SAConnectionStringBuilder object contains
a specific keyword.

EquivalentTo (inherited from
DbConnectionStringBuilder)

GetKeyword method Gets the keyword for specified SAConnectionStringBuilder property.

GetUseLongNameAsKeyword
method

Gets a boolean values that indicates whether long connection param-
eter names are used in the connection string.

Remove method Removes the entry with the specified key from the SAConnection-
StringBuilder instance.

SetUseLongNameAsKeyword
method

Sets a boolean value that indicates whether long connection parameter
names are used in the connection string. Long connection parameter
names are used by default.

ShouldSerialize method Indicates whether the specified key exists in this SAConnection-
StringBuilder instance.

ToString (inherited from DbCon-
nectionStringBuilder)

TryGetValue method Retrieves a value corresponding to the supplied key from this SACon-
nectionStringBuilder.

See also
♦ “SAConnectionStringBuilderBase class” on page 259

Item property

Gets or sets the value of the connection keyword.

Syntax
Visual Basic

Public Overrides Default Property Item (_
 ByVal keyword As String _
) As Object

C#

SQL Anywhere .NET 2.0 API Reference

260 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Add.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Clear.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.EquivalentTo.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.ToString.aspx

public override object this [
 string keyword
] { get; set; }

Parameters
♦ keyword The name of the connection keyword.

Property value
An object representing the value of the specified connection keyword.

Remarks
If the keyword or type is invalid, an exception is raised. keyword is case insensitive.

When setting the value, passing NULL clears the value.

See also
♦ “SAConnectionStringBuilderBase class” on page 259
♦ “SAConnectionStringBuilderBase members” on page 259

Keys property

Gets an System.Collections.ICollection that contains the keys in the SAConnectionStringBuilder.

Syntax
Visual Basic

Public Overrides Readonly Property Keys As ICollection

C#

public override ICollection Keys { get;}

Property value
An System.Collections.ICollection that contains the keys in the SAConnectionStringBuilder.

See also
♦ “SAConnectionStringBuilderBase class” on page 259
♦ “SAConnectionStringBuilderBase members” on page 259

ContainsKey method

Determines whether the SAConnectionStringBuilder object contains a specific keyword.

Syntax
Visual Basic

Public Overrides Function ContainsKey(_

SAConnectionStringBuilderBase class

Copyright © 2007, iAnywhere Solutions, Inc. 261

 ByVal keyword As String _
) As Boolean

C#

public override bool ContainsKey(
 string keyword
);

Parameters
♦ keyword The keyword to locate in the SAConnectionStringBuilder.

Return value
True if the value associated with keyword has been set; otherwise, false.

Example
The following statement determines whether the SAConnectionStringBuilder object contains the UserID
keyword.

connectString.ContainsKey("UserID")

See also
♦ “SAConnectionStringBuilderBase class” on page 259
♦ “SAConnectionStringBuilderBase members” on page 259

GetKeyword method

Gets the keyword for specified SAConnectionStringBuilder property.

Syntax
Visual Basic

Public Function GetKeyword(_
 ByVal propName As String _
) As String

C#

public string GetKeyword(
 string propName
);

Parameters
♦ propName The name of the SAConnectionStringBuilder property.

Return value
The keyword for specified SAConnectionStringBuilder property.

SQL Anywhere .NET 2.0 API Reference

262 Copyright © 2007, iAnywhere Solutions, Inc.

See also
♦ “SAConnectionStringBuilderBase class” on page 259
♦ “SAConnectionStringBuilderBase members” on page 259

GetUseLongNameAsKeyword method

Gets a boolean values that indicates whether long connection parameter names are used in the connection
string.

Syntax
Visual Basic

Public Function GetUseLongNameAsKeyword() As Boolean

C#

public bool GetUseLongNameAsKeyword();

Return value
True if long connection parameter names are used to build connection strings; otherwise, false.

Remarks
SQL Anywhere connection parameters have both long and short forms of their names. For example, to
specify the name of an ODBC data source in your connection string, you can use either of the following
values: DataSourceName or DSN. By default, long connection parameter names are used to build connection
strings.

See also
♦ “SAConnectionStringBuilderBase class” on page 259
♦ “SAConnectionStringBuilderBase members” on page 259
♦ “SetUseLongNameAsKeyword method” on page 264

Remove method

Removes the entry with the specified key from the SAConnectionStringBuilder instance.

Syntax
Visual Basic

Public Overrides Function Remove(_
 ByVal keyword As String _
) As Boolean

C#

public override bool Remove(
 string keyword
);

SAConnectionStringBuilderBase class

Copyright © 2007, iAnywhere Solutions, Inc. 263

Parameters
♦ keyword The key of the key/value pair to be removed from the connection string in this

SAConnectionStringBuilder.

Return value
True if the key existed within the connection string and was removed; false if the key did not exist.

See also
♦ “SAConnectionStringBuilderBase class” on page 259
♦ “SAConnectionStringBuilderBase members” on page 259

SetUseLongNameAsKeyword method

Sets a boolean value that indicates whether long connection parameter names are used in the connection
string. Long connection parameter names are used by default.

Syntax
Visual Basic

Public Sub SetUseLongNameAsKeyword(_
 ByVal useLongNameAsKeyword As Boolean _
)

C#

public void SetUseLongNameAsKeyword(
 bool useLongNameAsKeyword
);

Parameters
♦ useLongNameAsKeyword A boolean value that indicates whether the long connection parameter

name is used in the connection string.

See also
♦ “SAConnectionStringBuilderBase class” on page 259
♦ “SAConnectionStringBuilderBase members” on page 259
♦ “GetUseLongNameAsKeyword method” on page 263

ShouldSerialize method

Indicates whether the specified key exists in this SAConnectionStringBuilder instance.

Syntax
Visual Basic

Public Overrides Function ShouldSerialize(_

SQL Anywhere .NET 2.0 API Reference

264 Copyright © 2007, iAnywhere Solutions, Inc.

 ByVal keyword As String _
) As Boolean

C#

public override bool ShouldSerialize(
 string keyword
);

Parameters
♦ keyword The key to locate in the SAConnectionStringBuilder.

Return value
True if the SAConnectionStringBuilder contains an entry with the specified key; otherwise false.

See also
♦ “SAConnectionStringBuilderBase class” on page 259
♦ “SAConnectionStringBuilderBase members” on page 259

TryGetValue method

Retrieves a value corresponding to the supplied key from this SAConnectionStringBuilder.

Syntax
Visual Basic

Public Overrides Function TryGetValue(_
 ByVal keyword As String, _
 ByVal value As Object _
) As Boolean

C#

public override bool TryGetValue(
 string keyword,
 object value
);

Parameters
♦ keyword The key of the item to retrieve.

♦ value The value corresponding to keyword.

Return value
true if keyword was found within the connection string; otherwise false.

See also
♦ “SAConnectionStringBuilderBase class” on page 259
♦ “SAConnectionStringBuilderBase members” on page 259

SAConnectionStringBuilderBase class

Copyright © 2007, iAnywhere Solutions, Inc. 265

SADataAdapter class
Represents a set of commands and a database connection used to fill a DataSet and to update a database.
This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SADataAdapter
 Inherits DbDataAdapter

C#

public sealed class SADataAdapter : DbDataAdapter

Remarks
The DataSet provides a way to work with data offline. The SADataAdapter provides methods to associate
a DataSet with a set of SQL statements.

Implements:IDbDataAdapter, IDataAdapter, ICloneable

For more information, see “Using the SADataAdapter object to access and manipulate data” on page 117
and “Accessing and manipulating data” on page 111.

See also
♦ “SADataAdapter members” on page 266

SADataAdapter members

Public constructors

Member name Description

SADataAdapter constructors Initializes a new instance of the “SADataAdapter
class” on page 266.

Public properties

Member name Description

AcceptChangesDuringFill (in-
herited from DataAdapter)

AcceptChangesDuringUpdate
(inherited from DataAdapter)

ContinueUpdateOnError (inher-
ited from DataAdapter)

SQL Anywhere .NET 2.0 API Reference

266 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.DataSet.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.DataSet.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.IDbDataAdapter.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.IDataAdapter.aspx
http://msdn2.microsoft.com/en-us/library/System.ICloneable.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.AcceptChangesDuringFill.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.AcceptChangesDuringUpdate.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.ContinueUpdateOnError.aspx

Member name Description

DeleteCommand property Specifies an SACommand object that is executed against the database
when the Update method is called to delete rows in the database that
correspond to deleted rows in the DataSet.

FillLoadOption (inherited from
DataAdapter)

InsertCommand property Specifies an SACommand that is executed against the database when
the Update method is called that adds rows to the database to corre-
spond to rows that were inserted in the DataSet.

MissingMappingAction (inherit-
ed from DataAdapter)

MissingSchemaAction (inherit-
ed from DataAdapter)

ReturnProviderSpecificTypes
(inherited from DataAdapter)

SelectCommand property Specifies an SACommand that is used during Fill or FillSchema to
obtain a result set from the database for copying into a DataSet.

TableMappings property Specifies a collection that provides the master mapping between a
source table and a DataTable.

UpdateBatchSize property Gets or sets the number of rows that are processed in each round-trip
to the server.

UpdateCommand property Specifies an SACommand that is executed against the database when
the Update method is called to update rows in the database that cor-
respond to updated rows in the DataSet.

Public methods

Member name Description

Fill (inherited from Db-
DataAdapter)

Fills a DataSet or a DataTable.

FillSchema (inherited from Db-
DataAdapter)

Adds a DataTable to a DataSet and configures the schema to match
that in the data source.

GetFillParameters method Returns the parameters set by you when executing a SELECT state-
ment.

ResetFillLoadOption (inherited
from DataAdapter)

ShouldSerializeAcceptChanges-
DuringFill (inherited from
DataAdapter)

SADataAdapter class

Copyright © 2007, iAnywhere Solutions, Inc. 267

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.FillLoadOption.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.MissingMappingAction.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.MissingSchemaAction.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.ReturnProviderSpecificTypes.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataAdapter.Fill.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.DataSet.aspx
http://msdn2.microsoft.com/en-us/library/System.Data. DataTable.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataAdapter.FillSchema.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.DataTable.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.DataSet.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.ResetFillLoadOption.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.ShouldSerializeAcceptChangesDuringFill.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.ShouldSerializeAcceptChangesDuringFill.aspx

Member name Description

ShouldSerializeFillLoadOption
(inherited from DataAdapter)

Update (inherited from Db-
DataAdapter)

Calls the respective INSERT, UPDATE, or DELETE statements for
each inserted, updated, or deleted row in the DataSet.

Public events

Member name Description

FillError (inherited from
DataAdapter)

RowUpdated event Occurs during an update after a command is executed against the data
source. When an attempt to update is made, the event fires.

RowUpdating event Occurs during an update before a command is executed against the
data source. When an attempt to update is made, the event fires.

See also
♦ “SADataAdapter class” on page 266

SADataAdapter constructors

Initializes a new instance of the “SADataAdapter class” on page 266.

SADataAdapter() constructor

Initializes an SADataAdapter object.

Syntax
Visual Basic

Public Sub New()

C#

public SADataAdapter();

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266
♦ “SADataAdapter constructors” on page 268
♦ “SADataAdapter(SACommand) constructor” on page 269
♦ “SADataAdapter(String, SAConnection) constructor” on page 269
♦ “SADataAdapter(String, String) constructor” on page 270

SQL Anywhere .NET 2.0 API Reference

268 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.ShouldSerializeFillLoadOption.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataAdapter.Update.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.DataSet.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.FillError.aspx

SADataAdapter(SACommand) constructor

Initializes an SADataAdapter object with the specified SELECT statement.

Syntax
Visual Basic

Public Sub New(_
 ByVal selectCommand As SACommand _
)

C#

public SADataAdapter(
 SACommand selectCommand
);

Parameters
♦ selectCommand An SACommand object that is used during DbDataAdapter.Fill to select records

from the data source for placement in the DataSet.

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266
♦ “SADataAdapter constructors” on page 268
♦ “SADataAdapter() constructor” on page 268
♦ “SADataAdapter(String, SAConnection) constructor” on page 269
♦ “SADataAdapter(String, String) constructor” on page 270

SADataAdapter(String, SAConnection) constructor

Initializes an SADataAdapter object with the specified SELECT statement and connection.

Syntax
Visual Basic

Public Sub New(_
 ByVal selectCommandText As String, _
 ByVal selectConnection As SAConnection _
)

C#

public SADataAdapter(
 string selectCommandText,
 SAConnection selectConnection
);

SADataAdapter class

Copyright © 2007, iAnywhere Solutions, Inc. 269

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataAdapter.Fill.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.DataSet.aspx

Parameters
♦ selectCommandText A SELECT statement to be used to set the SADataAdapter.SelectCommand

property of the SADataAdapter object.

♦ selectConnection An SAConnection object that defines a connection to a database.

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266
♦ “SADataAdapter constructors” on page 268
♦ “SADataAdapter() constructor” on page 268
♦ “SADataAdapter(SACommand) constructor” on page 269
♦ “SADataAdapter(String, String) constructor” on page 270
♦ “SelectCommand property” on page 272
♦ “SAConnection class” on page 221

SADataAdapter(String, String) constructor

Initializes an SADataAdapter object with the specified SELECT statement and connection string.

Syntax
Visual Basic

Public Sub New(_
 ByVal selectCommandText As String, _
 ByVal selectConnectionString As String _
)

C#

public SADataAdapter(
 string selectCommandText,
 string selectConnectionString
);

Parameters
♦ selectCommandText A SELECT statement to be used to set the SADataAdapter.SelectCommand

property of the SADataAdapter object.

♦ selectConnectionString A connection string for a SQL Anywhere database.

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266
♦ “SADataAdapter constructors” on page 268
♦ “SADataAdapter() constructor” on page 268
♦ “SADataAdapter(SACommand) constructor” on page 269
♦ “SADataAdapter(String, SAConnection) constructor” on page 269
♦ “SelectCommand property” on page 272

SQL Anywhere .NET 2.0 API Reference

270 Copyright © 2007, iAnywhere Solutions, Inc.

DeleteCommand property

Specifies an SACommand object that is executed against the database when the Update method is called to
delete rows in the database that correspond to deleted rows in the DataSet.

Syntax
Visual Basic

Public Property DeleteCommand As SACommand

C#

public SACommand DeleteCommand { get; set; }

Remarks
If this property is not set and primary key information is present in the DataSet during Update,
DeleteCommand can be generated automatically by setting SelectCommand and using the
SACommandBuilder. In that case, the SACommandBuilder generates any additional commands that you do
not set. This generation logic requires key column information to be present in the SelectCommand.

When DeleteCommand is assigned to an existing SACommand object, the SACommand object is not cloned.
The DeleteCommand maintains a reference to the existing SACommand.

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266
♦ “SelectCommand property” on page 272

InsertCommand property

Specifies an SACommand that is executed against the database when the Update method is called that adds
rows to the database to correspond to rows that were inserted in the DataSet.

Syntax
Visual Basic

Public Property InsertCommand As SACommand

C#

public SACommand InsertCommand { get; set; }

Remarks
The SACommandBuilder does not require key columns to generate InsertCommand.

When InsertCommand is assigned to an existing SACommand object, the SACommand is not cloned. The
InsertCommand maintains a reference to the existing SACommand.

SADataAdapter class

Copyright © 2007, iAnywhere Solutions, Inc. 271

If this command returns rows, the rows may be added to the DataSet depending on how you set the
UpdatedRowSource property of the SACommand object.

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266

SelectCommand property

Specifies an SACommand that is used during Fill or FillSchema to obtain a result set from the database for
copying into a DataSet.

Syntax
Visual Basic

Public Property SelectCommand As SACommand

C#

public SACommand SelectCommand { get; set; }

Remarks
When SelectCommand is assigned to a previously-created SACommand, the SACommand is not cloned.
The SelectCommand maintains a reference to the previously-created SACommand object.

If the SelectCommand does not return any rows, no tables are added to the DataSet, and no exception is
raised.

The SELECT statement can also be specified in the SADataAdapter constructor.

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266

TableMappings property

Specifies a collection that provides the master mapping between a source table and a DataTable.

Syntax
Visual Basic

Public Readonly Property TableMappings As DataTableMappingCollection

C#

public DataTableMappingCollection TableMappings { get;}

SQL Anywhere .NET 2.0 API Reference

272 Copyright © 2007, iAnywhere Solutions, Inc.

Remarks
The default value is an empty collection.

When reconciling changes, the SADataAdapter uses the DataTableMappingCollection collection to
associate the column names used by the data source with the column names used by the DataSet.

Restrictions: The TableMappings property is not available in the .NET Compact Framework 2.0.

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266

UpdateBatchSize property

Gets or sets the number of rows that are processed in each round-trip to the server.

Syntax
Visual Basic

Public Overrides Property UpdateBatchSize As Integer

C#

public override int UpdateBatchSize { get; set; }

Remarks
Setting the value of UpdateBatchSize to 1 causes SADataAdapter.Fill to send its rows as in version 1.0 of
the .NET Data Provider: each row in the input set is updated one at a time, in order. The default value is 1.

Setting the value to something greater than 1 causes SADataAdapter.Fill to execute all the insert statements
in batches. The deletions and updates are executed sequentially as before, but insertions are executed
afterward in batches of size equal to the value of UpdateBatchSize.

Setting the value to 0 causes Fill to send the insert statements in a single batch.

Setting it less than 0 is an error.

If UpdateBatchSize is set to something other than one, and the InsertCommand property is set to something
that is not an INSERT statement, then an exception is thrown when calling Fill.

This behavior is different from SqlDataAdapter. It batches all types of commands.

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266

SADataAdapter class

Copyright © 2007, iAnywhere Solutions, Inc. 273

UpdateCommand property

Specifies an SACommand that is executed against the database when the Update method is called to update
rows in the database that correspond to updated rows in the DataSet.

Syntax
Visual Basic

Public Property UpdateCommand As SACommand

C#

public SACommand UpdateCommand { get; set; }

Remarks
During Update, if this property is not set and primary key information is present in the SelectCommand, the
UpdateCommand can be generated automatically if you set the SelectCommand property and use the
SACommandBuilder. Then, any additional commands that you do not set are generated by the
SACommandBuilder. This generation logic requires key column information to be present in the
SelectCommand.

When UpdateCommand is assigned to a previously-created SACommand, the SACommand is not cloned.
The UpdateCommand maintains a reference to the previously-created SACommand object.

If execution of this command returns rows, these rows can be merged with the DataSet depending on how
you set the UpdatedRowSource property of the SACommand object.

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266

GetFillParameters method

Returns the parameters set by you when executing a SELECT statement.

Syntax
Visual Basic

Public Function GetFillParameters() As SAParameter

C#

public SAParameter GetFillParameters();

Return value
An array of IDataParameter objects that contains the parameters set by the user.

See also
♦ “SADataAdapter class” on page 266

SQL Anywhere .NET 2.0 API Reference

274 Copyright © 2007, iAnywhere Solutions, Inc.

♦ “SADataAdapter members” on page 266

RowUpdated event

Occurs during an update after a command is executed against the data source. When an attempt to update is
made, the event fires.

Syntax
Visual Basic

Public Event RowUpdated As SARowUpdatedEventHandler

C#

public event SARowUpdatedEventHandler RowUpdated ;

Remarks
The event handler receives an argument of type SARowUpdatedEventArgs containing data related to this
event.

For more information, see the .NET Framework documentation for OleDbDataAdapter.RowUpdated Event.

Event data
♦ Command Gets the SACommand that is executed when DataAdapter.Update is called.

♦ RecordsAffected Returns the number of rows changed, inserted, or deleted by execution of the SQL
statement.

♦ Command

♦ Errors

♦ Row

♦ RowCount

♦ StatementType

♦ Status

♦ TableMapping

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266

RowUpdating event

Occurs during an update before a command is executed against the data source. When an attempt to update
is made, the event fires.

SADataAdapter class

Copyright © 2007, iAnywhere Solutions, Inc. 275

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.Update.aspx

Syntax
Visual Basic

Public Event RowUpdating As SARowUpdatingEventHandler

C#

public event SARowUpdatingEventHandler RowUpdating ;

Remarks
The event handler receives an argument of type SARowUpdatingEventArgs containing data related to this
event.

For more information, see the .NET Framework documentation for OleDbDataAdapter.RowUpdating Event.

Event data
♦ Command Specifies the SACommand to execute when performing the Update.

♦ Command

♦ Errors

♦ Row

♦ StatementType

♦ Status

♦ TableMapping

See also
♦ “SADataAdapter class” on page 266
♦ “SADataAdapter members” on page 266

SQL Anywhere .NET 2.0 API Reference

276 Copyright © 2007, iAnywhere Solutions, Inc.

SADataReader class
A read-only, forward-only result set from a query or stored procedure. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SADataReader
 Inherits DbDataReader
 Implements IListSource

C#

public sealed class SADataReader : DbDataReader,
 IListSource

Remarks
There is no constructor for SADataReader. To get an SADataReader object, execute an SACommand:

SACommand cmd = new SACommand(
 "SELECT EmployeeID FROM Employees", conn);
SADataReader reader = cmd.ExecuteReader();

You can only move forward through an SADataReader. If you need a more flexible object to manipulate
results, use an SADataAdapter.

The SADataReader retrieves rows as needed, whereas the SADataAdapter must retrieve all rows of a result
set before you can carry out any action on the object. For large result sets, this difference gives the
SADataReader a much faster response time.

Implements:IDataReader, IDisposable, IDataRecord, IListSource

For more information, see “Accessing and manipulating data” on page 111.

See also
♦ “SADataReader members” on page 277
♦ “ExecuteReader() method” on page 199

SADataReader members

Public properties

Member name Description

Depth property Gets a value indicating the depth of nesting for the current row. The
outermost table has a depth of zero.

FieldCount property Gets the number of columns in the result set.

HasRows property Gets a value that indicates whether the SADataReader contains one
or more rows.

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 277

http://msdn2.microsoft.com/en-us/library/System.Data.IDataReader.aspx
http://msdn2.microsoft.com/en-us/library/System.IDisposable.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.IDataRecord.aspx
http://msdn2.microsoft.com/en-us/library/System.ComponentModel.IListSource.aspx

Member name Description

IsClosed property Gets a values that indicates whether the SADataReader is closed.

Item properties Gets the value of a specified column as an instance of Object.

RecordsAffected property The number of rows changed, inserted, or deleted by execution of the
SQL statement.

VisibleFieldCount (inherited
from DbDataReader)

Public methods

Member name Description

Close method Closes the SADataReader.

Dispose (inherited from Db-
DataReader)

GetBoolean method Returns the value of the specified column as a Boolean.

GetByte method Returns the value of the specified column as a Byte.

GetBytes method Reads a stream of bytes from the specified column offset into the
buffer as an array, starting at the given buffer offset.

GetChar method Returns the value of the specified column as a character.

GetChars method Reads a stream of characters from the specified column offset into the
buffer as an array starting at the given buffer offset.

GetData method This method is not supported. When called, it throws an InvalidOp-
erationException.

GetDataTypeName method Returns the name of the source data type.

GetDateTime method Returns the value of the specified column as a DateTime object.

GetDecimal method Returns the value of the specified column as a Decimal object.

GetDouble method Returns the value of the specified column as a double-precision float-
ing point number.

GetEnumerator method Returns a IEnumerator that iterates through the SADataReader object.

GetFieldType method Returns the Type that is the data type of the object.

GetFloat method Returns the value of the specified column as a single-precision float-
ing point number.

GetGuid method Returns the value of the specified column as a global unique identifier
(GUID).

SQL Anywhere .NET 2.0 API Reference

278 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Object.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataReader.VisibleFieldCount.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataReader.Dispose.aspx
http://msdn2.microsoft.com/en-us/library/System.Collections.IEnumerator.aspx

Member name Description

GetInt16 method Returns the value of the specified column as a 16-bit signed integer.

GetInt32 method Returns the value of the specified column as a 32-bit signed integer.

GetInt64 method Returns the value of the specified column as a 64-bit signed integer.

GetName method Returns the name of the specified column.

GetOrdinal method Returns the column ordinal, given the column name.

GetProviderSpecificFieldType
(inherited from DbDataReader)

GetProviderSpecificValue (in-
herited from DbDataReader)

GetProviderSpecificValues (in-
herited from DbDataReader)

GetSchemaTable method Returns a DataTable that describes the column metadata of the SA-
DataReader.

GetString method Returns the value of the specified column as a string.

GetTimeSpan method Returns the value of the specified column as a TimeSpan object.

GetUInt16 method Returns the value of the specified column as a 16-bit unsigned integer.

GetUInt32 method Returns the value of the specified column as a 32-bit unsigned integer.

GetUInt64 method Returns the value of the specified column as a 64-bit unsigned integer.

GetValue methods Returns the value of the specified column as an Object.

GetValues method Gets all the columns in the current row.

IsDBNull method Returns a value indicating whether the column contains NULL values.

NextResult method Advances the SADataReader to the next result, when reading the re-
sults of batch SQL statements.

Read method Reads the next row of the result set and moves the SADataReader to
that row.

myDispose method Frees the resources associated with the object.

See also
♦ “SADataReader class” on page 277
♦ “ExecuteReader() method” on page 199

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 279

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataReader.GetProviderSpecificFieldType.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataReader.GetProviderSpecificValue.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataReader.GetProviderSpecificValues.aspx

Depth property

Gets a value indicating the depth of nesting for the current row. The outermost table has a depth of zero.

Syntax
Visual Basic

Public Overrides Readonly Property Depth As Integer

C#

public override int Depth { get;}

Property value
The depth of nesting for the current row.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

FieldCount property

Gets the number of columns in the result set.

Syntax
Visual Basic

Public Overrides Readonly Property FieldCount As Integer

C#

public override int FieldCount { get;}

Property value
The number of columns in the current record.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

HasRows property

Gets a value that indicates whether the SADataReader contains one or more rows.

SQL Anywhere .NET 2.0 API Reference

280 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Overrides Readonly Property HasRows As Boolean

C#

public override bool HasRows { get;}

Property value
True if the SADataReader contains one or more rows; otherwise, false.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

IsClosed property

Gets a values that indicates whether the SADataReader is closed.

Syntax
Visual Basic

Public Overrides Readonly Property IsClosed As Boolean

C#

public override bool IsClosed { get;}

Property value
True if the SADataReader is closed; otherwise, false.

Remarks
IsClosed and RecordsAffected are the only properties that you can call after the SADataReader is closed.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

Item properties

Gets the value of a specified column as an instance of Object.

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 281

http://msdn2.microsoft.com/en-us/library/System.Object.aspx

Item(Int32) property

Returns the value of a column in its native format. In C#, this property is the indexer for the SADataReader
class.

Syntax
Visual Basic

Public Overrides Default Readonly Property Item (_
 ByVal index As Integer _
) As Object

C#

public override object this [
 int index
] { get;}

Parameters
♦ index The column ordinal.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ “Item properties” on page 281

Item(String) property

Returns the value of a column in its native format. In C#, this property is the indexer for the SADataReader
class.

Syntax
Visual Basic

Public Overrides Default Readonly Property Item (_
 ByVal name As String _
) As Object

C#

public override object this [
 string name
] { get;}

Parameters
♦ name The column name.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

SQL Anywhere .NET 2.0 API Reference

282 Copyright © 2007, iAnywhere Solutions, Inc.

♦ “Item properties” on page 281

RecordsAffected property

The number of rows changed, inserted, or deleted by execution of the SQL statement.

Syntax
Visual Basic

Public Overrides Readonly Property RecordsAffected As Integer

C#

public override int RecordsAffected { get;}

Property value
The number of rows changed, inserted, or deleted. This is 0 if no rows were affected or the statement failed,
or -1 for SELECT statements.

Remarks
The number of rows changed, inserted, or deleted. The value is 0 if no rows were affected or the statement
failed, and -1 for SELECT statements.

The value of this property is cumulative. For example, if two records are inserted in batch mode, the value
of RecordsAffected will be two.

IsClosed and RecordsAffected are the only properties that you can call after the SADataReader is closed.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

Close method

Closes the SADataReader.

Syntax
Visual Basic

Public Overrides Sub Close()

C#

public override void Close();

Remarks
You must explicitly call the Close method when you are finished using the SADataReader.

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 283

When running in autocommit mode, a COMMIT is issued as a side effect of closing the SADataReader.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetBoolean method

Returns the value of the specified column as a Boolean.

Syntax
Visual Basic

Public Overrides Function GetBoolean(_
 ByVal ordinal As Integer _
) As Boolean

C#

public override bool GetBoolean(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the column.

Remarks
No conversions are performed, so the data retrieved must already be a Boolean.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ “GetOrdinal method” on page 296
♦ “GetFieldType method” on page 292

GetByte method

Returns the value of the specified column as a Byte.

Syntax
Visual Basic

Public Overrides Function GetByte(_

SQL Anywhere .NET 2.0 API Reference

284 Copyright © 2007, iAnywhere Solutions, Inc.

 ByVal ordinal As Integer _
) As Byte

C#

public override byte GetByte(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the column.

Remarks
No conversions are performed, so the data retrieved must already be a byte.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetBytes method

Reads a stream of bytes from the specified column offset into the buffer as an array, starting at the given
buffer offset.

Syntax
Visual Basic

Public Overrides Function GetBytes(_
 ByVal ordinal As Integer, _
 ByVal dataIndex As Long, _
 ByVal buffer As Byte(), _
 ByVal bufferIndex As Integer, _
 ByVal length As Integer _
) As Long

C#

public override long GetBytes(
 int ordinal,
 long dataIndex,
 byte[] buffer,
 int bufferIndex,
 int length
);

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 285

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

♦ dataIndex The index within the column value from which to read bytes.

♦ buffer An array in which to store the data.

♦ bufferIndex The index in the array to start copying data.

♦ length The maximum length to copy into the specified buffer.

Return value
The number of bytes read.

Remarks
GetBytes returns the number of available bytes in the field. In most cases this is the exact length of the field.
However, the number returned may be less than the true length of the field if GetBytes has already been
used to obtain bytes from the field. This may be the case, for example, when the SADataReader is reading
a large data structure into a buffer.

If you pass a buffer that is a null reference (Nothing in Visual Basic), GetBytes returns the length of the field
in bytes.

No conversions are performed, so the data retrieved must already be a byte array.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetChar method

Returns the value of the specified column as a character.

Syntax
Visual Basic

Public Overrides Function GetChar(_
 ByVal ordinal As Integer _
) As Char

C#

public override char GetChar(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

SQL Anywhere .NET 2.0 API Reference

286 Copyright © 2007, iAnywhere Solutions, Inc.

Return value
The value of the column.

Remarks
No conversions are performed, so the data retrieved must already be a character.

Call the SADataReader.IsDBNull method to check for null values before calling this method.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ “IsDBNull method” on page 305
♦ “IsDBNull method” on page 305

GetChars method

Reads a stream of characters from the specified column offset into the buffer as an array starting at the given
buffer offset.

Syntax
Visual Basic

Public Overrides Function GetChars(_
 ByVal ordinal As Integer, _
 ByVal dataIndex As Long, _
 ByVal buffer As Char(), _
 ByVal bufferIndex As Integer, _
 ByVal length As Integer _
) As Long

C#

public override long GetChars(
 int ordinal,
 long dataIndex,
 char[] buffer,
 int bufferIndex,
 int length
);

Parameters
♦ ordinal The zero-based column ordinal.

♦ dataIndex The index within the row from which to begin the read operation.

♦ buffer The buffer into which to copy data.

♦ bufferIndex The index for buffer to begin the read operation.

♦ length The number of characters to read.

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 287

Return value
The actual number of characters read.

Remarks
GetChars returns the number of available characters in the field. In most cases this is the exact length of the
field. However, the number returned may be less than the true length of the field if GetChars has already
been used to obtain characters from the field. This may be the case, for example, when the SADataReader
is reading a large data structure into a buffer.

If you pass a buffer that is a null reference (Nothing in Visual Basic), GetChars returns the length of the field
in characters.

No conversions are performed, so the data retrieved must already be a character array.

For information about handling BLOBs, see “Handling BLOBs” on page 126.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetData method

This method is not supported. When called, it throws an InvalidOperationException.

Syntax
Visual Basic

Public Function GetData(_
 ByVal i As Integer _
) As IDataReader

C#

public IDataReader GetData(
 int i
);

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ InvalidOperationException

GetDataTypeName method

Returns the name of the source data type.

SQL Anywhere .NET 2.0 API Reference

288 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.InvalidOperationException.aspx

Syntax
Visual Basic

Public Overrides Function GetDataTypeName(_
 ByVal index As Integer _
) As String

C#

public override string GetDataTypeName(
 int index
);

Parameters
♦ index The zero-based column ordinal.

Return value
The name of the back-end data type.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetDateTime method

Returns the value of the specified column as a DateTime object.

Syntax
Visual Basic

Public Overrides Function GetDateTime(_
 ByVal ordinal As Integer _
) As Date

C#

public override DateTime GetDateTime(
 int ordinal
);

Parameters
♦ ordinal The zero-based column ordinal.

Return value
The value of the specified column.

Remarks
No conversions are performed, so the data retrieved must already be a DateTime object.

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 289

Call the SADataReader.IsDBNull method to check for null values before calling this method.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ “IsDBNull method” on page 305

GetDecimal method

Returns the value of the specified column as a Decimal object.

Syntax
Visual Basic

Public Overrides Function GetDecimal(_
 ByVal ordinal As Integer _
) As Decimal

C#

public override decimal GetDecimal(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
No conversions are performed, so the data retrieved must already be a Decimal object.

Call the SADataReader.IsDBNull method to check for null values before calling this method.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ “IsDBNull method” on page 305

GetDouble method

Returns the value of the specified column as a double-precision floating point number.

SQL Anywhere .NET 2.0 API Reference

290 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Overrides Function GetDouble(_
 ByVal ordinal As Integer _
) As Double

C#

public override double GetDouble(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
No conversions are performed, so the data retrieved must already be a double-precision floating point
number.

Call the SADataReader.IsDBNull method to check for null values before calling this method.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ “IsDBNull method” on page 305

GetEnumerator method

Returns a IEnumerator that iterates through the SADataReader object.

Syntax
Visual Basic

Public Overrides Function GetEnumerator() As IEnumerator

C#

public override IEnumerator GetEnumerator();

Return value
A IEnumerator for the SADataReader object.

See also
♦ “SADataReader class” on page 277

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 291

http://msdn2.microsoft.com/en-us/library/System.Collections.IEnumerator.aspx
http://msdn2.microsoft.com/en-us/library/System.Collections.IEnumerator.aspx

♦ “SADataReader members” on page 277
♦ “SADataReader class” on page 277

GetFieldType method

Returns the Type that is the data type of the object.

Syntax
Visual Basic

Public Overrides Function GetFieldType(_
 ByVal index As Integer _
) As Type

C#

public override Type GetFieldType(
 int index
);

Parameters
♦ index The zero-based column ordinal.

Return value
The type that is the data type of the object.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetFloat method

Returns the value of the specified column as a single-precision floating point number.

Syntax
Visual Basic

Public Overrides Function GetFloat(_
 ByVal ordinal As Integer _
) As Single

C#

public override float GetFloat(
 int ordinal
);

SQL Anywhere .NET 2.0 API Reference

292 Copyright © 2007, iAnywhere Solutions, Inc.

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
No conversions are performed, so the data retrieved must already be a single-precision floating point number.

Call the SADataReader.IsDBNull method to check for null values before calling this method.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ “IsDBNull method” on page 305

GetGuid method

Returns the value of the specified column as a global unique identifier (GUID).

Syntax
Visual Basic

Public Overrides Function GetGuid(_
 ByVal ordinal As Integer _
) As Guid

C#

public override Guid GetGuid(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
The data retrieved must already be a globally-unique identifier or binary(16).

Call the SADataReader.IsDBNull method to check for null values before calling this method.

See also
♦ “SADataReader class” on page 277

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 293

♦ “SADataReader members” on page 277
♦ “IsDBNull method” on page 305

GetInt16 method

Returns the value of the specified column as a 16-bit signed integer.

Syntax
Visual Basic

Public Overrides Function GetInt16(_
 ByVal ordinal As Integer _
) As Short

C#

public override short GetInt16(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
No conversions are performed, so the data retrieved must already be a 16-bit signed integer.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetInt32 method

Returns the value of the specified column as a 32-bit signed integer.

Syntax
Visual Basic

Public Overrides Function GetInt32(_
 ByVal ordinal As Integer _
) As Integer

C#

public override int GetInt32(

SQL Anywhere .NET 2.0 API Reference

294 Copyright © 2007, iAnywhere Solutions, Inc.

 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
No conversions are performed, so the data retrieved must already be a 32-bit signed integer.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetInt64 method

Returns the value of the specified column as a 64-bit signed integer.

Syntax
Visual Basic

Public Overrides Function GetInt64(_
 ByVal ordinal As Integer _
) As Long

C#

public override long GetInt64(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
No conversions are performed, so the data retrieved must already be a 64-bit signed integer.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 295

GetName method

Returns the name of the specified column.

Syntax
Visual Basic

Public Overrides Function GetName(_
 ByVal index As Integer _
) As String

C#

public override string GetName(
 int index
);

Parameters
♦ index The zero-based index of the column.

Return value
The name of the specified column.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetOrdinal method

Returns the column ordinal, given the column name.

Syntax
Visual Basic

Public Overrides Function GetOrdinal(_
 ByVal name As String _
) As Integer

C#

public override int GetOrdinal(
 string name
);

Parameters
♦ name The column name.

Return value
The zero-based column ordinal.

SQL Anywhere .NET 2.0 API Reference

296 Copyright © 2007, iAnywhere Solutions, Inc.

Remarks
GetOrdinal performs a case-sensitive lookup first. If it fails, a second case-insensitive search is made.

GetOrdinal is Japanese kana-width insensitive.

Because ordinal-based lookups are more efficient than named lookups, it is inefficient to call GetOrdinal
within a loop. You can save time by calling GetOrdinal once and assigning the results to an integer variable
for use within the loop.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetSchemaTable method

Returns a DataTable that describes the column metadata of the SADataReader.

Syntax
Visual Basic

Public Overrides Function GetSchemaTable() As DataTable

C#

public override DataTable GetSchemaTable();

Return value
A DataTable that describes the column metadata.

Remarks
This method returns metadata about each column in the following order:

DataTable column Description

ColumnName The name of the column or a null reference (Nothing in Visual Basic)
if the column has no name. If the column is aliased in the SQL query,
the alias is returned. Note that in result sets, not all columns have
names and not all column names are unique.

ColumnOrdinal The ID of the column. The value is in the range [0, FieldCount -1].

ColumnSize For sized columns, the maximum length of a value in the column. For
other columns, this is the size in bytes of the data type.

NumericPrecision The precision of a numeric column or DBNull if the column is not
numeric.

NumericScale The scale of a numeric column or DBNull if the column is not nu-
meric.

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 297

DataTable column Description

IsUnique True if the column is a non-computed unique column in the table
(BaseTableName) it is taken from.

IsKey True if the column is one of a set of columns in the result set that taken
together from a unique key for the result set. The set of columns with
IsKey set to true does not need to be the minimal set that uniquely
identifies a row in the result set.

BaseServerName The name of the SQL Anywhere database server used by the SA-
DataReader.

BaseCatalogName The name of the catalog in the database that contains the column. This
value is always DBNull.

BaseColumnName The original name of the column in the table BaseTableName of the
database or DBNull if the column is computed or if this information
cannot be determined.

BaseSchemaName The name of the schema in the database that contains the column.

BaseTableName The name of the table in the database that contains the column, or
DBNull if column is computed or if this information cannot be de-
termined.

DataType The .NET data type that is most appropriate for this type of column.

AllowDBNull True if the column is nullable, false if the column is not nullable or if
this information cannot be determined.

ProviderType The type of the column.

IsAliased True if the column name is an alias, false if it is not an alias.

IsExpression True if the column is an expression, false if it is a column value.

IsIdentity True if the column is an identity column, false if it is not an identity
column.

IsAutoIncrement True if the column is an autoincrement or global autoincrement col-
umn, false otherwise (or if this information cannot be determined).

IsRowVersion True if the column contains a persistent row identifier that cannot be
written to, and has no meaningful value except to identify the row.

IsHidden True if the column is hidden, false otherwise.

IsLong True if the column is a long varchar, long nvarchar, or a long binary
column, false otherwise.

IsReadOnly True if the column is read-only, false if the column is modifiable or
if its access cannot be determined.

SQL Anywhere .NET 2.0 API Reference

298 Copyright © 2007, iAnywhere Solutions, Inc.

For more information about these columns, see the .NET Framework documentation for
SqlDataReader.GetSchemaTable.

For more information, see “Obtaining DataReader schema information” on page 116.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetString method

Returns the value of the specified column as a string.

Syntax
Visual Basic

Public Overrides Function GetString(_
 ByVal ordinal As Integer _
) As String

C#

public override string GetString(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
No conversions are performed, so the data retrieved must already be a string.

Call the SADataReader.IsDBNull method to check for NULL values before calling this method.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ “IsDBNull method” on page 305

GetTimeSpan method

Returns the value of the specified column as a TimeSpan object.

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 299

Syntax
Visual Basic

Public Function GetTimeSpan(_
 ByVal ordinal As Integer _
) As TimeSpan

C#

public TimeSpan GetTimeSpan(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
The column must be a SQL Anywhere TIME data type. The data is converted to TimeSpan. The Days
property of TimeSpan is always set to 0.

Call SADataReader.IsDBNull method to check for NULL values before calling this method.

For more information, see “Obtaining time values” on page 127.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ “IsDBNull method” on page 305

GetUInt16 method

Returns the value of the specified column as a 16-bit unsigned integer.

Syntax
Visual Basic

Public Function GetUInt16(_
 ByVal ordinal As Integer _
) As UInt16

C#

public ushort GetUInt16(
 int ordinal
);

SQL Anywhere .NET 2.0 API Reference

300 Copyright © 2007, iAnywhere Solutions, Inc.

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
No conversions are performed, so the data retrieved must already be a 16-bit unsigned integer.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetUInt32 method

Returns the value of the specified column as a 32-bit unsigned integer.

Syntax
Visual Basic

Public Function GetUInt32(_
 ByVal ordinal As Integer _
) As UInt32

C#

public uint GetUInt32(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
No conversions are performed, so the data retrieved must already be a 32-bit unsigned integer.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 301

GetUInt64 method

Returns the value of the specified column as a 64-bit unsigned integer.

Syntax
Visual Basic

Public Function GetUInt64(_
 ByVal ordinal As Integer _
) As UInt64

C#

public ulong GetUInt64(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column.

Remarks
No conversions are performed, so the data retrieved must already be a 64-bit unsigned integer.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

GetValue methods

Returns the value of the specified column as an Object.

GetValue(Int32) method

Returns the value of the specified column as an Object.

Syntax
Visual Basic

Public Overrides Function GetValue(_
 ByVal ordinal As Integer _
) As Object

C#

SQL Anywhere .NET 2.0 API Reference

302 Copyright © 2007, iAnywhere Solutions, Inc.

public override object GetValue(
 int ordinal
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

Return value
The value of the specified column as an object.

Remarks
This method returns DBNull for NULL database columns.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ “GetValue methods” on page 302

GetValue(Int32, Int64, Int32) method

Returns a substring of the value of the specified column as an Object.

Syntax
Visual Basic

Public Function GetValue(_
 ByVal ordinal As Integer, _
 ByVal index As Long, _
 ByVal length As Integer _
) As Object

C#

public object GetValue(
 int ordinal,
 long index,
 int length
);

Parameters
♦ ordinal An ordinal number indicating the column from which the value is obtained. The numbering

is zero-based.

♦ index A zero-based index of the substring of the value to be obtained.

♦ length The length of the substring of the value to be obtained.

Return value
The substring value is returned as an object.

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 303

Remarks
This method returns DBNull for NULL database columns.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277
♦ “GetValue methods” on page 302

GetValues method

Gets all the columns in the current row.

Syntax
Visual Basic

Public Overrides Function GetValues(_
 ByVal values As Object() _
) As Integer

C#

public override int GetValues(
 object[] values
);

Parameters
♦ values An array of objects that holds an entire row of the result set.

Return value
The number of objects in the array.

Remarks
For most applications, the GetValues method provides an efficient means for retrieving all columns, rather
than retrieving each column individually.

You can pass an Object array that contains fewer than the number of columns contained in the resulting row.
Only the amount of data the Object array holds is copied to the array. You can also pass an Object array
whose length is more than the number of columns contained in the resulting row.

This method returns DBNull for NULL database columns.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

SQL Anywhere .NET 2.0 API Reference

304 Copyright © 2007, iAnywhere Solutions, Inc.

IsDBNull method

Returns a value indicating whether the column contains NULL values.

Syntax
Visual Basic

Public Overrides Function IsDBNull(_
 ByVal ordinal As Integer _
) As Boolean

C#

public override bool IsDBNull(
 int ordinal
);

Parameters
♦ ordinal The zero-based column ordinal.

Return value
Returns true if the specified column value is equivalent to DBNull. Otherwise, it returns false.

Remarks
Call this method to check for NULL column values before calling the typed get methods (for example,
GetByte, GetChar, and so on) to avoid raising an exception.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

NextResult method

Advances the SADataReader to the next result, when reading the results of batch SQL statements.

Syntax
Visual Basic

Public Overrides Function NextResult() As Boolean

C#

public override bool NextResult();

Return value
Returns true if there are more result sets. Otherwise, it returns false.

Remarks
Used to process multiple results, which can be generated by executing batch SQL statements.

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 305

By default, the data reader is positioned on the first result.

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

Read method

Reads the next row of the result set and moves the SADataReader to that row.

Syntax
Visual Basic

Public Overrides Function Read() As Boolean

C#

public override bool Read();

Return value
Returns true if there are more rows. Otherwise, it returns false.

Remarks
The default position of the SADataReader is prior to the first record. Therefore, you must call Read to begin
accessing any data.

Example
The following code fills a listbox with the values in a single column of results.

while(reader.Read())
{
 listResults.Items.Add(
 reader.GetValue(0).ToString());
}
listResults.EndUpdate();
reader.Close();

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

myDispose method

Frees the resources associated with the object.

Syntax
Visual Basic

Public Sub myDispose()

SQL Anywhere .NET 2.0 API Reference

306 Copyright © 2007, iAnywhere Solutions, Inc.

C#

public void myDispose();

See also
♦ “SADataReader class” on page 277
♦ “SADataReader members” on page 277

SADataReader class

Copyright © 2007, iAnywhere Solutions, Inc. 307

SADataSourceEnumerator class
Provides a mechanism for enumerating all available instances of SQL Anywhere database servers within
the local network. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SADataSourceEnumerator
 Inherits DbDataSourceEnumerator

C#

public sealed class SADataSourceEnumerator : DbDataSourceEnumerator

Remarks
There is no constructor for SADataSourceEnumerator.

The SADataSourceEnumerator class is not available in the .NET Compact Framework 2.0.

See also
♦ “SADataSourceEnumerator members” on page 308

SADataSourceEnumerator members

Public properties

Member name Description

Instance property Gets an instance of SADataSourceEnumberator, which can be used
to retrieve information about all visible SQL Anywhere database
servers.

Public methods

Member name Description

GetDataSources method Retrieves a DataTable containing information about all visible SQL
Anywhere database servers.

See also
♦ “SADataSourceEnumerator class” on page 308

Instance property

Gets an instance of SADataSourceEnumberator, which can be used to retrieve information about all visible
SQL Anywhere database servers.

SQL Anywhere .NET 2.0 API Reference

308 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Shared Readonly Property Instance As SADataSourceEnumerator

C#

public const SADataSourceEnumerator Instance { get;}

See also
♦ “SADataSourceEnumerator class” on page 308
♦ “SADataSourceEnumerator members” on page 308

GetDataSources method

Retrieves a DataTable containing information about all visible SQL Anywhere database servers.

Syntax
Visual Basic

Public Overrides Function GetDataSources() As DataTable

C#

public override DataTable GetDataSources();

Remarks
The returned table has four columns: ServerName, IPAddress, PortNumber, and DataBaseNames. There is
a row in the table for each available database server.

Example
The following code fills a DataTable with information for each database server that is available.

DataTable servers = SADataSourceEnumerator.Instance.GetDataSources();

See also
♦ “SADataSourceEnumerator class” on page 308
♦ “SADataSourceEnumerator members” on page 308

SADataSourceEnumerator class

Copyright © 2007, iAnywhere Solutions, Inc. 309

SADbType enumeration
Enumerates the SQL Anywhere .NET database data types.

Syntax
Visual Basic

Public Enum SADbType

C#

public enum SADbType

Remarks
The table below lists which .NET types are compatible with each SADbType. In the case of integral types,
table columns can always be set using smaller integer types, but can also be set using larger types as long
as the actual value is within the range of the type.

SADbType Compatible .NET
type

C# built-in type Visual Basic built-in type

BigInt System.Int64 long Long

Binary, VarBina-
ry

System.Byte[], or
System.Guid if
size is 16

byte[] Byte()

Bit System.Boolean bool Boolean

Char, VarChar System.String String String

Date System.DateTime DateTime (no
built-in type)

Date

DateTime,
TimeStamp

System.DateTime DateTime (no
built-in type)

Date

Decimal, Numer-
ic

System.String decimal Decimal

Double System.Double double Double

Float, Real System.Single float Single

Image System.Byte[] byte[] Byte()

Integer System.Int32 int Integer

LongBinary System.Byte[] byte[] Byte()

LongNVarChar System.String String String

LongVarChar System.String String String

SQL Anywhere .NET 2.0 API Reference

310 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Int64.aspx
http://msdn2.microsoft.com/en-us/library/System.Byte.aspx
http://msdn2.microsoft.com/en-us/library/System.Guid.aspx
http://msdn2.microsoft.com/en-us/library/System.Boolean.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.DateTime.aspx
http://msdn2.microsoft.com/en-us/library/System.DateTime.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.Double.aspx
http://msdn2.microsoft.com/en-us/library/System.Single.aspx
http://msdn2.microsoft.com/en-us/library/System.Byte.aspx
http://msdn2.microsoft.com/en-us/library/System.Int32.aspx
http://msdn2.microsoft.com/en-us/library/System.Byte.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx

SADbType Compatible .NET
type

C# built-in type Visual Basic built-in type

Money System.String decimal Decimal

NChar System.String String String

NText System.String String String

Numeric System.String decimal Decimal

NVarChar System.String String String

SmallDateTime System.DateTime DateTime (no
built-in type)

Date

SmallInt System.Int16 short Short

SmallMoney System.String decimal Decimal

SysName System.String String String

Text System.String String String

Time System.TimeSpan TimeSpan (no
built-in type)

TimeSpan (no built-in type)

TimeStamp System.DateTime DateTime (no
built-in type)

Date

TinyInt System.Byte byte Byte

UniqueIdentifier System.Guid Guid (no built-in
type)

Guid (no built-in type)

UniqueIdentifier-
Str

System.String String String

UnsignedBigInt System.UInt64 ulong UInt64 (no built-in type)

UnsignedInt System.UInt32 uint UInt64 (no built-in type)

UnsignedSmall-
Int

System.UInt16 ushort UInt64 (no built-in type)

Xml Sys-
tem.System.Xml

String String

Binary columns of length 16 are fully compatible with the UniqueIdentifier type.

Members

Member name Description Value

BigInt Signed 64-bit integer. 1

SADbType enumeration

Copyright © 2007, iAnywhere Solutions, Inc. 311

http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.DateTime.aspx
http://msdn2.microsoft.com/en-us/library/System.Int16.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.TimeSpan.aspx
http://msdn2.microsoft.com/en-us/library/System.DateTime.aspx
http://msdn2.microsoft.com/en-us/library/System.Byte.aspx
http://msdn2.microsoft.com/en-us/library/System.Guid.aspx
http://msdn2.microsoft.com/en-us/library/System.String.aspx
http://msdn2.microsoft.com/en-us/library/System.UInt64.aspx
http://msdn2.microsoft.com/en-us/library/System.UInt32.aspx
http://msdn2.microsoft.com/en-us/library/System.UInt16.aspx
http://msdn2.microsoft.com/en-us/library/System.Xml.aspx

Member name Description Value

Binary Binary data, with a specified maximum length. The
enumeration values Binary and VarBinary are alias-
es of each other.

2

Bit 1-bit flag. 3

Char Character data, with a specified length. This type
always supports Unicode characters. The types
Char and VarChar are fully compatible.

4

Date Date information. 5

DateTime Timestamp information (date, time). The enumer-
ation values DateTime and TimeStamp are aliases
of each other.

6

Decimal Exact numerical data, with a specified precision and
scale. The enumeration values Decimal and Nu-
meric are aliases of each other.

7

Double Double precision floating-point number (8 bytes). 8

Float Single precision floating-point number (4 bytes).
The enumeration values Float and Real are aliases
of each other.

9

Image Stores binary data of arbitrary length. 10

Integer Unsigned 32-bit integer. 11

LongBinary Binary data, with variable length. 12

LongNVarchar Character data in the NCHAR character set, with
variable length. This type always supports Unicode
characters.

13

LongVarbit Bit arrays, with variable length. 14

LongVarchar Character data, with variable length. This type al-
ways supports Unicode characters.

15

Money Monetary data. 16

NChar Stores Unicode character data, up to 8191 charac-
ters.

17

NText Stores Unicode character data of arbitrary length. 18

Numeric Exact numerical data, with a specified precision and
scale. The enumeration values Decimal and Nu-
meric are aliases of each other.

19

SQL Anywhere .NET 2.0 API Reference

312 Copyright © 2007, iAnywhere Solutions, Inc.

Member name Description Value

NVarChar Stores Unicode character data, up to 8191 charac-
ters.

20

Real Single precision floating-point number (4 bytes).
The enumeration values Float and Real are aliases
of each other.

21

SmallDateTime A domain, implemented as TIMESTAMP. 22

SmallInt Signed 16-bit integer. 23

SmallMoney Stores monetary data that is less than one million
currency units.

24

SysName Stores character data of arbitrary length. 25

Text Stores character data of arbitrary length. 26

Time Time information. 27

TimeStamp Timestamp information (date, time). The enumer-
ation values DateTime and TimeStamp are aliases
of each other.

28

TinyInt Unsigned 8-bit integer. 29

UniqueIdentifier Universally Unique Identifier (UUID/GUID). 30

UniqueIdentifierStr A domain, implemented as CHAR(36). UniqueI-
dentifierStr is used for remote data access when
mapping Microsoft SQL Server uniqueidentifier
columns.

31

UnsignedBigInt Unsigned 64-bit integer. 32

UnsignedInt Unsigned 32-bit integer. 33

UnsignedSmallInt Unsigned 16-bit integer. 34

VarBinary Binary data, with a specified maximum length. The
enumeration values Binary and VarBinary are
aliases of each other.

35

VarBit Bit arrays that are from 1 to 32767 bits in length. 36

VarChar Character data, with a specified maximum length.
This type always supports Unicode characters. The
types Char and VarChar are fully compatible.

37

Xml XML data. This type stores character data of arbi-
trary length, and is used to store XML documents.

38

SADbType enumeration

Copyright © 2007, iAnywhere Solutions, Inc. 313

See also
♦ “GetFieldType method” on page 292
♦ “GetDataTypeName method” on page 288

SQL Anywhere .NET 2.0 API Reference

314 Copyright © 2007, iAnywhere Solutions, Inc.

SADefault class
Represents a parameter with a default value. This is a static class and so cannot be inherited or instantiated.

Syntax
Visual Basic

Public NotInheritable Class SADefault

C#

public sealed class SADefault

Remarks
There is no constructor for SADefault.

SAParameter parm = new SAParameter();
parm.Value = SADefault.Value;

See also
♦ “SADefault members” on page 315

SADefault members

Public fields

Member name Description

Value field Gets the value for a default parameter. This field is read-only and
static. This field is read-only.

See also
♦ “SADefault class” on page 315

Value field

Gets the value for a default parameter. This field is read-only and static. This field is read-only.

Syntax
Visual Basic

Public Shared Readonly Value As SADefault

C#

public const SADefault Value ;

SADefault class

Copyright © 2007, iAnywhere Solutions, Inc. 315

See also
♦ “SADefault class” on page 315
♦ “SADefault members” on page 315

SQL Anywhere .NET 2.0 API Reference

316 Copyright © 2007, iAnywhere Solutions, Inc.

SAError class
Collects information relevant to a warning or error returned by the data source. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SAError

C#

public sealed class SAError

Remarks
There is no constructor for SAError.

For information about error handling, see “Error handling and the SQL Anywhere .NET Data
Provider” on page 132.

See also
♦ “SAError members” on page 317

SAError members

Public properties

Member name Description

Message property Returns a short description of the error.

NativeError property Returns database-specific error information.

Source property Returns the name of the provider that generated the error.

SqlState property The SQL Anywhere five-character SQLSTATE following the ANSI
SQL standard.

Public methods

Member name Description

ToString method The complete text of the error message.

See also
♦ “SAError class” on page 317

SAError class

Copyright © 2007, iAnywhere Solutions, Inc. 317

Message property

Returns a short description of the error.

Syntax
Visual Basic

Public Readonly Property Message As String

C#

public string Message { get;}

See also
♦ “SAError class” on page 317
♦ “SAError members” on page 317

NativeError property

Returns database-specific error information.

Syntax
Visual Basic

Public Readonly Property NativeError As Integer

C#

public int NativeError { get;}

See also
♦ “SAError class” on page 317
♦ “SAError members” on page 317

Source property

Returns the name of the provider that generated the error.

Syntax
Visual Basic

Public Readonly Property Source As String

C#

public string Source { get;}

SQL Anywhere .NET 2.0 API Reference

318 Copyright © 2007, iAnywhere Solutions, Inc.

See also
♦ “SAError class” on page 317
♦ “SAError members” on page 317

SqlState property

The SQL Anywhere five-character SQLSTATE following the ANSI SQL standard.

Syntax
Visual Basic

Public Readonly Property SqlState As String

C#

public string SqlState { get;}

See also
♦ “SAError class” on page 317
♦ “SAError members” on page 317

ToString method

The complete text of the error message.

Syntax
Visual Basic

Public Overrides Function ToString() As String

C#

public override string ToString();

Example
The return value is a string is in the form SAError:, followed by the Message. For example:

SAError:UserId or Password not valid.

See also
♦ “SAError class” on page 317
♦ “SAError members” on page 317

SAError class

Copyright © 2007, iAnywhere Solutions, Inc. 319

SAErrorCollection class
Collects all errors generated by the SQL Anywhere .NET Data Provider. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SAErrorCollection
 Implements ICollection, IEnumerable

C#

public sealed class SAErrorCollection : ICollection, IEnumerable

Remarks
There is no constructor for SAErrorCollection. Typically, an SAErrorCollection is obtained from the
SAException.Errors property.

Implements:ICollection, IEnumerable

For information about error handling, see “Error handling and the SQL Anywhere .NET Data
Provider” on page 132.

See also
♦ “SAErrorCollection members” on page 320
♦ “Errors property” on page 324
♦ SqlClientFactory.CanCreateDataSourceEnumerator

SAErrorCollection members

Public properties

Member name Description

Count property Returns the number of errors in the collection.

Item property Returns the error at the specified index.

Public methods

Member name Description

CopyTo method Copies the elements of the SAErrorCollection into an array, starting
at the given index within the array.

GetEnumerator method Returns an enumerator that iterates through the SAErrorCollection.

See also
♦ “SAErrorCollection class” on page 320

SQL Anywhere .NET 2.0 API Reference

320 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Collections.ICollection.aspx
http://msdn2.microsoft.com/en-us/library/System.Collections.IEnumerable.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.SqlClient.SqlClientFactory.CanCreateDataSourceEnumerator.aspx

♦ “Errors property” on page 324
♦ SqlClientFactory.CanCreateDataSourceEnumerator

Count property

Returns the number of errors in the collection.

Syntax
Visual Basic

NotOverridable Public Readonly Property Count As Integer

C#

public int Count { get;}

See also
♦ “SAErrorCollection class” on page 320
♦ “SAErrorCollection members” on page 320

Item property

Returns the error at the specified index.

Syntax
Visual Basic

Public Readonly Property Item (_
 ByVal index As Integer _
) As SAError

C#

public SAError this [
 int index
] { get;}

Parameters
♦ index The zero-based index of the error to retrieve.

Property value
An SAError object that contains the error at the specified index.

See also
♦ “SAErrorCollection class” on page 320
♦ “SAErrorCollection members” on page 320
♦ “SAError class” on page 317

SAErrorCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 321

http://msdn2.microsoft.com/en-us/library/System.Data.SqlClient.SqlClientFactory.CanCreateDataSourceEnumerator.aspx

CopyTo method

Copies the elements of the SAErrorCollection into an array, starting at the given index within the array.

Syntax
Visual Basic

NotOverridable Public Sub CopyTo(_
 ByVal array As Array, _
 ByVal index As Integer _
)

C#

public void CopyTo(
 Array array,
 int index
);

Parameters
♦ array The array into which to copy the elements.

♦ index The starting index of the array.

See also
♦ “SAErrorCollection class” on page 320
♦ “SAErrorCollection members” on page 320

GetEnumerator method

Returns an enumerator that iterates through the SAErrorCollection.

Syntax
Visual Basic

NotOverridable Public Function GetEnumerator() As IEnumerator

C#

public IEnumerator GetEnumerator();

Return value
An IEnumerator for the SAErrorCollection.

See also
♦ “SAErrorCollection class” on page 320
♦ “SAErrorCollection members” on page 320

SQL Anywhere .NET 2.0 API Reference

322 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Collections.IEnumerator.aspx

SAException class
The exception that is thrown when SQL Anywhere returns a warning or error.

Syntax
Visual Basic

Public Class SAException
 Inherits DbException

C#

public class SAException : DbException

Remarks
There is no constructor for SAException. Typically, an SAException object is declared in a catch. For
example:

...
catch(SAException ex)
{
 MessageBox.Show(ex.Errors[0].Message, "Error");
}

For information about error handling, see “Error handling and the SQL Anywhere .NET Data
Provider” on page 132.

See also
♦ “SAException members” on page 323

SAException members

Public properties

Member name Description

Data (inherited from Exception)

ErrorCode (inherited from Exter-
nalException)

Errors property Returns a collection of one or more “SAError class” on page 317
objects.

HelpLink (inherited from Excep-
tion)

InnerException (inherited from
Exception)

Message property Returns the text describing the error.

SAException class

Copyright © 2007, iAnywhere Solutions, Inc. 323

http://msdn2.microsoft.com/en-us/library/System.Exception.Data.aspx
http://msdn2.microsoft.com/en-us/library/System.Runtime.InteropServices.ExternalException.ErrorCode.aspx
http://msdn2.microsoft.com/en-us/library/System.Exception.HelpLink.aspx
http://msdn2.microsoft.com/en-us/library/System.Exception.InnerException.aspx

Member name Description

NativeError property Returns database-specific error information.

Source property Returns the name of the provider that generated the error.

StackTrace (inherited from Ex-
ception)

TargetSite (inherited from Ex-
ception)

Public methods

Member name Description

GetBaseException (inherited
from Exception)

GetObjectData method Sets the SerializationInfo with information about the exception. Over-
rides Exception.GetObjectData.

GetType (inherited from Excep-
tion)

ToString (inherited from Excep-
tion)

See also
♦ “SAException class” on page 323

Errors property

Returns a collection of one or more “SAError class” on page 317 objects.

Syntax
Visual Basic

Public Readonly Property Errors As SAErrorCollection

C#

public SAErrorCollection Errors { get;}

Remarks
The SAErrorCollection object always contains at least one instance of the SAError object.

See also
♦ “SAException class” on page 323
♦ “SAException members” on page 323

SQL Anywhere .NET 2.0 API Reference

324 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Exception.StackTrace.aspx
http://msdn2.microsoft.com/en-us/library/System.Exception.TargetSite.aspx
http://msdn2.microsoft.com/en-us/library/System.Exception.GetBaseException.aspx
http://msdn2.microsoft.com/en-us/library/System.Exception.GetObjectData.aspx
http://msdn2.microsoft.com/en-us/library/System.Exception.GetType.aspx
http://msdn2.microsoft.com/en-us/library/System.Exception.ToString.aspx

♦ “SAErrorCollection class” on page 320
♦ “SAError class” on page 317

Message property

Returns the text describing the error.

Syntax
Visual Basic

Public Overrides Readonly Property Message As String

C#

public override string Message { get;}

Remarks
This method returns a single string that contains a concatenation of all of the Message properties of all of
the SAError objects in the Errors collection. Each message, except the last one, is followed by a carriage
return.

See also
♦ “SAException class” on page 323
♦ “SAException members” on page 323
♦ “SAError class” on page 317

NativeError property

Returns database-specific error information.

Syntax
Visual Basic

Public Readonly Property NativeError As Integer

C#

public int NativeError { get;}

See also
♦ “SAException class” on page 323
♦ “SAException members” on page 323

Source property

Returns the name of the provider that generated the error.

SAException class

Copyright © 2007, iAnywhere Solutions, Inc. 325

Syntax
Visual Basic

Public Overrides Readonly Property Source As String

C#

public override string Source { get;}

See also
♦ “SAException class” on page 323
♦ “SAException members” on page 323

GetObjectData method

Sets the SerializationInfo with information about the exception. Overrides Exception.GetObjectData.

Syntax
Visual Basic

Public Overrides Sub GetObjectData(_
 ByVal info As SerializationInfo, _
 ByVal context As StreamingContext _
)

C#

public override void GetObjectData(
 SerializationInfo info,
 StreamingContext context
);

Parameters
♦ info The SerializationInfo that holds the serialized object data about the exception being thrown.

♦ context The StreamingContext that contains contextual information about the source or destination.

See also
♦ “SAException class” on page 323
♦ “SAException members” on page 323

SQL Anywhere .NET 2.0 API Reference

326 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Exception.GetObjectData.aspx

SAFactory class
Represents a set of methods for creating instances of the iAnywhere.Data.SQLAnywhere provider's
implementation of the data source classes. This is a static class and so cannot be inherited or instantiated.

Syntax
Visual Basic

Public NotInheritable Class SAFactory
 Inherits DbProviderFactory

C#

public sealed class SAFactory : DbProviderFactory

Remarks
There is no constructor for SAFactory.

ADO.NET 2.0 adds two new classes, DbProviderFactories and DbProviderFactory, to make provider
independent code easier to write. To use them with SQL Anywhere specify iAnywhere.Data.SQLAnywhere
as the provider invariant name passed to GetFactory. For example:

' Visual Basic
Dim factory As DbProviderFactory = _
 DbProviderFactories.GetFactory("iAnywhere.Data.SQLAnywhere")
Dim conn As DbConnection = _
 factory.CreateConnection()
// C#
DbProviderFactory factory =
 DbProviderFactories.GetFactory("iAnywhere.Data.SQLAnywhere");
DbConnection conn = factory.CreateConnection();

In this example, conn is created as an SAConnection object.

For an explanation of provider factories and generic programming in ADO.NET 2.0, see http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs05/html/vsgenerics.asp.

Restrictions: The SAFactory class is not available in the .NET Compact Framework 2.0.

Inherits: DbProviderFactory

See also
♦ “SAFactory members” on page 328

SAFactory class

Copyright © 2007, iAnywhere Solutions, Inc. 327

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs05/html/vsgenerics.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs05/html/vsgenerics.asp
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbProviderFactory.aspx

SAFactory members

Public fields

Member name Description

Instance field Represents the singleton instance of the SAFactory class. This field
is read-only.

Public properties

Member name Description

CanCreateDataSourceEnumera-
tor property

Always returns true, which indicates that an SADataSourceEnumer-
ator object can be created.

Public methods

Member name Description

CreateCommand method Returns a strongly typed DbCommand instance.

CreateCommandBuilder method Returns a strongly typed DbCommandBuilder instance.

CreateConnection method Returns a strongly typed DbConnection instance.

CreateConnectionStringBuilder
method

Returns a strongly typed DbConnectionStringBuilder instance.

CreateDataAdapter method Returns a strongly typed DbDataAdapter instance.

CreateDataSourceEnumerator
method

Returns a strongly typed DbDataSourceEnumerator instance.

CreateParameter method Returns a strongly typed DbParameter instance.

CreatePermission method Returns a strongly-typed CodeAccessPermission instance.

See also
♦ “SAFactory class” on page 327

Instance field

Represents the singleton instance of the SAFactory class. This field is read-only.

Syntax
Visual Basic

Public Shared Readonly Instance As SAFactory

SQL Anywhere .NET 2.0 API Reference

328 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommand.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnection.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataAdapter.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataSourceEnumerator.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbParameter.aspx

C#

public const SAFactory Instance ;

Remarks
SAFactory is a singleton class, which means only this instance of this class can exist.

Normally you would not use this field directly. Instead, you get a reference to this instance of SAFactory
using DbProviderFactories.GetFactory. For an example, see the SAFactory description.

Restrictions: The SAFactory class is not available in the .NET Compact Framework 2.0.

See also
♦ “SAFactory class” on page 327
♦ “SAFactory members” on page 328
♦ “SAFactory class” on page 327

CanCreateDataSourceEnumerator property

Always returns true, which indicates that an SADataSourceEnumerator object can be created.

Syntax
Visual Basic

Public Overrides Readonly Property CanCreateDataSourceEnumerator As Boolean

C#

public override bool CanCreateDataSourceEnumerator { get;}

Property value
A new SACommand object typed as DbCommand.

See also
♦ “SAFactory class” on page 327
♦ “SAFactory members” on page 328
♦ “SADataSourceEnumerator class” on page 308
♦ “SACommand class” on page 180

CreateCommand method

Returns a strongly typed DbCommand instance.

Syntax
Visual Basic

Public Overrides Function CreateCommand() As DbCommand

SAFactory class

Copyright © 2007, iAnywhere Solutions, Inc. 329

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbProviderFactories.GetFactory.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommand.aspx

C#

public override DbCommand CreateCommand();

Return value
A new SACommand object typed as DbCommand.

See also
♦ “SAFactory class” on page 327
♦ “SAFactory members” on page 328
♦ “SACommand class” on page 180

CreateCommandBuilder method

Returns a strongly typed DbCommandBuilder instance.

Syntax
Visual Basic

Public Overrides Function CreateCommandBuilder() As DbCommandBuilder

C#

public override DbCommandBuilder CreateCommandBuilder();

Return value
A new SACommand object typed as DbCommand.

See also
♦ “SAFactory class” on page 327
♦ “SAFactory members” on page 328
♦ “SACommand class” on page 180

CreateConnection method

Returns a strongly typed DbConnection instance.

Syntax
Visual Basic

Public Overrides Function CreateConnection() As DbConnection

C#

public override DbConnection CreateConnection();

Return value
A new SACommand object typed as DbCommand.

SQL Anywhere .NET 2.0 API Reference

330 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbCommandBuilder.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnection.aspx

See also
♦ “SAFactory class” on page 327
♦ “SAFactory members” on page 328
♦ “SACommand class” on page 180

CreateConnectionStringBuilder method

Returns a strongly typed DbConnectionStringBuilder instance.

Syntax
Visual Basic

Public Overrides Function CreateConnectionStringBuilder() As DbConnectionStringBuilder

C#

public override DbConnectionstring Builder CreateConnectionStringBuilder();

Return value
A new SACommand object typed as DbCommand.

See also
♦ “SAFactory class” on page 327
♦ “SAFactory members” on page 328
♦ “SACommand class” on page 180

CreateDataAdapter method

Returns a strongly typed DbDataAdapter instance.

Syntax
Visual Basic

Public Overrides Function CreateDataAdapter() As DbDataAdapter

C#

public override DbDataAdapter CreateDataAdapter();

Return value
A new SACommand object typed as DbCommand.

See also
♦ “SAFactory class” on page 327
♦ “SAFactory members” on page 328
♦ “SACommand class” on page 180

SAFactory class

Copyright © 2007, iAnywhere Solutions, Inc. 331

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataAdapter.aspx

CreateDataSourceEnumerator method

Returns a strongly typed DbDataSourceEnumerator instance.

Syntax
Visual Basic

Public Overrides Function CreateDataSourceEnumerator() As DbDataSourceEnumerator

C#

public override DbDataSourceEnumerator CreateDataSourceEnumerator();

Return value
A new SACommand object typed as DbCommand.

See also
♦ “SAFactory class” on page 327
♦ “SAFactory members” on page 328
♦ “SACommand class” on page 180

CreateParameter method

Returns a strongly typed DbParameter instance.

Syntax
Visual Basic

Public Overrides Function CreateParameter() As DbParameter

C#

public override DbParameter CreateParameter();

Return value
A new SACommand object typed as DbCommand.

See also
♦ “SAFactory class” on page 327
♦ “SAFactory members” on page 328
♦ “SACommand class” on page 180

CreatePermission method

Returns a strongly-typed CodeAccessPermission instance.

SQL Anywhere .NET 2.0 API Reference

332 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbDataSourceEnumerator.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbParameter.aspx

Syntax
Visual Basic

Public Overrides Function CreatePermission(_
 ByVal state As PermissionState _
) As CodeAccessPermission

C#

public override CodeAccessPermission CreatePermission(
 PermissionState state
);

Parameters
♦ state A member of the PermissionState enumeration.

Return value
A new SACommand object typed as DbCommand.

See also
♦ “SAFactory class” on page 327
♦ “SAFactory members” on page 328
♦ “SACommand class” on page 180

SAFactory class

Copyright © 2007, iAnywhere Solutions, Inc. 333

http://msdn2.microsoft.com/en-us/library/System.Security.Permissions.PermissionState.aspx

SAInfoMessageEventArgs class
Provides data for the InfoMessage event. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SAInfoMessageEventArgs
 Inherits EventArgs

C#

public sealed class SAInfoMessageEventArgs : EventArgs

Remarks
There is no constructor for SAInfoMessageEventArgs.

See also
♦ “SAInfoMessageEventArgs members” on page 334

SAInfoMessageEventArgs members

Public properties

Member name Description

Errors property Returns the collection of messages sent from the data source.

Message property Returns the full text of the error sent from the data source.

MessageType property Returns the type of the message. This can be one of: Action, Info,
Status, or Warning.

NativeError property Returns the SQL code returned by the database.

Source property Returns the name of the SQL Anywhere .NET Data Provider.

Public methods

Member name Description

ToString method Retrieves a string representation of the InfoMessage event.

See also
♦ “SAInfoMessageEventArgs class” on page 334

SQL Anywhere .NET 2.0 API Reference

334 Copyright © 2007, iAnywhere Solutions, Inc.

Errors property

Returns the collection of messages sent from the data source.

Syntax
Visual Basic

Public Readonly Property Errors As SAErrorCollection

C#

public SAErrorCollection Errors { get;}

See also
♦ “SAInfoMessageEventArgs class” on page 334
♦ “SAInfoMessageEventArgs members” on page 334

Message property

Returns the full text of the error sent from the data source.

Syntax
Visual Basic

Public Readonly Property Message As String

C#

public string Message { get;}

See also
♦ “SAInfoMessageEventArgs class” on page 334
♦ “SAInfoMessageEventArgs members” on page 334

MessageType property

Returns the type of the message. This can be one of: Action, Info, Status, or Warning.

Syntax
Visual Basic

Public Readonly Property MessageType As SAMessageType

C#

public SAMessageType MessageType { get;}

SAInfoMessageEventArgs class

Copyright © 2007, iAnywhere Solutions, Inc. 335

See also
♦ “SAInfoMessageEventArgs class” on page 334
♦ “SAInfoMessageEventArgs members” on page 334

NativeError property

Returns the SQL code returned by the database.

Syntax
Visual Basic

Public Readonly Property NativeError As Integer

C#

public int NativeError { get;}

See also
♦ “SAInfoMessageEventArgs class” on page 334
♦ “SAInfoMessageEventArgs members” on page 334

Source property

Returns the name of the SQL Anywhere .NET Data Provider.

Syntax
Visual Basic

Public Readonly Property Source As String

C#

public string Source { get;}

See also
♦ “SAInfoMessageEventArgs class” on page 334
♦ “SAInfoMessageEventArgs members” on page 334

ToString method

Retrieves a string representation of the InfoMessage event.

Syntax
Visual Basic

Public Overrides Function ToString() As String

SQL Anywhere .NET 2.0 API Reference

336 Copyright © 2007, iAnywhere Solutions, Inc.

C#

public override string ToString();

Return value
A string representing the InfoMessage event.

See also
♦ “SAInfoMessageEventArgs class” on page 334
♦ “SAInfoMessageEventArgs members” on page 334

SAInfoMessageEventArgs class

Copyright © 2007, iAnywhere Solutions, Inc. 337

SAInfoMessageEventHandler delegate
Represents the method that handles the SAConnection.InfoMessage event of an SAConnection object.

Syntax
Visual Basic

Public Delegate Sub SAInfoMessageEventHandler(_
 ByVal obj As Object, _
 ByVal args As SAInfoMessageEventArgs _
)

C#

public delegate void SAInfoMessageEventHandler(
 object obj,
 SAInfoMessageEventArgs args
);

See also
♦ “SAConnection class” on page 221
♦ “InfoMessage event” on page 235

SQL Anywhere .NET 2.0 API Reference

338 Copyright © 2007, iAnywhere Solutions, Inc.

SAIsolationLevel enumeration
Specifies SQL Anywhere isolation levels. This class augments the IsolationLevel.

Syntax
Visual Basic

Public Enum SAIsolationLevel

C#

public enum SAIsolationLevel

Remarks
The SQL Anywhere .NET Data Provider supports all SQL Anywhere isolation levels, including the snapshot
isolation levels. To use snapshot isolation, specify one of SAIsolationLevel.Snapshot,
SAIsolationLevel.ReadOnlySnapshot, or SAIsolationLevel.StatementSnapshot as the parameter to
BeginTransaction. BeginTransaction has been overloaded so it can take either an IsolationLevel or an
SAIsolationLevel. The values in the two enumerations are the same, except for ReadOnlySnapshot and
StatementSnapshot which exist only in SAIsolationLevel. There is a new property in SATransaction called
SAIsolationLevel that gets the SAIsolationLevel.

For more information, see “Snapshot isolation” [SQL Anywhere Server - SQL Usage].

Members

Member name Description Value

Chaos This isolation level is unsupported. 16

ReadCommitted Sets the behavior to be equivalent to isolation level
1.

4096

ReadOnlySnapshot For read-only statements, use a snapshot of com-
mitted data from the time when the first row is read
from the database.

16777217

ReadUncommitted Sets the behavior to be equivalent to isolation level
0.

256

RepeatableRead Sets the behavior to be equivalent to isolation level
2.

65536

Serializable Sets the behavior to be equivalent to isolation level
3.

1048576

Snapshot Uses a snapshot of committed data from the time
when the first row is read, inserted, updated, or
deleted by the transaction.

16777216

SAIsolationLevel enumeration

Copyright © 2007, iAnywhere Solutions, Inc. 339

http://msdn2.microsoft.com/en-us/library/System.Data.IsolationLevel.aspx
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf

Member name Description Value

StatementSnapshot Use a snapshot of committed data from the time
when the first row is read by the statement. Each
statement within the transaction sees a snapshot of
data from a different time.

16777218

Unspecified This isolation level is unsupported. -1

SQL Anywhere .NET 2.0 API Reference

340 Copyright © 2007, iAnywhere Solutions, Inc.

SAMessageType enumeration
Identifies the type of message. This can be one of: Action, Info, Status, or Warning.

Syntax
Visual Basic

Public Enum SAMessageType

C#

public enum SAMessageType

Members

Member name Description Value

Action Message of type ACTION. 2

Info Message of type INFO. 0

Status Message of type STATUS. 3

Warning Message of type WARNING. 1

SAMessageType enumeration

Copyright © 2007, iAnywhere Solutions, Inc. 341

SAMetaDataCollectionNames class
Provides a list of constants for use with the SAConnection.GetSchema(String,String[]) method to retrieve
metadata collections. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SAMetaDataCollectionNames

C#

public sealed class SAMetaDataCollectionNames

Remarks
This field is constant and read-only.

See also
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

SAMetaDataCollectionNames members

Public fields

Member name Description

Columns field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the Columns collection. This
field is read-only.

DataSourceInformation field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the DataSourceInformation
collection. This field is read-only.

DataTypes field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the DataTypes collection.
This field is read-only.

ForeignKeys field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the ForeignKeys collection.
This field is read-only.

IndexColumns field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the IndexColumns collection.
This field is read-only.

Indexes field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the Indexes collection. This
field is read-only.

SQL Anywhere .NET 2.0 API Reference

342 Copyright © 2007, iAnywhere Solutions, Inc.

Member name Description

MetaDataCollections field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the MetaDataCollections col-
lection. This field is read-only.

ProcedureParameters field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the ProcedureParameters col-
lection. This field is read-only.

Procedures field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the Procedures collection.
This field is read-only.

ReservedWords field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the ReservedWords collec-
tion. This field is read-only.

Restrictions field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the Restrictions collection.
This field is read-only.

Tables field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the Tables collection. This
field is read-only.

UserDefinedTypes field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the UserDefinedTypes col-
lection. This field is read-only.

Users field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the Users collection. This
field is read-only.

ViewColumns field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the ViewColumns collection.
This field is read-only.

Views field Provides a constant for use with the SAConnection.GetSchema
(String,String[]) method that represents the Views collection. This
field is read-only.

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “GetSchema(String, String[]) method” on page 234

Columns field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
Columns collection. This field is read-only.

SAMetaDataCollectionNames class

Copyright © 2007, iAnywhere Solutions, Inc. 343

Syntax
Visual Basic

Public Shared Readonly Columns As String

C#

public const string Columns ;

Example
The following code fills a DataTable with the Columns collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.Columns);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

DataSourceInformation field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
DataSourceInformation collection. This field is read-only.

Syntax
Visual Basic

Public Shared Readonly DataSourceInformation As String

C#

public const string DataSourceInformation ;

Example
The following code fills a DataTable with the DataSourceInformation collection.

DataTable schema = GetSchema
(SAMetaDataCollectionNames.DataSourceInformation);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

DataTypes field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
DataTypes collection. This field is read-only.

SQL Anywhere .NET 2.0 API Reference

344 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Shared Readonly DataTypes As String

C#

public const string DataTypes ;

Example
The following code fills a DataTable with the DataTypes collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.DataTypes);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

ForeignKeys field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
ForeignKeys collection. This field is read-only.

Syntax
Visual Basic

Public Shared Readonly ForeignKeys As String

C#

public const string ForeignKeys ;

Example
The following code fills a DataTable with the ForeignKeys collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.ForeignKeys);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

IndexColumns field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
IndexColumns collection. This field is read-only.

SAMetaDataCollectionNames class

Copyright © 2007, iAnywhere Solutions, Inc. 345

Syntax
Visual Basic

Public Shared Readonly IndexColumns As String

C#

public const string IndexColumns ;

Example
The following code fills a DataTable with the IndexColumns collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.IndexColumns);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

Indexes field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
Indexes collection. This field is read-only.

Syntax
Visual Basic

Public Shared Readonly Indexes As String

C#

public const string Indexes ;

Example
The following code fills a DataTable with the Indexes collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.Indexes);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

MetaDataCollections field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
MetaDataCollections collection. This field is read-only.

SQL Anywhere .NET 2.0 API Reference

346 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Shared Readonly MetaDataCollections As String

C#

public const string MetaDataCollections ;

Example
The following code fills a DataTable with the MetaDataCollections collection.

DataTable schema = GetSchema
(SAMetaDataCollectionNames.MetaDataCollections);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

ProcedureParameters field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
ProcedureParameters collection. This field is read-only.

Syntax
Visual Basic

Public Shared Readonly ProcedureParameters As String

C#

public const string ProcedureParameters ;

Example
The following code fills a DataTable with the ProcedureParameters collection.

DataTable schema = GetSchema
(SAMetaDataCollectionNames.ProcedureParameters);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

Procedures field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
Procedures collection. This field is read-only.

SAMetaDataCollectionNames class

Copyright © 2007, iAnywhere Solutions, Inc. 347

Syntax
Visual Basic

Public Shared Readonly Procedures As String

C#

public const string Procedures ;

Example
The following code fills a DataTable with the Procedures collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.Procedures);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

ReservedWords field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
ReservedWords collection. This field is read-only.

Syntax
Visual Basic

Public Shared Readonly ReservedWords As String

C#

public const string ReservedWords ;

Example
The following code fills a DataTable with the ReservedWords collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.ReservedWords);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

Restrictions field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
Restrictions collection. This field is read-only.

SQL Anywhere .NET 2.0 API Reference

348 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Shared Readonly Restrictions As String

C#

public const string Restrictions ;

Example
The following code fills a DataTable with the Restrictions collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.Restrictions);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

Tables field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
Tables collection. This field is read-only.

Syntax
Visual Basic

Public Shared Readonly Tables As String

C#

public const string Tables ;

Example
The following code fills a DataTable with the Tables collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.Tables);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

UserDefinedTypes field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
UserDefinedTypes collection. This field is read-only.

SAMetaDataCollectionNames class

Copyright © 2007, iAnywhere Solutions, Inc. 349

Syntax
Visual Basic

Public Shared Readonly UserDefinedTypes As String

C#

public const string UserDefinedTypes ;

Example
The following code fills a DataTable with the Users collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.UserDefinedTypes);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

Users field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
Users collection. This field is read-only.

Syntax
Visual Basic

Public Shared Readonly Users As String

C#

public const string Users ;

Example
The following code fills a DataTable with the Users collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.Users);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

ViewColumns field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
ViewColumns collection. This field is read-only.

SQL Anywhere .NET 2.0 API Reference

350 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Shared Readonly ViewColumns As String

C#

public const string ViewColumns ;

Example
The following code fills a DataTable with the ViewColumns collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.ViewColumns);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

Views field

Provides a constant for use with the SAConnection.GetSchema(String,String[]) method that represents the
Views collection. This field is read-only.

Syntax
Visual Basic

Public Shared Readonly Views As String

C#

public const string Views ;

Example
The following code fills a DataTable with the Views collection.

DataTable schema = GetSchema(SAMetaDataCollectionNames.Views);

See also
♦ “SAMetaDataCollectionNames class” on page 342
♦ “SAMetaDataCollectionNames members” on page 342
♦ “GetSchema(String, String[]) method” on page 234

SAMetaDataCollectionNames class

Copyright © 2007, iAnywhere Solutions, Inc. 351

SAParameter class
Represents a parameter to an SACommand, and optionally, its mapping to a DataSet column. This class
cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SAParameter
 Inherits DbParameter
 Implements ICloneable

C#

public sealed class SAParameter : DbParameter,
 ICloneable

Remarks
Implements:IDbDataParameter, IDataParameter, ICloneable

See also
♦ “SAParameter members” on page 352

SAParameter members

Public constructors

Member name Description

SAParameter constructors Initializes a new instance of the “SAParameter class” on page 352.

Public properties

Member name Description

DbType property Gets and sets the DbType of the parameter.

Direction property Gets and sets a value indicating whether the parameter is input-only,
output-only, bidirectional, or a stored procedure return value param-
eter.

IsNullable property Gets and sets a value indicating whether the parameter accepts null
values.

Offset property Gets and sets the offset to the Value property.

ParameterName property Gets and sets the name of the SAParameter.

Precision property Gets and sets the maximum number of digits used to represent the
Value property.

SQL Anywhere .NET 2.0 API Reference

352 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.IDbDataParameter.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.IDataParameter.aspx
http://msdn2.microsoft.com/en-us/library/System.ICloneable.aspx

Member name Description

SADbType property The SADbType of the parameter.

Scale property Gets and sets the number of decimal places to which Value is resolved.

Size property Gets and sets the maximum size, in bytes, of the data within the col-
umn.

SourceColumn property Gets and sets the name of the source column mapped to the DataSet
and used for loading or returning the value.

SourceColumnNullMapping
property

Gets and sets value that indicates whether the source column is nul-
lable. This allows SACommandBuilder to generate Update state-
ments for nullable columns correctly.

SourceVersion property Gets and sets the DataRowVersion to use when loading Value.

Value property Gets and sets the value of the parameter.

Public methods

Member name Description

ResetDbType method Resets the type (the values of DbType and SADbType) associated
with this SAParameter.

ToString method Returns a string containing the ParameterName.

See also
♦ “SAParameter class” on page 352

SAParameter constructors

Initializes a new instance of the “SAParameter class” on page 352.

SAParameter() constructor

Initializes an SAParameter object with null (Nothing in Visual Basic) as its value.

Syntax
Visual Basic

Public Sub New()

C#

public SAParameter();

SAParameter class

Copyright © 2007, iAnywhere Solutions, Inc. 353

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352
♦ “SAParameter constructors” on page 353

SAParameter(String, Object) constructor

Initializes an SAParameter object with the specified parameter name and value. This constructor is not
recommended; it is provided for compatibility with other data providers.

Syntax
Visual Basic

Public Sub New(_
 ByVal parameterName As String, _
 ByVal value As Object _
)

C#

public SAParameter(
 string parameterName,
 object value
);

Parameters
♦ parameterName The name of the parameter.

♦ value An Object that is the value of the parameter.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352
♦ “SAParameter constructors” on page 353

SAParameter(String, SADbType) constructor

Initializes an SAParameter object with the specified parameter name and data type.

Syntax
Visual Basic

Public Sub New(_
 ByVal parameterName As String, _
 ByVal dbType As SADbType _
)

C#

SQL Anywhere .NET 2.0 API Reference

354 Copyright © 2007, iAnywhere Solutions, Inc.

public SAParameter(
 string parameterName,
 SADbType dbType
);

Parameters
♦ parameterName The name of the parameter.

♦ dbType One of the SADbType values.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352
♦ “SAParameter constructors” on page 353
♦ “SADbType property” on page 360

SAParameter(String, SADbType, Int32) constructor

Initializes an SAParameter object with the specified parameter name and data type.

Syntax
Visual Basic

Public Sub New(_
 ByVal parameterName As String, _
 ByVal dbType As SADbType, _
 ByVal size As Integer _
)

C#

public SAParameter(
 string parameterName,
 SADbType dbType,
 int size
);

Parameters
♦ parameterName The name of the parameter.

♦ dbType One of the SADbType values

♦ size The length of the parameter.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352
♦ “SAParameter constructors” on page 353

SAParameter class

Copyright © 2007, iAnywhere Solutions, Inc. 355

SAParameter(String, SADbType, Int32, String) constructor

Initializes an SAParameter object with the specified parameter name, data type, and length.

Syntax
Visual Basic

Public Sub New(_
 ByVal parameterName As String, _
 ByVal dbType As SADbType, _
 ByVal size As Integer, _
 ByVal sourceColumn As String _
)

C#

public SAParameter(
 string parameterName,
 SADbType dbType,
 int size,
 string sourceColumn
);

Parameters
♦ parameterName The name of the parameter.

♦ dbType One of the SADbType values

♦ size The length of the parameter.

♦ sourceColumn The name of the source column to map.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352
♦ “SAParameter constructors” on page 353

SAParameter(String, SADbType, Int32, ParameterDirection, Boolean, Byte, Byte, String,
DataRowVersion, Object) constructor

Initializes an SAParameter object with the specified parameter name, data type, length, direction, nullability,
numeric precision, numeric scale, source column, source version, and value.

Syntax
Visual Basic

Public Sub New(_
 ByVal parameterName As String, _
 ByVal dbType As SADbType, _
 ByVal size As Integer, _
 ByVal direction As ParameterDirection, _
 ByVal isNullable As Boolean, _

SQL Anywhere .NET 2.0 API Reference

356 Copyright © 2007, iAnywhere Solutions, Inc.

 ByVal precision As Byte, _
 ByVal scale As Byte, _
 ByVal sourceColumn As String, _
 ByVal sourceVersion As DataRowVersion, _
 ByVal value As Object _
)

C#

public SAParameter(
 string parameterName,
 SADbType dbType,
 int size,
 ParameterDirection direction,
 bool isNullable,
 byte precision,
 byte scale,
 string sourceColumn,
 DataRowVersion sourceVersion,
 object value
);

Parameters
♦ parameterName The name of the parameter.

♦ dbType One of the SADbType values

♦ size The length of the parameter.

♦ direction One of the ParameterDirection values.

♦ isNullable True if the value of the field can be null; otherwise, false.

♦ precision The total number of digits to the left and right of the decimal point to which Value is
resolved.

♦ scale The total number of decimal places to which Value is resolved.

♦ sourceColumn The name of the source column to map.

♦ sourceVersion One of the DataRowVersion values.

♦ value An Object that is the value of the parameter.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352
♦ “SAParameter constructors” on page 353

DbType property

Gets and sets the DbType of the parameter.

SAParameter class

Copyright © 2007, iAnywhere Solutions, Inc. 357

Syntax
Visual Basic

Public Overrides Property DbType As DbType

C#

public override DbType DbType { get; set; }

Remarks
The SADbType and DbType are linked. Therefore, setting the DbType changes the SADbType to a
supporting SADbType.

The value must be a member of the SADbType enumerator.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

Direction property

Gets and sets a value indicating whether the parameter is input-only, output-only, bidirectional, or a stored
procedure return value parameter.

Syntax
Visual Basic

Public Overrides Property Direction As ParameterDirection

C#

public override ParameterDirection Direction { get; set; }

Property value
One of the ParameterDirection values.

Remarks
If the ParameterDirection is output, and execution of the associated SACommand does not return a value,
the SAParameter contains a null value. After the last row from the last result set is read, the Output, InputOut,
and ReturnValue parameters are updated.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

SQL Anywhere .NET 2.0 API Reference

358 Copyright © 2007, iAnywhere Solutions, Inc.

IsNullable property

Gets and sets a value indicating whether the parameter accepts null values.

Syntax
Visual Basic

Public Overrides Property IsNullable As Boolean

C#

public override bool IsNullable { get; set; }

Remarks
This property is true if null values are accepted; otherwise, it is false. The default is false. Null values are
handled using the DBNull class.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

Offset property

Gets and sets the offset to the Value property.

Syntax
Visual Basic

Public Property Offset As Integer

C#

public int Offset { get; set; }

Property value
The offset to the value. The default is 0.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

ParameterName property

Gets and sets the name of the SAParameter.

SAParameter class

Copyright © 2007, iAnywhere Solutions, Inc. 359

Syntax
Visual Basic

Public Overrides Property ParameterName As String

C#

public override string ParameterName { get; set; }

Property value
The default is an empty string.

Remarks
The SQL Anywhere .NET Data Provider uses positional parameters that are marked with a question mark
(?) instead of named parameters.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

Precision property

Gets and sets the maximum number of digits used to represent the Value property.

Syntax
Visual Basic

Public Property Precision As Byte

C#

public byte Precision { get; set; }

Property value
The value of this property is the maximum number of digits used to represent the Value property. The default
value is 0, which indicates that the data provider sets the precision for the Value property.

Remarks
The Precision property is only used for decimal and numeric input parameters.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

SADbType property

The SADbType of the parameter.

SQL Anywhere .NET 2.0 API Reference

360 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Property SADbType As SADbType

C#

public SADbType SADbType { get; set; }

Remarks
The SADbType and DbType are linked. Therefore, setting the SADbType changes the DbType to a
supporting DbType.

The value must be a member of the SADbType enumerator.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

Scale property

Gets and sets the number of decimal places to which Value is resolved.

Syntax
Visual Basic

Public Property Scale As Byte

C#

public byte Scale { get; set; }

Property value
The number of decimal places to which Value is resolved. The default is 0.

Remarks
The Scale property is only used for decimal and numeric input parameters.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

Size property

Gets and sets the maximum size, in bytes, of the data within the column.

SAParameter class

Copyright © 2007, iAnywhere Solutions, Inc. 361

Syntax
Visual Basic

Public Overrides Property Size As Integer

C#

public override int Size { get; set; }

Property value
The value of this property is the maximum size, in bytes, of the data within the column. The default value
is inferred from the parameter value.

Remarks
The value of this property is the maximum size, in bytes, of the data within the column. The default value
is inferred from the parameter value.

The Size property is used for binary and string types.

For variable length data types, the Size property describes the maximum amount of data to transmit to the
server. For example, the Size property can be used to limit the amount of data sent to the server for a string
value to the first one hundred bytes.

If not explicitly set, the size is inferred from the actual size of the specified parameter value. For fixed width
data types, the value of Size is ignored. It can be retrieved for informational purposes, and returns the
maximum amount of bytes the provider uses when transmitting the value of the parameter to the server.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

SourceColumn property

Gets and sets the name of the source column mapped to the DataSet and used for loading or returning the
value.

Syntax
Visual Basic

Public Overrides Property SourceColumn As String

C#

public override string SourceColumn { get; set; }

Property value
A string specifying the name of the source column mapped to the DataSet and used for loading or returning
the value.

SQL Anywhere .NET 2.0 API Reference

362 Copyright © 2007, iAnywhere Solutions, Inc.

Remarks
When SourceColumn is set to anything other than an empty string, the value of the parameter is retrieved
from the column with the SourceColumn name. If Direction is set to Input, the value is taken from the
DataSet. If Direction is set to Output, the value is taken from the data source. A Direction of InputOutput is
a combination of both.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

SourceColumnNullMapping property

Gets and sets value that indicates whether the source column is nullable. This allows SACommandBuilder
to generate Update statements for nullable columns correctly.

Syntax
Visual Basic

Public Overrides Property SourceColumnNullMapping As Boolean

C#

public override bool SourceColumnNullMapping { get; set; }

Remarks
If the source column is nullable, true is returned; otherwise, false.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

SourceVersion property

Gets and sets the DataRowVersion to use when loading Value.

Syntax
Visual Basic

Public Overrides Property SourceVersion As DataRowVersion

C#

public override DataRowVersion SourceVersion { get; set; }

Remarks
Used by UpdateCommand during an Update operation to determine whether the parameter value is set to
Current or Original. This allows primary keys to be updated. This property is ignored by InsertCommand

SAParameter class

Copyright © 2007, iAnywhere Solutions, Inc. 363

and DeleteCommand. This property is set to the version of the DataRow used by the Item property, or the
GetChildRows method of the DataRow object.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

Value property

Gets and sets the value of the parameter.

Syntax
Visual Basic

Public Overrides Property Value As Object

C#

public override object Value { get; set; }

Property value
An Object that specifies the value of the parameter.

Remarks
For input parameters, the value is bound to the SACommand that is sent to the server. For output and return
value parameters, the value is set on completion of the SACommand and after the SADataReader is closed.

When sending a null parameter value to the server, you must specify DBNull, not null. The null value in the
system is an empty object that has no value. DBNull is used to represent null values.

If the application specifies the database type, the bound value is converted to that type when the SQL
Anywhere .NET Data Provider sends the data to the server. The provider attempts to convert any type of
value if it supports the IConvertible interface. Conversion errors may result if the specified type is not
compatible with the value.

Both the DbType and SADbType properties can be inferred by setting the Value.

The Value property is overwritten by Update.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

ResetDbType method

Resets the type (the values of DbType and SADbType) associated with this SAParameter.

SQL Anywhere .NET 2.0 API Reference

364 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Overrides Sub ResetDbType()

C#

public override void ResetDbType();

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

ToString method

Returns a string containing the ParameterName.

Syntax
Visual Basic

Public Overrides Function ToString() As String

C#

public override string ToString();

Return value
The name of the parameter.

See also
♦ “SAParameter class” on page 352
♦ “SAParameter members” on page 352

SAParameter class

Copyright © 2007, iAnywhere Solutions, Inc. 365

SAParameterCollection class
Represents all parameters to an SACommand object and, optionally, their mapping to a DataSet column.
This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SAParameterCollection
 Inherits DbParameterCollection

C#

public sealed class SAParameterCollection : DbParameterCollection

Remarks
There is no constructor for SAParameterCollection. You obtain an SAParameterCollection object from the
SACommand.Parameters property of an SACommand oject.

See also
♦ “SAParameterCollection members” on page 366
♦ “SACommand class” on page 180
♦ “Parameters property” on page 186
♦ “SAParameter class” on page 352
♦ “SAParameterCollection class” on page 366

SAParameterCollection members

Public properties

Member name Description

Count property Returns the number of SAParameter objects in the collection.

IsFixedSize property Gets a value that indicates whether the SAParameterCollection has a
fixed size.

IsReadOnly property Gets a value that indicates whether the SAParameterCollection is
read-only.

IsSynchronized property Gets a value that indicates whether the SAParameterCollection object
is synchronized.

Item properties Gets and sets a DbParameter in the collection.

SyncRoot property Gets an object that can be used to synchronize access to the SAPa-
rameterCollection.

SQL Anywhere .NET 2.0 API Reference

366 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbParameter.aspx

Public methods

Member name Description

Add methods Adds an SAParameter object to this collection.

AddRange methods Adds an array of values to the end of the SAParameterCollection.

Clear method Removes all items from the collection.

Contains methods Indicates whether a DbParameter with the specified property exists
in the collection.

CopyTo method Copies SAParameter objects from the SAParameterCollection to the
specified array.

GetEnumerator method Returns an enumerator that iterates through the SAParameterCollec-
tion.

IndexOf methods Returns the index of the specified DbParameter object.

Insert method Inserts an SAParameter object in the collection at the specified index.

Remove method Removes the specified SAParameter object from the collection.

RemoveAt methods Removes a specified DbParameter object from the collection.

See also
♦ “SAParameterCollection class” on page 366
♦ “SACommand class” on page 180
♦ “Parameters property” on page 186
♦ “SAParameter class” on page 352
♦ “SAParameterCollection class” on page 366

Count property

Returns the number of SAParameter objects in the collection.

Syntax
Visual Basic

Public Overrides Readonly Property Count As Integer

C#

public override int Count { get;}

Property value
The number of SAParameter objects in the collection.

SAParameterCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 367

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbParameter.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbParameter.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbParameter.aspx

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “SAParameter class” on page 352
♦ “SAParameterCollection class” on page 366

IsFixedSize property

Gets a value that indicates whether the SAParameterCollection has a fixed size.

Syntax
Visual Basic

Public Overrides Readonly Property IsFixedSize As Boolean

C#

public override bool IsFixedSize { get;}

Property value
True if this collection has a fixed size, false otherwise.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366

IsReadOnly property

Gets a value that indicates whether the SAParameterCollection is read-only.

Syntax
Visual Basic

Public Overrides Readonly Property IsReadOnly As Boolean

C#

public override bool IsReadOnly { get;}

Property value
True if this collection is read-only, false otherwise.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366

SQL Anywhere .NET 2.0 API Reference

368 Copyright © 2007, iAnywhere Solutions, Inc.

IsSynchronized property

Gets a value that indicates whether the SAParameterCollection object is synchronized.

Syntax
Visual Basic

Public Overrides Readonly Property IsSynchronized As Boolean

C#

public override bool IsSynchronized { get;}

Property value
True if this collection is synchronized, false otherwise.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366

Item properties

Gets and sets a DbParameter in the collection.

Item(Int32) property

Gets and sets the SAParameter object at the specified index.

Syntax
Visual Basic

Public Property Item (_
 ByVal index As Integer _
) As SAParameter

C#

public SAParameter this [
 int index
] { get; set; }

Parameters
♦ index The zero-based index of the parameter to retrieve.

Property value
The SAParameter at the specified index.

SAParameterCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 369

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbParameter.aspx

Remarks
In C#, this property is the indexer for the SAParameterCollection object.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “Item properties” on page 369
♦ “SAParameter class” on page 352
♦ “SAParameterCollection class” on page 366

Item(String) property

Gets and sets the SAParameter object at the specified index.

Syntax
Visual Basic

Public Property Item (_
 ByVal parameterName As String _
) As SAParameter

C#

public SAParameter this [
 string parameterName
] { get; set; }

Parameters
♦ parameterName The name of the parameter to retrieve.

Property value
The SAParameter object with the specified name.

Remarks
In C#, this property is the indexer for the SAParameterCollection object.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “Item properties” on page 369
♦ “SAParameter class” on page 352
♦ “SAParameterCollection class” on page 366
♦ “Item(Int32) property” on page 282
♦ “GetOrdinal method” on page 296
♦ “GetValue(Int32) method” on page 302
♦ “GetFieldType method” on page 292

SQL Anywhere .NET 2.0 API Reference

370 Copyright © 2007, iAnywhere Solutions, Inc.

SyncRoot property

Gets an object that can be used to synchronize access to the SAParameterCollection.

Syntax
Visual Basic

Public Overrides Readonly Property SyncRoot As Object

C#

public override object SyncRoot { get;}

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366

Add methods

Adds an SAParameter object to this collection.

Add(Object) method

Adds an SAParameter object to this collection.

Syntax
Visual Basic

Public Overrides Function Add(_
 ByVal value As Object _
) As Integer

C#

public override int Add(
 object value
);

Parameters
♦ value The SAParameter object to add to the collection.

Return value
The index of the new SAParameter object.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “Add methods” on page 371

SAParameterCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 371

♦ “SAParameter class” on page 352

Add(SAParameter) method

Adds an SAParameter object to this collection.

Syntax
Visual Basic

Public Function Add(_
 ByVal value As SAParameter _
) As SAParameter

C#

public SAParameter Add(
 SAParameter value
);

Parameters
♦ value The SAParameter object to add to the collection.

Return value
The new SAParameter object.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “Add methods” on page 371

Add(String, Object) method

Adds an SAParameter object to this collection, created using the specified parameter name and value, to the
collection.

Syntax
Visual Basic

Public Function Add(_
 ByVal parameterName As String, _
 ByVal value As Object _
) As SAParameter

C#

public SAParameter Add(
 string parameterName,
 object value
);

SQL Anywhere .NET 2.0 API Reference

372 Copyright © 2007, iAnywhere Solutions, Inc.

Parameters
♦ parameterName The name of the parameter.

♦ value The value of the parameter to add to the connection.

Return value
The new SAParameter object.

Remarks
Because of the special treatment of the 0 and 0.0 constants and the way overloaded methods are resolved, it
is highly recommended that you explicitly cast constant values to type object when using this method.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “Add methods” on page 371
♦ “SAParameter class” on page 352

Add(String, SADbType) method

Adds an SAParameter object to this collection, created using the specified parameter name and data type,
to the collection.

Syntax
Visual Basic

Public Function Add(_
 ByVal parameterName As String, _
 ByVal saDbType As SADbType _
) As SAParameter

C#

public SAParameter Add(
 string parameterName,
 SADbType saDbType
);

Parameters
♦ parameterName The name of the parameter.

♦ saDbType One of the SADbType values.

Return value
The new SAParameter object.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366

SAParameterCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 373

♦ “Add methods” on page 371
♦ “SADbType enumeration” on page 310
♦ “Add(SAParameter) method” on page 372
♦ “Add(String, Object) method” on page 372

Add(String, SADbType, Int32) method

Adds an SAParameter object to this collection, created using the specified parameter name, data type, and
length, to the collection.

Syntax
Visual Basic

Public Function Add(_
 ByVal parameterName As String, _
 ByVal saDbType As SADbType, _
 ByVal size As Integer _
) As SAParameter

C#

public SAParameter Add(
 string parameterName,
 SADbType saDbType,
 int size
);

Parameters
♦ parameterName The name of the parameter.

♦ saDbType One of the SADbType values.

♦ size The length of the parameter.

Return value
The new SAParameter object.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “Add methods” on page 371
♦ “SADbType enumeration” on page 310
♦ “Add(SAParameter) method” on page 372
♦ “Add(String, Object) method” on page 372

Add(String, SADbType, Int32, String) method

Adds an SAParameter object to this collection, created using the specified parameter name, data type, length,
and source column name, to the collection.

SQL Anywhere .NET 2.0 API Reference

374 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Function Add(_
 ByVal parameterName As String, _
 ByVal saDbType As SADbType, _
 ByVal size As Integer, _
 ByVal sourceColumn As String _
) As SAParameter

C#

public SAParameter Add(
 string parameterName,
 SADbType saDbType,
 int size,
 string sourceColumn
);

Parameters
♦ parameterName The name of the parameter.

♦ saDbType One of the SADbType values.

♦ size The length of the column.

♦ sourceColumn The name of the source column to map.

Return value
The new SAParameter object.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “Add methods” on page 371
♦ “SADbType enumeration” on page 310
♦ “Add(SAParameter) method” on page 372
♦ “Add(String, Object) method” on page 372

AddRange methods

Adds an array of values to the end of the SAParameterCollection.

AddRange(Array) method

Adds an array of values to the end of the SAParameterCollection.

SAParameterCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 375

Syntax
Visual Basic

Public Overrides Sub AddRange(_
 ByVal values As Array _
)

C#

public override void AddRange(
 Array values
);

Parameters
♦ values The values to add.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “AddRange methods” on page 375

AddRange(SAParameter[]) method

Adds an array of values to the end of the SAParameterCollection.

Syntax
Visual Basic

Public Sub AddRange(_
 ByVal values As SAParameter() _
)

C#

public void AddRange(
 SAParameter[] values
);

Parameters
♦ values An array of SAParameter objects to add to the end of this collection.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “AddRange methods” on page 375

SQL Anywhere .NET 2.0 API Reference

376 Copyright © 2007, iAnywhere Solutions, Inc.

Clear method

Removes all items from the collection.

Syntax
Visual Basic

Public Overrides Sub Clear()

C#

public override void Clear();

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366

Contains methods

Indicates whether a DbParameter with the specified property exists in the collection.

Contains(Object) method

Indicates whether an SAParameter object exists in the collection.

Syntax
Visual Basic

Public Overrides Function Contains(_
 ByVal value As Object _
) As Boolean

C#

public override bool Contains(
 object value
);

Parameters
♦ value The SAParameter object to find.

Return value
True if the collection contains the SAParameter object. Otherwise, false.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “Contains methods” on page 377

SAParameterCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 377

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbParameter.aspx

♦ “SAParameter class” on page 352
♦ “Contains(String) method” on page 378

Contains(String) method

Indicates whether an SAParameter object exists in the collection.

Syntax
Visual Basic

Public Overrides Function Contains(_
 ByVal value As String _
) As Boolean

C#

public override bool Contains(
 string value
);

Parameters
♦ value The name of the parameter to search for.

Return value
True if the collection contains the SAParameter object. Otherwise, false.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “Contains methods” on page 377
♦ “SAParameter class” on page 352
♦ “Contains(Object) method” on page 377

CopyTo method

Copies SAParameter objects from the SAParameterCollection to the specified array.

Syntax
Visual Basic

Public Overrides Sub CopyTo(_
 ByVal array As Array, _
 ByVal index As Integer _
)

C#

public override void CopyTo(
 Array array,

SQL Anywhere .NET 2.0 API Reference

378 Copyright © 2007, iAnywhere Solutions, Inc.

 int index
);

Parameters
♦ array The array to copy the SAParameter objects into.

♦ index The starting index of the array.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “SAParameter class” on page 352
♦ “SAParameterCollection class” on page 366

GetEnumerator method

Returns an enumerator that iterates through the SAParameterCollection.

Syntax
Visual Basic

Public Overrides Function GetEnumerator() As IEnumerator

C#

public override IEnumerator GetEnumerator();

Return value
An IEnumerator for the SAParameterCollection object.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “SAParameterCollection class” on page 366

IndexOf methods

Returns the index of the specified DbParameter object.

IndexOf(Object) method

Returns the location of the SAParameter object in the collection.

Syntax
Visual Basic

SAParameterCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 379

http://msdn2.microsoft.com/en-us/library/System.Collections.IEnumerator.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbParameter.aspx

Public Overrides Function IndexOf(_
 ByVal value As Object _
) As Integer

C#

public override int IndexOf(
 object value
);

Parameters
♦ value The SAParameter object to locate.

Return value
The zero-based location of the SAParameter object in the collection.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “IndexOf methods” on page 379
♦ “SAParameter class” on page 352
♦ “IndexOf(String) method” on page 380

IndexOf(String) method

Returns the location of the SAParameter object in the collection.

Syntax
Visual Basic

Public Overrides Function IndexOf(_
 ByVal parameterName As String _
) As Integer

C#

public override int IndexOf(
 string parameterName
);

Parameters
♦ parameterName The name of the parameter to locate.

Return value
The zero-based index of the SAParameter object in the collection.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366

SQL Anywhere .NET 2.0 API Reference

380 Copyright © 2007, iAnywhere Solutions, Inc.

♦ “IndexOf methods” on page 379
♦ “SAParameter class” on page 352
♦ “IndexOf(Object) method” on page 379

Insert method

Inserts an SAParameter object in the collection at the specified index.

Syntax
Visual Basic

Public Overrides Sub Insert(_
 ByVal index As Integer, _
 ByVal value As Object _
)

C#

public override void Insert(
 int index,
 object value
);

Parameters
♦ index The zero-based index where the parameter is to be inserted within the collection.

♦ value The SAParameter object to add to the collection.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366

Remove method

Removes the specified SAParameter object from the collection.

Syntax
Visual Basic

Public Overrides Sub Remove(_
 ByVal value As Object _
)

C#

public override void Remove(
 object value
);

SAParameterCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 381

Parameters
♦ value The SAParameter object to remove from the collection.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366

RemoveAt methods

Removes a specified DbParameter object from the collection.

RemoveAt(Int32) method

Removes the specified SAParameter object from the collection.

Syntax
Visual Basic

Public Overrides Sub RemoveAt(_
 ByVal index As Integer _
)

C#

public override void RemoveAt(
 int index
);

Parameters
♦ index The zero-based index of the parameter to remove.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “RemoveAt methods” on page 382
♦ “RemoveAt(String) method” on page 382

RemoveAt(String) method

Removes the specified SAParameter object from the collection.

Syntax
Visual Basic

Public Overrides Sub RemoveAt(_

SQL Anywhere .NET 2.0 API Reference

382 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbParameter.aspx

 ByVal parameterName As String _
)

C#

public override void RemoveAt(
 string parameterName
);

Parameters
♦ parameterName The name of the SAParameter object to remove.

See also
♦ “SAParameterCollection class” on page 366
♦ “SAParameterCollection members” on page 366
♦ “RemoveAt methods” on page 382
♦ “RemoveAt(Int32) method” on page 382

SAParameterCollection class

Copyright © 2007, iAnywhere Solutions, Inc. 383

SAPermission class
Enables the SQL Anywhere .NET Data Provider to ensure that a user has a security level adequate to access
a SQL Anywhere data source. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SAPermission
 Inherits DBDataPermission

C#

public sealed class SAPermission : DBDataPermission

Remarks
Base classes DBDataPermission

See also
♦ “SAPermission members” on page 384

SAPermission members

Public constructors

Member name Description

SAPermission constructor Initializes a new instance of the SAPermission class.

Public properties

Member name Description

AllowBlankPassword (inherited
from DBDataPermission)

Public methods

Member name Description

Add (inherited from DBDataPer-
mission)

Assert (inherited from CodeAc-
cessPermission)

Copy (inherited from DBData-
Permission)

SQL Anywhere .NET 2.0 API Reference

384 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermission.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermission.AllowBlankPassword.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermission.Add.aspx
http://msdn2.microsoft.com/en-us/library/System.Security.CodeAccessPermission.Assert.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermission.Copy.aspx

Member name Description

Demand (inherited from
CodeAccessPermission)

Deny (inherited from CodeAc-
cessPermission)

Equals (inherited from CodeAc-
cessPermission)

FromXml (inherited from DB-
DataPermission)

GetHashCode (inherited from
CodeAccessPermission)

Intersect (inherited from DBDat-
aPermission)

IsSubsetOf (inherited from DB-
DataPermission)

IsUnrestricted (inherited from
DBDataPermission)

PermitOnly (inherited from
CodeAccessPermission)

ToString (inherited from
CodeAccessPermission)

ToXml (inherited from DBData-
Permission)

Union (inherited from DBData-
Permission)

See also
♦ “SAPermission class” on page 384

SAPermission constructor

Initializes a new instance of the SAPermission class.

Syntax
Visual Basic

Public Sub New(_
 ByVal state As PermissionState _
)

SAPermission class

Copyright © 2007, iAnywhere Solutions, Inc. 385

http://msdn2.microsoft.com/en-us/library/System.Security.CodeAccessPermission.Demand.aspx
http://msdn2.microsoft.com/en-us/library/System.Security.CodeAccessPermission.Deny.aspx
http://msdn2.microsoft.com/en-us/library/System.Security.CodeAccessPermission.Equals.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermission.FromXml.aspx
http://msdn2.microsoft.com/en-us/library/System.Security.CodeAccessPermission.GetHashCode.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermission.Intersect.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermission.IsSubsetOf.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermission.IsUnrestricted.aspx
http://msdn2.microsoft.com/en-us/library/System.Security.CodeAccessPermission.PermitOnly.aspx
http://msdn2.microsoft.com/en-us/library/System.Security.CodeAccessPermission.ToString.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermission.ToXml.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermission.Union.aspx

C#

public SAPermission(
 PermissionState state
);

Parameters
♦ state One of the PermissionState values.

See also
♦ “SAPermission class” on page 384
♦ “SAPermission members” on page 384

SQL Anywhere .NET 2.0 API Reference

386 Copyright © 2007, iAnywhere Solutions, Inc.

SAPermissionAttribute class
Associates a security action with a custom security attribute. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SAPermissionAttribute
 Inherits DBDataPermissionAttribute

C#

public sealed class SAPermissionAttribute : DBDataPermissionAttribute

See also
♦ “SAPermissionAttribute members” on page 387

SAPermissionAttribute members

Public constructors

Member name Description

SAPermissionAttribute con-
structor

Initializes a new instance of the SAPermissionAttribute class.

Public properties

Member name Description

Action (inherited from Security-
Attribute)

AllowBlankPassword (inherited
from DBDataPermissionAt-
tribute)

ConnectionString (inherited
from DBDataPermissionAt-
tribute)

KeyRestrictionBehavior (inher-
ited from DBDataPermissionAt-
tribute)

KeyRestrictions (inherited from
DBDataPermissionAttribute)

TypeId (inherited from Attribute)

SAPermissionAttribute class

Copyright © 2007, iAnywhere Solutions, Inc. 387

http://msdn2.microsoft.com/en-us/library/System.Security.Permissions.SecurityAttribute.Action.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermissionAttribute.AllowBlankPassword.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermissionAttribute.ConnectionString.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermissionAttribute.KeyRestrictionBehavior.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermissionAttribute.KeyRestrictions.aspx
http://msdn2.microsoft.com/en-us/library/System.Attribute.TypeId.aspx

Member name Description

Unrestricted (inherited from Se-
curityAttribute)

Public methods

Member name Description

CreatePermission method Returns an SAPermission object that is configured according to the
attribute properties.

Equals (inherited from Attribute)

GetHashCode (inherited from
Attribute)

IsDefaultAttribute (inherited
from Attribute)

Match (inherited from Attribute)

ShouldSerializeConnection-
String (inherited from DBData-
PermissionAttribute)

ShouldSerializeKeyRestrictions
(inherited from DBDataPermis-
sionAttribute)

See also
♦ “SAPermissionAttribute class” on page 387

SAPermissionAttribute constructor

Initializes a new instance of the SAPermissionAttribute class.

Syntax
Visual Basic

Public Sub New(_
 ByVal action As SecurityAction _
)

C#

public SAPermissionAttribute(
 SecurityAction action
);

SQL Anywhere .NET 2.0 API Reference

388 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Security.Permissions.SecurityAttribute.Unrestricted.aspx
http://msdn2.microsoft.com/en-us/library/System.Attribute.Equals.aspx
http://msdn2.microsoft.com/en-us/library/System.Attribute.GetHashCode.aspx
http://msdn2.microsoft.com/en-us/library/System.Attribute.IsDefaultAttribute.aspx
http://msdn2.microsoft.com/en-us/library/System.Attribute.Match.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermissionAttribute.ShouldSerializeConnectionString.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermissionAttribute.ShouldSerializeConnectionString.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DBDataPermissionAttribute.ShouldSerializeKeyRestrictions.aspx

Parameters
♦ action One of the SecurityAction values representing an action that can be performed using declarative

security.

See also
♦ “SAPermissionAttribute class” on page 387
♦ “SAPermissionAttribute members” on page 387

CreatePermission method

Returns an SAPermission object that is configured according to the attribute properties.

Syntax
Visual Basic

Public Overrides Function CreatePermission() As IPermission

C#

public override IPermission CreatePermission();

See also
♦ “SAPermissionAttribute class” on page 387
♦ “SAPermissionAttribute members” on page 387

SAPermissionAttribute class

Copyright © 2007, iAnywhere Solutions, Inc. 389

SARowsCopiedEventArgs class
Represents the set of arguments passed to the SARowsCopiedEventHandler. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SARowsCopiedEventArgs

C#

public sealed class SARowsCopiedEventArgs

Remarks
Restrictions: The SARowsCopiedEventArgs class is not available in the .NET Compact Framework 2.0.

See also
♦ “SARowsCopiedEventArgs members” on page 390

SARowsCopiedEventArgs members

Public constructors

Member name Description

SARowsCopiedEventArgs con-
structor

Creates a new instance of the SARowsCopiedEventArgs object.

Public properties

Member name Description

Abort property Gets or sets a value that indicates whether the bulk-copy operation
should be aborted.

RowsCopied property Gets the number of rows copied during the current bulk-copy opera-
tion.

See also
♦ “SARowsCopiedEventArgs class” on page 390

SARowsCopiedEventArgs constructor

Creates a new instance of the SARowsCopiedEventArgs object.

SQL Anywhere .NET 2.0 API Reference

390 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Sub New(_
 ByVal rowsCopied As Long _
)

C#

public SARowsCopiedEventArgs(
 long rowsCopied
);

Parameters
♦ rowsCopied An 64-bit integer value that indicates the number of rows copied during the current bulk-

copy operation.

Remarks
Restrictions: The SARowsCopiedEventArgs class is not available in the .NET Compact Framework 2.0.

See also
♦ “SARowsCopiedEventArgs class” on page 390
♦ “SARowsCopiedEventArgs members” on page 390

Abort property

Gets or sets a value that indicates whether the bulk-copy operation should be aborted.

Syntax
Visual Basic

Public Property Abort As Boolean

C#

public bool Abort { get; set; }

Remarks
Restrictions: The SARowsCopiedEventArgs class is not available in the .NET Compact Framework 2.0.

See also
♦ “SARowsCopiedEventArgs class” on page 390
♦ “SARowsCopiedEventArgs members” on page 390

RowsCopied property

Gets the number of rows copied during the current bulk-copy operation.

SARowsCopiedEventArgs class

Copyright © 2007, iAnywhere Solutions, Inc. 391

Syntax
Visual Basic

Public Readonly Property RowsCopied As Long

C#

public long RowsCopied { get;}

Remarks
Restrictions: The SARowsCopiedEventArgs class is not available in the .NET Compact Framework 2.0.

See also
♦ “SARowsCopiedEventArgs class” on page 390
♦ “SARowsCopiedEventArgs members” on page 390

SQL Anywhere .NET 2.0 API Reference

392 Copyright © 2007, iAnywhere Solutions, Inc.

SARowsCopiedEventHandler delegate
Represents the method that handles the SABulkCopy.SARowsCopied event of an SABulkCopy.

Syntax
Visual Basic

Public Delegate Sub SARowsCopiedEventHandler(_
 ByVal sender As Object, _
 ByVal rowsCopiedEventArgs As SARowsCopiedEventArgs _
)

C#

public delegate void SARowsCopiedEventHandler(
 object sender,
 SARowsCopiedEventArgs rowsCopiedEventArgs
);

Remarks
Restrictions: The SARowsCopiedEventHandler delegate is not available in the .NET Compact Framework
2.0.

See also
♦ “SABulkCopy class” on page 151

SARowsCopiedEventHandler delegate

Copyright © 2007, iAnywhere Solutions, Inc. 393

SARowUpdatedEventArgs class
Provides data for the RowUpdated event. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SARowUpdatedEventArgs
 Inherits RowUpdatedEventArgs

C#

public sealed class SARowUpdatedEventArgs : RowUpdatedEventArgs

See also
♦ “SARowUpdatedEventArgs members” on page 394

SARowUpdatedEventArgs members

Public constructors

Member name Description

SARowUpdatedEventArgs con-
structor

Initializes a new instance of the SARowUpdatedEventArgs class.

Public properties

Member name Description

Command property Gets the SACommand that is executed when DataAdapter.Update is
called.

Errors (inherited from RowUp-
datedEventArgs)

RecordsAffected property Returns the number of rows changed, inserted, or deleted by execution
of the SQL statement.

Row (inherited from RowUpdat-
edEventArgs)

RowCount (inherited from
RowUpdatedEventArgs)

StatementType (inherited from
RowUpdatedEventArgs)

Status (inherited from RowUp-
datedEventArgs)

SQL Anywhere .NET 2.0 API Reference

394 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.Update.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatedEventArgs.Errors.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatedEventArgs.Row.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatedEventArgs.RowCount.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatedEventArgs.StatementType.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatedEventArgs.Status.aspx

Member name Description

TableMapping (inherited from
RowUpdatedEventArgs)

Public methods

Member name Description

CopyToRows (inherited from
RowUpdatedEventArgs)

Lets you access the rows processed during a batch update operation.

See also
♦ “SARowUpdatedEventArgs class” on page 394

SARowUpdatedEventArgs constructor

Initializes a new instance of the SARowUpdatedEventArgs class.

Syntax
Visual Basic

Public Sub New(_
 ByVal row As DataRow, _
 ByVal command As IDbCommand, _
 ByVal statementType As StatementType, _
 ByVal tableMapping As DataTableMapping _
)

C#

public SARowUpdatedEventArgs(
 DataRow row,
 IDbCommand command,
 StatementType statementType,
 DataTableMapping tableMapping
);

Parameters
♦ row The DataRow sent through an Update.

♦ command The IDbCommand executed when Update is called.

♦ statementType One of the StatementType values that specifies the type of query executed.

♦ tableMapping The DataTableMapping sent through an Update.

See also
♦ “SARowUpdatedEventArgs class” on page 394
♦ “SARowUpdatedEventArgs members” on page 394

SARowUpdatedEventArgs class

Copyright © 2007, iAnywhere Solutions, Inc. 395

http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatedEventArgs.TableMapping.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatedEventArgs.CopyToRows.aspx

Command property

Gets the SACommand that is executed when DataAdapter.Update is called.

Syntax
Visual Basic

Public Readonly Property Command As SACommand

C#

public SACommand Command { get;}

See also
♦ “SARowUpdatedEventArgs class” on page 394
♦ “SARowUpdatedEventArgs members” on page 394

RecordsAffected property

Returns the number of rows changed, inserted, or deleted by execution of the SQL statement.

Syntax
Visual Basic

Public Readonly Property RecordsAffected As Integer

C#

public int RecordsAffected { get;}

Property value
The number of rows changed, inserted, or deleted; 0 if no rows were affected or the statement failed; and -1
for SELECT statements.

See also
♦ “SARowUpdatedEventArgs class” on page 394
♦ “SARowUpdatedEventArgs members” on page 394

SQL Anywhere .NET 2.0 API Reference

396 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DataAdapter.Update.aspx

SARowUpdatedEventHandler delegate
Represents the method that handles the RowUpdated event of an SADataAdapter.

Syntax
Visual Basic

Public Delegate Sub SARowUpdatedEventHandler(_
 ByVal sender As Object, _
 ByVal e As SARowUpdatedEventArgs _
)

C#

public delegate void SARowUpdatedEventHandler(
 object sender,
 SARowUpdatedEventArgs e
);

SARowUpdatedEventHandler delegate

Copyright © 2007, iAnywhere Solutions, Inc. 397

SARowUpdatingEventArgs class
Provides data for the RowUpdating event. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SARowUpdatingEventArgs
 Inherits RowUpdatingEventArgs

C#

public sealed class SARowUpdatingEventArgs : RowUpdatingEventArgs

See also
♦ “SARowUpdatingEventArgs members” on page 398

SARowUpdatingEventArgs members

Public constructors

Member name Description

SARowUpdatingEventArgs con-
structor

Initializes a new instance of the SARowUpdatingEventArgs class.

Public properties

Member name Description

Command property Specifies the SACommand to execute when performing the Update.

Errors (inherited from RowUp-
datingEventArgs)

Row (inherited from RowUp-
datingEventArgs)

StatementType (inherited from
RowUpdatingEventArgs)

Status (inherited from RowUp-
datingEventArgs)

TableMapping (inherited from
RowUpdatingEventArgs)

See also
♦ “SARowUpdatingEventArgs class” on page 398

SQL Anywhere .NET 2.0 API Reference

398 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatingEventArgs.Errors.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatingEventArgs.Row.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatingEventArgs.StatementType.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatingEventArgs.Status.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.RowUpdatingEventArgs.TableMapping.aspx

SARowUpdatingEventArgs constructor

Initializes a new instance of the SARowUpdatingEventArgs class.

Syntax
Visual Basic

Public Sub New(_
 ByVal row As DataRow, _
 ByVal command As IDbCommand, _
 ByVal statementType As StatementType, _
 ByVal tableMapping As DataTableMapping _
)

C#

public SARowUpdatingEventArgs(
 DataRow row,
 IDbCommand command,
 StatementType statementType,
 DataTableMapping tableMapping
);

Parameters
♦ row The DataRow to update.

♦ command The IDbCommand to execute during update.

♦ statementType One of the StatementType values that specifies the type of query executed.

♦ tableMapping The DataTableMapping sent through an Update.

See also
♦ “SARowUpdatingEventArgs class” on page 398
♦ “SARowUpdatingEventArgs members” on page 398

Command property

Specifies the SACommand to execute when performing the Update.

Syntax
Visual Basic

Public Property Command As SACommand

C#

public SACommand Command { get; set; }

See also
♦ “SARowUpdatingEventArgs class” on page 398

SARowUpdatingEventArgs class

Copyright © 2007, iAnywhere Solutions, Inc. 399

♦ “SARowUpdatingEventArgs members” on page 398

SQL Anywhere .NET 2.0 API Reference

400 Copyright © 2007, iAnywhere Solutions, Inc.

SARowUpdatingEventHandler delegate
Represents the method that handles the RowUpdating event of an SADataAdapter.

Syntax
Visual Basic

Public Delegate Sub SARowUpdatingEventHandler(_
 ByVal sender As Object, _
 ByVal e As SARowUpdatingEventArgs _
)

C#

public delegate void SARowUpdatingEventHandler(
 object sender,
 SARowUpdatingEventArgs e
);

SARowUpdatingEventHandler delegate

Copyright © 2007, iAnywhere Solutions, Inc. 401

SASpxOptionsBuilder class
Provides a simple way to create and manage the SPX options portion of connection strings used by the
SAConnection object. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SASpxOptionsBuilder
 Inherits SAConnectionStringBuilderBase

C#

public sealed class SASpxOptionsBuilder : SAConnectionstring BuilderBase

See also
♦ “SASpxOptionsBuilder members” on page 402
♦ “SAConnection class” on page 221

SASpxOptionsBuilder members

Public constructors

Member name Description

SASpxOptionsBuilder construc-
tors

Initializes a new instance of the “SASpxOptionsBuilder
class” on page 402.

Public properties

Member name Description

BrowsableConnectionString (in-
herited from DbConnection-
StringBuilder)

ConnectionString (inherited
from DbConnectionString-
Builder)

Count (inherited from DbCon-
nectionStringBuilder)

DLL property Gets or sets the DLL option.

DoBroadcast property Gets or sets the DoBroadcast option.

Host property Gets or sets the Host option.

SQL Anywhere .NET 2.0 API Reference

402 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.BrowsableConnectionString.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.ConnectionString.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Count.aspx

Member name Description

IsFixedSize (inherited from Db-
ConnectionStringBuilder)

IsReadOnly (inherited from Db-
ConnectionStringBuilder)

Item property (inherited from
SAConnectionStringBuilder-
Base)

Gets or sets the value of the connection keyword.

Keys property (inherited from
SAConnectionStringBuilder-
Base)

Gets an System.Collections.ICollection that contains the keys in the
SAConnectionStringBuilder.

SearchBindery property Gets or sets the SearchBindery option.

Timeout property Gets or sets the Timeout option.

Values (inherited from DbCon-
nectionStringBuilder)

Public methods

Member name Description

Add (inherited from DbConnec-
tionStringBuilder)

Clear (inherited from DbConnec-
tionStringBuilder)

ContainsKey method (inherited
from SAConnectionString-
BuilderBase)

Determines whether the SAConnectionStringBuilder object contains
a specific keyword.

EquivalentTo (inherited from
DbConnectionStringBuilder)

GetKeyword method (inherited
from SAConnectionString-
BuilderBase)

Gets the keyword for specified SAConnectionStringBuilder property.

GetUseLongNameAsKeyword
method (inherited from SACon-
nectionStringBuilderBase)

Gets a boolean values that indicates whether long connection param-
eter names are used in the connection string.

Remove method (inherited from
SAConnectionStringBuilder-
Base)

Removes the entry with the specified key from the SAConnection-
StringBuilder instance.

SetUseLongNameAsKeyword
method (inherited from SACon-
nectionStringBuilderBase)

Sets a boolean value that indicates whether long connection parameter
names are used in the connection string. Long connection parameter
names are used by default.

SASpxOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 403

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.IsFixedSize.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.IsReadOnly.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Values.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Add.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Clear.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.EquivalentTo.aspx

Member name Description

ShouldSerialize method (inherit-
ed from SAConnectionString-
BuilderBase)

Indicates whether the specified key exists in this SAConnection-
StringBuilder instance.

ToString method Converts the SpxOptionsBuilder object to a string representation.

TryGetValue method (inherited
from SAConnectionString-
BuilderBase)

Retrieves a value corresponding to the supplied key from this SACon-
nectionStringBuilder.

See also
♦ “SASpxOptionsBuilder class” on page 402
♦ “SAConnection class” on page 221

SASpxOptionsBuilder constructors

Initializes a new instance of the “SASpxOptionsBuilder class” on page 402.

SASpxOptionsBuilder() constructor

Initializes an SASpxOptionsBuilder object.

Syntax
Visual Basic

Public Sub New()

C#

public SASpxOptionsBuilder();

Example
The following statement initializes an SASpxOptionsBuilder object.

SASpxOptionsBuilder options = new SASpxOptionsBuilder();

See also
♦ “SASpxOptionsBuilder class” on page 402
♦ “SASpxOptionsBuilder members” on page 402
♦ “SASpxOptionsBuilder constructors” on page 404

SASpxOptionsBuilder(String) constructor

Initializes an SASpxOptionsBuilder object.

SQL Anywhere .NET 2.0 API Reference

404 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Sub New(_
 ByVal options As String _
)

C#

public SASpxOptionsBuilder(
 string options
);

Parameters
♦ options A SQL Anywhere SPX connection parameter options string.

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

Example
The following statement initializes an SASpxOptionsBuilder object.

SASpxOptionsBuilder options = new SASpxOptionsBuilder();

See also
♦ “SASpxOptionsBuilder class” on page 402
♦ “SASpxOptionsBuilder members” on page 402
♦ “SASpxOptionsBuilder constructors” on page 404

DLL property

Gets or sets the DLL option.

Syntax
Visual Basic

Public Property DLL As String

C#

public string DLL { get; set; }

See also
♦ “SASpxOptionsBuilder class” on page 402
♦ “SASpxOptionsBuilder members” on page 402

DoBroadcast property

Gets or sets the DoBroadcast option.

SASpxOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 405

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Syntax
Visual Basic

Public Property DoBroadcast As String

C#

public string DoBroadcast { get; set; }

See also
♦ “SASpxOptionsBuilder class” on page 402
♦ “SASpxOptionsBuilder members” on page 402

Host property

Gets or sets the Host option.

Syntax
Visual Basic

Public Property Host As String

C#

public string Host { get; set; }

See also
♦ “SASpxOptionsBuilder class” on page 402
♦ “SASpxOptionsBuilder members” on page 402

SearchBindery property

Gets or sets the SearchBindery option.

Syntax
Visual Basic

Public Property SearchBindery As String

C#

public string SearchBindery { get; set; }

See also
♦ “SASpxOptionsBuilder class” on page 402
♦ “SASpxOptionsBuilder members” on page 402

SQL Anywhere .NET 2.0 API Reference

406 Copyright © 2007, iAnywhere Solutions, Inc.

Timeout property

Gets or sets the Timeout option.

Syntax
Visual Basic

Public Property Timeout As Integer

C#

public int Timeout { get; set; }

See also
♦ “SASpxOptionsBuilder class” on page 402
♦ “SASpxOptionsBuilder members” on page 402

ToString method

Converts the SpxOptionsBuilder object to a string representation.

Syntax
Visual Basic

Public Overrides Function ToString() As String

C#

public override string ToString();

Return value
The options string being built.

See also
♦ “SASpxOptionsBuilder class” on page 402
♦ “SASpxOptionsBuilder members” on page 402

SASpxOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 407

SATcpOptionsBuilder class
Provides a simple way to create and manage the TCP options portion of connection strings used by the
SAConnection object. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SATcpOptionsBuilder
 Inherits SAConnectionStringBuilderBase

C#

public sealed class SATcpOptionsBuilder : SAConnectionstring BuilderBase

Remarks
Restrictions: The SATcpOptionsBuilder class is not available in the .NET Compact Framework 2.0.

See also
♦ “SATcpOptionsBuilder members” on page 408
♦ “SAConnection class” on page 221

SATcpOptionsBuilder members

Public constructors

Member name Description

SATcpOptionsBuilder construc-
tors

Initializes a new instance of the “SATcpOptionsBuilder
class” on page 408.

Public properties

Member name Description

Broadcast property Gets or sets the Broadcast option.

BroadcastListener property Gets or sets the BroadcastListener option.

BrowsableConnectionString (in-
herited from DbConnection-
StringBuilder)

ClientPort property Gets or sets the ClientPort option.

ConnectionString (inherited
from DbConnectionString-
Builder)

SQL Anywhere .NET 2.0 API Reference

408 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.BrowsableConnectionString.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.ConnectionString.aspx

Member name Description

Count (inherited from DbCon-
nectionStringBuilder)

DoBroadcast property Gets or sets the DoBroadcast option.

Host property Gets or sets the Host option.

IPV6 property Gets or sets the IPV6 option.

IsFixedSize (inherited from Db-
ConnectionStringBuilder)

IsReadOnly (inherited from Db-
ConnectionStringBuilder)

Item property (inherited from
SAConnectionStringBuilder-
Base)

Gets or sets the value of the connection keyword.

Keys property (inherited from
SAConnectionStringBuilder-
Base)

Gets an System.Collections.ICollection that contains the keys in the
SAConnectionStringBuilder.

LDAP property Gets or sets the LDAP option.

LocalOnly property Gets or sets the LocalOnly option.

MyIP property Gets or sets the MyIP option.

ReceiveBufferSize property Gets or sets the ReceiveBufferSize option.

SendBufferSize property Gets or sets the Send BufferSize option.

ServerPort property Gets or sets the ServerPort option.

TDS property Gets or sets the TDS option.

Timeout property Gets or sets the Timeout option.

Values (inherited from DbCon-
nectionStringBuilder)

VerifyServerName property Gets or sets the VerifyServerName option.

Public methods

Member name Description

Add (inherited from DbConnec-
tionStringBuilder)

SATcpOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 409

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Count.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.IsFixedSize.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.IsReadOnly.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Values.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Add.aspx

Member name Description

Clear (inherited from DbConnec-
tionStringBuilder)

ContainsKey method (inherited
from SAConnectionString-
BuilderBase)

Determines whether the SAConnectionStringBuilder object contains
a specific keyword.

EquivalentTo (inherited from
DbConnectionStringBuilder)

GetKeyword method (inherited
from SAConnectionString-
BuilderBase)

Gets the keyword for specified SAConnectionStringBuilder property.

GetUseLongNameAsKeyword
method (inherited from SACon-
nectionStringBuilderBase)

Gets a boolean values that indicates whether long connection param-
eter names are used in the connection string.

Remove method (inherited from
SAConnectionStringBuilder-
Base)

Removes the entry with the specified key from the SAConnection-
StringBuilder instance.

SetUseLongNameAsKeyword
method (inherited from SACon-
nectionStringBuilderBase)

Sets a boolean value that indicates whether long connection parameter
names are used in the connection string. Long connection parameter
names are used by default.

ShouldSerialize method (inherit-
ed from SAConnectionString-
BuilderBase)

Indicates whether the specified key exists in this SAConnection-
StringBuilder instance.

ToString method Converts the TcpOptionsBuilder object to a string representation.

TryGetValue method (inherited
from SAConnectionString-
BuilderBase)

Retrieves a value corresponding to the supplied key from this SACon-
nectionStringBuilder.

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SAConnection class” on page 221

SATcpOptionsBuilder constructors

Initializes a new instance of the “SATcpOptionsBuilder class” on page 408.

SATcpOptionsBuilder() constructor

Initializes an SATcpOptionsBuilder object.

SQL Anywhere .NET 2.0 API Reference

410 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.Clear.aspx
http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbConnectionStringBuilder.EquivalentTo.aspx

Syntax
Visual Basic

Public Sub New()

C#

public SATcpOptionsBuilder();

Remarks
Restrictions: The SATcpOptionsBuilder class is not available in the .NET Compact Framework 2.0.

Example
The following statement initializes an SATcpOptionsBuilder object.

SATcpOptionsBuilder options = new SATcpOptionsBuilder();

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408
♦ “SATcpOptionsBuilder constructors” on page 410

SATcpOptionsBuilder(String) constructor

Initializes an SATcpOptionsBuilder object.

Syntax
Visual Basic

Public Sub New(_
 ByVal options As String _
)

C#

public SATcpOptionsBuilder(
 string options
);

Parameters
♦ options A SQL Anywhere TCP connection parameter options string.

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

Remarks
Restrictions: The SATcpOptionsBuilder class is not available in the .NET Compact Framework 2.0.

Example
The following statement initializes an SATcpOptionsBuilder object.

SATcpOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 411

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

SATcpOptionsBuilder options = new SATcpOptionsBuilder();

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408
♦ “SATcpOptionsBuilder constructors” on page 410

Broadcast property

Gets or sets the Broadcast option.

Syntax
Visual Basic

Public Property Broadcast As String

C#

public string Broadcast { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

BroadcastListener property

Gets or sets the BroadcastListener option.

Syntax
Visual Basic

Public Property BroadcastListener As String

C#

public string BroadcastListener { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

ClientPort property

Gets or sets the ClientPort option.

SQL Anywhere .NET 2.0 API Reference

412 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Property ClientPort As String

C#

public string ClientPort { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

DoBroadcast property

Gets or sets the DoBroadcast option.

Syntax
Visual Basic

Public Property DoBroadcast As String

C#

public string DoBroadcast { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

Host property

Gets or sets the Host option.

Syntax
Visual Basic

Public Property Host As String

C#

public string Host { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

SATcpOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 413

IPV6 property

Gets or sets the IPV6 option.

Syntax
Visual Basic

Public Property IPV6 As String

C#

public string IPV6 { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

LDAP property

Gets or sets the LDAP option.

Syntax
Visual Basic

Public Property LDAP As String

C#

public string LDAP { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

LocalOnly property

Gets or sets the LocalOnly option.

Syntax
Visual Basic

Public Property LocalOnly As String

C#

public string LocalOnly { get; set; }

SQL Anywhere .NET 2.0 API Reference

414 Copyright © 2007, iAnywhere Solutions, Inc.

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

MyIP property

Gets or sets the MyIP option.

Syntax
Visual Basic

Public Property MyIP As String

C#

public string MyIP { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

ReceiveBufferSize property

Gets or sets the ReceiveBufferSize option.

Syntax
Visual Basic

Public Property ReceiveBufferSize As Integer

C#

public int ReceiveBufferSize { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

SendBufferSize property

Gets or sets the Send BufferSize option.

Syntax
Visual Basic

Public Property SendBufferSize As Integer

SATcpOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 415

C#

public int SendBufferSize { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

ServerPort property

Gets or sets the ServerPort option.

Syntax
Visual Basic

Public Property ServerPort As String

C#

public string ServerPort { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

TDS property

Gets or sets the TDS option.

Syntax
Visual Basic

Public Property TDS As String

C#

public string TDS { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

Timeout property

Gets or sets the Timeout option.

SQL Anywhere .NET 2.0 API Reference

416 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Visual Basic

Public Property Timeout As Integer

C#

public int Timeout { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

VerifyServerName property

Gets or sets the VerifyServerName option.

Syntax
Visual Basic

Public Property VerifyServerName As String

C#

public string VerifyServerName { get; set; }

See also
♦ “SATcpOptionsBuilder class” on page 408
♦ “SATcpOptionsBuilder members” on page 408

ToString method

Converts the TcpOptionsBuilder object to a string representation.

Syntax
Visual Basic

Public Overrides Function ToString() As String

C#

public override string ToString();

Return value
The options string being built.

See also
♦ “SATcpOptionsBuilder class” on page 408

SATcpOptionsBuilder class

Copyright © 2007, iAnywhere Solutions, Inc. 417

♦ “SATcpOptionsBuilder members” on page 408

SQL Anywhere .NET 2.0 API Reference

418 Copyright © 2007, iAnywhere Solutions, Inc.

SATransaction class
Represents a SQL transaction. This class cannot be inherited.

Syntax
Visual Basic

Public NotInheritable Class SATransaction
 Inherits DbTransaction

C#

public sealed class SATransaction : DbTransaction

Remarks
There is no constructor for SATransaction. To obtain an SATransaction object, use one of the
BeginTransaction methods. To associate a command with a transaction, use the SACommand.Transaction
property.

For more information, see “Transaction processing” on page 130 and “Inserting, updating, and deleting rows
using the SACommand object” on page 114.

See also
♦ “SATransaction members” on page 419
♦ “BeginTransaction() method” on page 228
♦ “BeginTransaction(SAIsolationLevel) method” on page 229
♦ “Transaction property” on page 187

SATransaction members

Public properties

Member name Description

Connection property The SAConnection object associated with the transaction, or a null
reference (Nothing in Visual Basic) if the transaction is no longer
valid.

IsolationLevel property Specifies the isolation level for this transaction.

SAIsolationLevel property Specifies the isolation level for this transaction.

Public methods

Member name Description

Commit method Commits the database transaction.

SATransaction class

Copyright © 2007, iAnywhere Solutions, Inc. 419

Member name Description

Dispose (inherited from Db-
Transaction)

Rollback methods Rolls back a transaction from a pending state.

Save method Creates a savepoint in the transaction that can be used to roll back a
portion of the transaction, and specifies the savepoint name.

See also
♦ “SATransaction class” on page 419
♦ “BeginTransaction() method” on page 228
♦ “BeginTransaction(SAIsolationLevel) method” on page 229
♦ “Transaction property” on page 187

Connection property

The SAConnection object associated with the transaction, or a null reference (Nothing in Visual Basic) if
the transaction is no longer valid.

Syntax
Visual Basic

Public Readonly Property Connection As SAConnection

C#

public SAConnection Connection { get;}

Remarks
A single application can have multiple database connections, each with zero or more transactions. This
property enables you to determine the connection object associated with a particular transaction created by
BeginTransaction.

See also
♦ “SATransaction class” on page 419
♦ “SATransaction members” on page 419

IsolationLevel property

Specifies the isolation level for this transaction.

Syntax
Visual Basic

Public Overrides Readonly Property IsolationLevel As IsolationLevel

SQL Anywhere .NET 2.0 API Reference

420 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn2.microsoft.com/en-us/library/System.Data.Common.DbTransaction.Dispose.aspx

C#

public override IsolationLevel IsolationLevel { get;}

Property value
The isolation level for this transaction. This can be one of:

♦ ReadCommitted
♦ ReadUncommitted
♦ RepeatableRead
♦ Serializable
♦ Snapshot
♦ ReadOnlySnapshot
♦ StatementSnapshot

The default is ReadCommitted.

See also
♦ “SATransaction class” on page 419
♦ “SATransaction members” on page 419

SAIsolationLevel property

Specifies the isolation level for this transaction.

Syntax
Visual Basic

Public Readonly Property SAIsolationLevel As SAIsolationLevel

C#

public SAIsolationLevel SAIsolationLevel { get;}

Property value
The IsolationLevel for this transaction. This can be one of:

♦ Chaos
♦ Read ReadCommitted
♦ ReadOnlySnapshot
♦ ReadUncommitted
♦ RepeatableRead
♦ Serializable
♦ Snapshot
♦ StatementSnapshot
♦ Unspecified

The default is ReadCommitted.

SATransaction class

Copyright © 2007, iAnywhere Solutions, Inc. 421

Remarks
Parallel transactions are not supported. Therefore, the IsolationLevel applies to the entire transaction.

See also
♦ “SATransaction class” on page 419
♦ “SATransaction members” on page 419

Commit method

Commits the database transaction.

Syntax
Visual Basic

Public Overrides Sub Commit()

C#

public override void Commit();

See also
♦ “SATransaction class” on page 419
♦ “SATransaction members” on page 419

Rollback methods

Rolls back a transaction from a pending state.

Rollback() method

Rolls back a transaction from a pending state.

Syntax
Visual Basic

Public Overrides Sub Rollback()

C#

public override void Rollback();

Remarks
The transaction can only be rolled back from a pending state (after BeginTransaction has been called, but
before Commit is called).

SQL Anywhere .NET 2.0 API Reference

422 Copyright © 2007, iAnywhere Solutions, Inc.

See also
♦ “SATransaction class” on page 419
♦ “SATransaction members” on page 419
♦ “Rollback methods” on page 422

Rollback(String) method

Rolls back a transaction from a pending state.

Syntax
Visual Basic

Public Sub Rollback(_
 ByVal savePoint As String _
)

C#

public void Rollback(
 string savePoint
);

Parameters
♦ savePoint The name of the savepoint to roll back to.

Remarks
The transaction can only be rolled back from a pending state (after BeginTransaction has been called, but
before Commit is called).

See also
♦ “SATransaction class” on page 419
♦ “SATransaction members” on page 419
♦ “Rollback methods” on page 422

Save method

Creates a savepoint in the transaction that can be used to roll back a portion of the transaction, and specifies
the savepoint name.

Syntax
Visual Basic

Public Sub Save(_
 ByVal savePoint As String _
)

C#

SATransaction class

Copyright © 2007, iAnywhere Solutions, Inc. 423

public void Save(
 string savePoint
);

Parameters
♦ savePoint The name of the savepoint to which to roll back.

See also
♦ “SATransaction class” on page 419
♦ “SATransaction members” on page 419

SQL Anywhere .NET 2.0 API Reference

424 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 10

SQL Anywhere OLE DB and ADO APIs

Contents
Introduction to OLE DB .. 426
ADO programming with SQL Anywhere .. 427
Setting up a Microsoft Linked Server using OLE DB ... 433
Supported OLE DB interfaces ... 434

Copyright © 2007, iAnywhere Solutions, Inc. 425

Introduction to OLE DB
OLE DB is a data access model from Microsoft. It uses the Component Object Model (COM) interfaces
and, unlike ODBC, OLE DB does not assume that the data source uses a SQL query processor.

SQL Anywhere includes an OLE DB provider named SAOLEDB. This provider is available for current
Windows and Windows CE platforms.

You can also access SQL Anywhere using the Microsoft OLE DB Provider for ODBC (MSDASQL),
together with the SQL Anywhere ODBC driver.

Using the SQL Anywhere OLE DB provider brings several benefits:

♦ Some features, such as updating through a cursor, are not available using the OLE DB/ODBC bridge.

♦ If you use the SQL Anywhere OLE DB provider, ODBC is not required in your deployment.

♦ MSDASQL allows OLE DB clients to work with any ODBC driver, but does not guarantee that you can
use the full range of functionality of each ODBC driver. Using the SQL Anywhere provider, you can
get full access to SQL Anywhere features from OLE DB programming environments.

Supported platforms

The SQL Anywhere OLE DB provider is designed to work with OLE DB 2.5 and later. For Windows CE
and its successors, the OLE DB provider is designed for ADOCE 3.0 and later.

ADOCE is the Microsoft ADO for Windows CE SDK and provides database functionality for applications
developed with the Windows CE Toolkits for Visual Basic 5.0 and Visual Basic 6.0.

For a list of supported platforms, see the SQL Anywhere for PC Platforms table in SQL Anywhere Supported
Platforms and Engineering Support Status.

Distributed transactions
The OLE DB driver can be used as a resource manager in a distributed transaction environment.

For more information, see “Three-Tier Computing and Distributed Transactions” on page 59.

SQL Anywhere OLE DB and ADO APIs

426 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/supported_platforms.html
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/supported_platforms.html

ADO programming with SQL Anywhere
ADO (ActiveX Data Objects) is a data access object model exposed through an Automation interface, which
allows client applications to discover the methods and properties of objects at runtime without any prior
knowledge of the object. Automation allows scripting languages like Visual Basic to use a standard data
access object model. ADO uses OLE DB to provide data access.

Using the SQL Anywhere OLE DB provider, you get full access to SQL Anywhere features from an ADO
programming environment.

This section describes how to perform basic tasks while using ADO from Visual Basic. It is not a complete
guide to programming using ADO.

Code samples from this section can be found in the following files:

Development tool Sample

Microsoft Visual Basic 6.0 samples-dir\SQLAnywhere\VBSampler\vbsampler.vbp

Microsoft eMbedded Visual
Basic 3.0

samples-dir\SQLAnywhere\ADOCE\OLEDB_PocketPC.ebp

For information on programming in ADO, see your development tool documentation.

Connecting to a database with the Connection object

This section describes a simple Visual Basic routine that connects to a database.

Sample code
You can try this routine by placing a command button named Command1 on a form, and pasting the routine
into its Click event. Run the program and click the button to connect and then disconnect.

Private Sub cmdTestConnection_Click()
 ' Declare variables
 Dim myConn As New ADODB.Connection
 Dim myCommand As New ADODB.Command
 Dim cAffected As Long
 On Error GoTo HandleError
 ' Establish the connection
 myConn.Provider = "SAOLEDB"
 myConn.ConnectionString = _
 "Data Source=SQL Anywhere 10 Demo"
 myConn.Open
 MsgBox "Connection succeeded"
 myConn.Close
 Exit Sub
HandleError:
 MsgBox "Connection failed"
 Exit Sub
End Sub

ADO programming with SQL Anywhere

Copyright © 2007, iAnywhere Solutions, Inc. 427

Notes
The sample carries out the following tasks:

♦ It declares the variables used in the routine.

♦ It establishes a connection, using the SQL Anywhere OLE DB provider, to the sample database.

♦ It uses a Command object to execute a simple statement, which displays a message in the Server Messages
window.

♦ It closes the connection.

When the SAOLEDB provider is installed, it registers itself. This registration process includes making
registry entries in the COM section of the registry, so that ADO can locate the DLL when the SAOLEDB
provider is called. If you change the location of your DLL, you must reregister it.

♦ To register the OLE DB provider

1. Open a command prompt.

2. Change to the directory where the OLE DB provider is installed.

3. Enter the following command to register the provider:

regsvr32 dboledb10.dll

For more information about connecting to a database using OLE DB, see “Connecting to a database using
OLE DB” [SQL Anywhere Server - Database Administration].

Executing statements with the Command object

This section describes a simple routine that sends a simple SQL statement to the database.

Sample code
You can try this routine by placing a command button named Command2 on a form, and pasting the routine
into its Click event. Run the program and click the button to connect, display a message in the Server
Messages window, and then disconnect.

Private Sub cmdUpdate_Click()
 ' Declare variables
 Dim myConn As New ADODB.Connection
 Dim myCommand As New ADODB.Command
 Dim cAffected As Long
 ' Establish the connection
 myConn.Provider = "SAOLEDB"
 myConn.ConnectionString = _
 "Data Source=SQL Anywhere 10 Demo"
 myConn.Open
 'Execute a command
 myCommand.CommandText = _
 "update Customers set GivenName='Liz' where ID=102"
 Set myCommand.ActiveConnection = myConn
 myCommand.Execute cAffected

SQL Anywhere OLE DB and ADO APIs

428 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

 MsgBox CStr(cAffected) +
 " rows affected.", vbInformation
 myConn.Close
End Sub

Notes
After establishing a connection, the example code creates a Command object, sets its CommandText property
to an update statement, and sets its ActiveConnection property to the current connection. It then executes
the update statement and displays the number of rows affected by the update in a message box.

In this example, the update is sent to the database and committed as soon as it is executed.

For information on using transactions within ADO, see “Using transactions” on page 432.

You can also perform updates through a cursor.

For more information, see “Updating data through a cursor” on page 431.

Querying the database with the Recordset object

The ADO Recordset object represents the result set of a query. You can use it to view data from a database.

Sample code
You can try this routine by placing a command button named cmdQuery on a form and pasting the routine
into its Click event. Run the program and click the button to connect, display a message in the Server
Messages window, execute a query and display the first few rows in message boxes, and then disconnect.

Private Sub cmdQuery_Click()
' Declare variables
 Dim myConn As New ADODB.Connection
 Dim myCommand As New ADODB.Command
 Dim myRS As New ADODB.Recordset
 On Error GoTo ErrorHandler:
 ' Establish the connection
 myConn.Provider = "SAOLEDB"
 myConn.ConnectionString = _
 "Data Source=SQL Anywhere 10 Demo"
 myConn.CursorLocation = adUseServer
 myConn.Mode = adModeReadWrite
 myConn.IsolationLevel = adXactCursorStability
 myConn.Open
 'Execute a query
 Set myRS = New Recordset
 myRS.CacheSize = 50
 myRS.Source = "SELECT * FROM Customers"
 myRS.ActiveConnection = myConn
 myRS.CursorType = adOpenKeyset
 myRS.LockType = adLockOptimistic
 myRS.Open
 'Scroll through the first few results
 myRS.MoveFirst
 For i = 1 To 5

ADO programming with SQL Anywhere

Copyright © 2007, iAnywhere Solutions, Inc. 429

 MsgBox myRS.Fields("CompanyName"), vbInformation
 myRS.MoveNext
 Next
 myRS.Close
 myConn.Close
 Exit Sub
ErrorHandler:
 MsgBox Error(Err)
 Exit Sub
End Sub

Notes
The Recordset object in this example holds the results from a query on the Customers table. The For loop
scrolls through the first several rows and displays the CompanyName value for each row.

This is a simple example of using a cursor from ADO.

For more advanced examples of using a cursor from ADO, see “Working with the Recordset
object” on page 430.

Working with the Recordset object

When working with SQL Anywhere, the ADO Recordset represents a cursor. You can choose the type of
cursor by declaring a CursorType property of the Recordset object before you open the Recordset. The choice
of cursor type controls the actions you can take on the Recordset and has performance implications.

Cursor types
ADO has its own naming convention for cursor types. The set of cursor types supported by SQL Anywhere
is described in “Cursor properties” on page 35.

The available cursor types, the corresponding cursor type constants, and the SQL Anywhere types they are
equivalent to, are as follows:

ADO cursor type ADO constant SQL Anywhere type

Dynamic cursor adOpenDynamic Dynamic scroll cursor

Keyset cursor adOpenKeyset Scroll cursor

Static cursor adOpenStatic Insensitive cursor

Forward only adOpenForwardOnly No-scroll cursor

For information on choosing a cursor type that is suitable for your application, see “Choosing cursor
types” on page 35.

Sample code
The following code sets the cursor type for an ADO Recordset object:

Dim myRS As New ADODB.Recordset
myRS.CursorType = adOpenDynamic

SQL Anywhere OLE DB and ADO APIs

430 Copyright © 2007, iAnywhere Solutions, Inc.

Updating data through a cursor

The SQL Anywhere OLE DB provider lets you update a result set through a cursor. This capability is not
available through the MSDASQL provider.

Updating record sets
You can update the database through a Recordset.

Private Sub Command6_Click()
 Dim myConn As New ADODB.Connection
 Dim myRS As New ADODB.Recordset
 Dim SQLString As String
 ' Connect
 myConn.Provider = "SAOLEDB"
 myConn.ConnectionString = _
 "Data Source=SQL Anywhere 10 Demo"
 myConn.Open
 myConn.BeginTrans
 SQLString = "SELECT * FROM Customers"
 myRS.Open SQLString, _
 myConn, adOpenDynamic, adLockBatchOptimistic
 If myRS.BOF And myRS.EOF Then
 MsgBox "Recordset is empty!", _
 16, "Empty Recordset"
 Else
 MsgBox "Cursor type: " + _
 CStr(myRS.CursorType), vbInformation
 myRS.MoveFirst
 For i = 1 To 3
 MsgBox "Row: " + CStr(myRS.Fields("ID")), _
 vbInformation
 If i = 2 Then
 myRS.Update "City", "Toronto"
 myRS.UpdateBatch
 End If
 myRS.MoveNext
 Next i
' myRS.MovePrevious
 myRS.Close
 End If
 myConn.CommitTrans
 myConn.Close
End Sub

Notes
If you use the adLockBatchOptimistic setting on the Recordset, the myRS.Update method does not make
any changes to the database itself. Instead, it updates a local copy of the Recordset.

The myRS.UpdateBatch method makes the update to the database server, but does not commit it, because
it is inside a transaction. If an UpdateBatch method was invoked outside a transaction, the change would be
committed.

The myConn.CommitTrans method commits the changes. The Recordset object has been closed by this time,
so there is no issue of whether the local copy of the data is changed or not.

ADO programming with SQL Anywhere

Copyright © 2007, iAnywhere Solutions, Inc. 431

Using transactions

By default, any change you make to the database using ADO is committed as soon as it is executed. This
includes explicit updates, as well as the UpdateBatch method on a Recordset. However, the previous section
illustrated that you can use the BeginTrans and RollbackTrans or CommitTrans methods on the Connection
object to use transactions.

The transaction isolation level is set as a property of the Connection object. The IsolationLevel property can
take on one of the following values:

ADO isolation level Constant SQL Anywhere level

Unspecified adXactUnspecified Not applicable. Set to 0

Chaos adXactChaos Unsupported. Set to 0

Browse adXactBrowse 0

Read uncommitted adXactReadUncommitted 0

Cursor stability adXactCursorStability 1

Read committed adXactReadCommitted 1

Repeatable read adXactRepeatableRead 2

Isolated adXactIsolated 3

Serializable adXactSerializable 3

Snapshot 2097152 4

Statement snapshot 4194304 5

Readonly statement snapshot 8388608 6

For more information on isolation levels, see “Isolation levels and consistency” [SQL Anywhere Server -
SQL Usage].

SQL Anywhere OLE DB and ADO APIs

432 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf

Setting up a Microsoft Linked Server using OLE DB
A Microsoft Linked Server can be created that uses the SQL Anywhere OLE DB provider to obtain access
to a SQL Anywhere database. SQL queries can be issued using either Microsoft's 4-part table referencing
syntax or Microsoft's OPENQUERY SQL function. An example of the 4-part syntax follows.

SELECT * FROM SADATABASE..GROUPO.Customers

In this example, SADATABASE is the name of the Linked Server, GROUPO is the table owner in the SQL
Anywhere database, and Customers is the table name in the SQL Anywhere database. The catalog name is
omitted (as indicated by two consecutive dots) since catalog names are not a feature of SQL Anywhere
databases.

The other form uses Microsoft's OPENQUERY function.

SELECT * FROM OPENQUERY(SADATABASE, 'SELECT * FROM Customers')

In the OPENQUERY syntax, the second SELECT statement ('SELECT * FROM Customers') is passed to
the SQL Anywhere server for execution.

To set up a Linked Server that uses the SQL Anywhere OLE DB provider, a few steps must be followed.

♦ To set up a Linked Server

1. Fill in the General page.

The Linked Server field on the General page should contain a Linked Server name (like SADATABASE
used above). The Other Data Source option should be selected, and SQL Anywhere OLE DB Provider
should be selected from the list. The Product Name field should contain an ODBC data source name
(for example, SQL Anywhere 10 Demo). The Provider String field can contain additional connection
parameters such as user ID and password (for example, uid=DBA;pwd=sql). Other fields, such as Data
Source, on the General page should be left empty.

2. Select the Allow Inprocess provider option.

The technique for doing this varies with different versions of Microsoft SQL Server. In SQL Server
2000, there is a Provider Options button that takes you to the page where you can select this option. In
SQL Server 2005, there is a global Allow Inprocess checkbox when you right-click the SAOLEDB
provider in the Linked Servers/Providers tree view and choose Properties. If the InProcess option is not
selected, queries fail.

3. Select the RPC and RPC Out options.

The technique for doing this varies with different versions of Microsoft SQL Server. In SQL Server
2000, there are two checkboxes that must be selected for these two options. These check boxes are
found on the Server Options page. In SQL Server 2005, the options are True/False settings. Make sure
that they are set True. The Remote Procedure Call (RPC) options must be selected if you want to execute
stored procedure/function calls in a SQL Anywhere database and pass parameters in and out
successfully.

Setting up a Microsoft Linked Server using OLE DB

Copyright © 2007, iAnywhere Solutions, Inc. 433

Supported OLE DB interfaces
The OLE DB API consists of a set of interfaces. The following table describes the support for each interface
in the SQL Anywhere OLE DB driver.

Interface Purpose Limitations

IAccessor Define bindings between client mem-
ory and data store values.

DBACCESSOR_PASS-
BYREF not supported.
DBACCESSOR_OPTIMIZED
not supported.

IAlterIndex

IAlterTable

Alter tables, indexes, and columns. Not supported.

IChapteredRowset A chaptered rowset allows rows of a
rowset to be accessed in separate chap-
ters.

Not supported. SQL Anywhere
does not support chaptered
rowsets.

IColumnsInfo Get simple information about the
columns in a rowset.

Not supported on Windows CE.

IColumnsRowset Get information about optional meta-
data columns in a rowset, and get a
rowset of column metadata.

Not supported on Windows CE.

ICommand Execute SQL commands. Does not support calling. Icom-
mandProperties: GetProperties
with DBPROPSET_PROPER-
TIESINERROR to find proper-
ties that could not have been set.

ICommandPersist Persist the state of a command object
(but not any active rowsets). These
persistent command objects can sub-
sequently be enumerated using the
PROCEDURES or VIEWS rowset.

Not supported on Windows CE.

ICommandPrepare Prepare commands. Not supported on Windows CE.

ICommandProperties Set Rowset properties for rowsets cre-
ated by a command. Most commonly
used to specify the interfaces the
rowset should support.

Supported.

ICommandText Set the SQL command text for ICom-
mand.

Only the DBGUID_DEFAULT
SQL dialect is supported.

SQL Anywhere OLE DB and ADO APIs

434 Copyright © 2007, iAnywhere Solutions, Inc.

Interface Purpose Limitations

IcommandWithParameters Set or get parameter information for a
command.

No support for parameters
stored as vectors of scalar val-
ues.

No support for BLOB parame-
ters.

Not on CE.

IConvertType Supported.

Limited on CE.

IDBAsynchNotify

IDBAsyncStatus

Asynchronous processing.

Notify client of events in the asyn-
chronous processing of data source
initialization, populating rowsets, and
so on.

Not supported.

IDBCreateCommand Create commands from a session. Supported.

IDBCreateSession Create a session from a data source
object.

Supported.

IDBDataSourceAdmin Create/destroy/modify data source ob-
jects, which are COM objects used by
clients. This interface is not used to
manage data stores (databases).

Not supported.

IDBInfo Find information about keywords
unique to this provider (that is, to find
non-standard SQL keywords).

Also, find information about literals,
special characters used in text match-
ing queries, and other literal informa-
tion.

Not supported on Windows CE.

IDBInitialize Initialize data source objects and enu-
merators.

Not supported on Windows CE.

IDBProperties Manage properties on a data source
object or enumerator.

Not supported on Windows CE.

IDBSchemaRowset Get information about system tables,
in a standard form (a rowset).

Not supported on Windows CE.

IErrorInfo

IErrorLookup

IErrorRecords

ActiveX error object support. Not supported on Windows CE.

Supported OLE DB interfaces

Copyright © 2007, iAnywhere Solutions, Inc. 435

Interface Purpose Limitations

IGetDataSource Returns an interface pointer to the
session's data source object.

Supported.

IIndexDefinition Create or drop indexes in the data
store.

Not supported.

IMultipleResults Retrieve multiple results (rowsets or
row counts) from a command.

Supported.

IOpenRowset Non-SQL way to access a database ta-
ble by its name.

Supported.
Opening a table by its name is
supported, not by a GUID.

IParentRowset Access chaptered/hierarchical
rowsets.

Not supported.

IRowset Access rowsets. Supported.

IRowsetChange Allow changes to rowset data, reflect-
ed back to the data store.

InsertRow/SetData for BLOBs are not
implemented.

Not supported on Windows CE.

IRowsetChapterMember Access chaptered/hierarchical
rowsets.

Not supported.

IRowsetCurrentIndex Dynamically change the index for a
rowset.

Not supported.

IRowsetFind Find a row within a rowset matching a
specified value.

Not supported.

IRowsetIdentity Compare row handles. Not supported.

IRowsetIndex Access database indexes. Not supported.

IRowsetInfo Find information about rowset prop-
erties or to find the object that created
the rowset.

Not supported on Windows CE.

IRowsetLocate Position on rows of a rowset, using
bookmarks.

Not supported on Windows CE.

IRowsetNotify Provides a COM callback interface for
rowset events.

Supported.

IRowsetRefresh Get the latest value of data that is vis-
ible to a transaction.

Not supported.

IRowsetResynch Old OLEDB 1.x interface, superseded
by IRowsetRefresh.

Not supported.

SQL Anywhere OLE DB and ADO APIs

436 Copyright © 2007, iAnywhere Solutions, Inc.

Interface Purpose Limitations

IRowsetScroll Scroll through rowset to fetch row da-
ta.

Not supported.

IRowsetUpdate Delay changes to rowset data until Up-
date is called.

Supported.

Not on CE.

IRowsetView Use views on an existing rowset. Not supported.

ISequentialStream Retrieve a BLOB column. Supported for reading only.

No support for SetData with this
interface.

Not on CE.

ISessionProperties Get session property information. Supported.

ISourcesRowset Get a rowset of data source objects and
enumerators.

Not supported on Windows CE.

ISQLErrorInfo

ISupportErrorInfo

ActiveX error object support. Optional on CE.

ITableDefinition

ITableDefinitionWithCon-
straints

Create, drop, and alter tables, with
constraints.

Not supported on Windows CE.

ITransaction Commit or abort transactions. Not all the flags are supported.

Not on CE.

ITransactionJoin Support distributed transactions. Not all the flags are supported.

Not on CE.

ITransactionLocal Handle transactions on a session.

Not all the flags are supported.

Not supported on Windows CE.

ITransactionOptions Get or set options on a transaction. Not supported on Windows CE.

IViewChapter Work with views on an existing
rowset, specifically to apply post-pro-
cessing filters/sorting on rows.

Not supported.

IViewFilter Restrict contents of a rowset to rows
matching a set of conditions.

Not supported.

IViewRowset Restrict contents of a rowset to rows
matching a set of conditions, when
opening a rowset.

Not supported.

Supported OLE DB interfaces

Copyright © 2007, iAnywhere Solutions, Inc. 437

Interface Purpose Limitations

IViewSort Apply sort order to a view. Not supported.

SQL Anywhere OLE DB and ADO APIs

438 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 11

SQL Anywhere ODBC API

Contents
Introduction to ODBC .. 440
Building ODBC applications .. 442
ODBC samples .. 446
ODBC handles ... 448
Choosing an ODBC connection function ... 451
Executing SQL statements .. 454
Working with result sets ... 458
Calling stored procedures .. 464
Handling errors .. 466

Copyright © 2007, iAnywhere Solutions, Inc. 439

Introduction to ODBC
The Open Database Connectivity (ODBC) interface is an application programming interface defined by
Microsoft Corporation as a standard interface to database management systems on Windows operating
systems. ODBC is a call-based interface.

To write ODBC applications for SQL Anywhere, you need:

♦ SQL Anywhere.

♦ A C compiler capable of creating programs for your environment.

♦ The Microsoft ODBC Software Development Kit. This is available on the Microsoft Developer Network,
and provides documentation and additional tools for testing ODBC applications.

Supported platforms
SQL Anywhere supports the ODBC API on Unix and Windows CE, in addition to Windows. Having multi-
platform ODBC support makes portable database application development much easier.

For information on enlisting the ODBC driver in distributed transactions, see “Three-Tier Computing and
Distributed Transactions” on page 59.

See also
♦ ODBC SDK documentation

Note
Some application development tools that already have ODBC support provide their own programming
interface that hides the ODBC interface. The SQL Anywhere documentation does not describe how to use
those tools.

ODBC conformance

SQL Anywhere provides support for ODBC 3.5, which is supplied as part of the Microsoft Data Access Kit
2.7.

Levels of ODBC support
ODBC features are arranged according to level of conformance. Features are either Core, Level 1, or Level
2, with Level 2 being the most complete level of ODBC support. These features are listed in the ODBC
Programmer's Reference, which is available from Microsoft Corporation as part of the ODBC software
development kit or from the Microsoft web site, at http://msdn.microsoft.com/library/en-us/odbc/htm/
odbcabout_this_manual.asp.

Features supported by SQL Anywhere
SQL Anywhere supports the ODBC 3.5 specification.

♦ Core conformance SQL Anywhere supports all Core level features.

SQL Anywhere ODBC API

440 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/dasdkodbcoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcabout_this_manual.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcabout_this_manual.asp

♦ Level 1 conformance SQL Anywhere supports all Level 1 features, except for asynchronous
execution of ODBC functions.

SQL Anywhere supports multiple threads sharing a single connection. The requests from the different
threads are serialized by SQL Anywhere.

♦ Level 2 conformance SQL Anywhere supports all Level 2 features, except for the following:

♦ Three part names of tables and views. This is not applicable for SQL Anywhere.

♦ Asynchronous execution of ODBC functions for specified individual statements.

♦ Ability to time out login requests and SQL queries.

ODBC backward compatibility
Applications developed using older versions of ODBC continue to work with SQL Anywhere and the newer
ODBC driver manager. The new ODBC features are not provided for older applications.

The ODBC driver manager
Microsoft Windows includes an ODBC driver manager. For Unix, an ODBC driver manager is supplied
with SQL Anywhere.

Introduction to ODBC

Copyright © 2007, iAnywhere Solutions, Inc. 441

Building ODBC applications
This section describes how to compile and link simple ODBC applications.

Including the ODBC header file

Every C source file that calls ODBC functions must include a platform-specific ODBC header file. Each
platform-specific header file includes the main ODBC header file odbc.h, which defines all the functions,
data types, and constant definitions required to write an ODBC program.

♦ To include the ODBC header file in a C source file

1. Add an include line referencing the appropriate platform-specific header file to your source file. The
lines to use are as follows:

Operating system Include line

Windows #include "ntodbc.h"

Unix #include "unixodbc.h"

Windows CE #include "ntodbc.h"

2. Add the directory containing the header file to the include path for your compiler.

Both the platform-specific header files and odbc.h are installed in the h subdirectory of your SQL
Anywhere installation directory.

Linking ODBC applications on Windows

This section does not apply to Windows CE.

For Windows CE information, see “Linking ODBC applications on Windows CE” on page 443.

When linking your application, you must link against the appropriate import library file to have access to
the ODBC functions. The import library defines entry points for the ODBC driver manager odbc32.dll. The
driver manager in turn loads the SQL Anywhere ODBC driver dbodbc10.dll.

Separate import libraries are supplied for Microsoft and Watcom compilers.

♦ To link an ODBC application (Windows)

• Add the directory containing the platform-specific import library to the list of library directories.

The import libraries are stored in the lib subdirectory of the directory containing your SQL Anywhere
executables and are named as follows:

SQL Anywhere ODBC API

442 Copyright © 2007, iAnywhere Solutions, Inc.

Operating system Compiler Import library

Windows Microsoft odbc32.lib

Windows Watcom C/C++ wodbc32.lib

Windows Borland bodbc32.lib

Windows CE Microsoft dbodbc10.lib

Linking ODBC applications on Windows CE

On Windows CE operating systems there is no ODBC driver manager. The import library (dbodbc10.lib)
defines entry points directly into the SQL Anywhere ODBC driver dbodbc10.dll.

Separate versions of this DLL are provided for the different chips on which Windows CE is available. The
files are in operating-system specific subdirectories of the ce directory in your SQL Anywhere installation
directory. For example, the ODBC driver for Windows CE on the ARM chip is in the following location:

C:\Program Files\SQL Anywhere 10\ce\arm.30

For a list of supported versions of Windows CE, see the SQL Anywhere for PC Platforms table in SQL
Anywhere Supported Platforms and Engineering Support Status.

♦ To link an ODBC application (Windows CE)

1. Add the directory containing the platform-specific import library to the list of library directories.

The import library is named dbodbc10.lib and is stored in an operating-system specific location under
the ce directory in your SQL Anywhere installation directory. For example, the import library for
Windows CE on the ARM chip is in the following location:

C:\Program Files\SQL Anywhere 10\ce\arm.30\lib
2. Specify the DRIVER= parameter in the connection string supplied to the SQLDriverConnect function.

szConnStrIn = "driver=ospath\\dbodbc10.dll;dbf=\\samples-dir\\demo.db"

where ospath is the full path to Windows directory on the Windows CE device. For example:

\\Windows

For information about the default location of samples-dir, see “Samples directory” [SQL Anywhere
Server - Database Administration].

The sample program (odbc_sample.cpp) uses a File data source (FileDSN connection parameter) called SQL
Anywhere 10 Demo.dsn. There is a copy of this file in the ce directory in your SQL Anywhere installation
directory. You can create file data sources on your desktop system with the ODBC Data Source
Administrator, but they must be set up for your desktop system and then edited to match the Windows CE
environment. After appropriate edits, you can copy them to your Windows CE device.

Building ODBC applications

Copyright © 2007, iAnywhere Solutions, Inc. 443

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/supported_platforms.html
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/supported_platforms.html
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Windows CE and Unicode
SQL Anywhere uses an encoding known as UTF-8, a multibyte character encoding that can be used to encode
Unicode.

The SQL Anywhere ODBC driver supports either ASCII (8-bit) strings or Unicode code (wide character)
strings. The UNICODE macro controls whether ODBC functions expect ASCII or Unicode strings. If your
application must be built with the UNICODE macro defined, but you want to use the ASCII ODBC functions,
then the SQL_NOUNICODEMAP macro must also be defined.

The sample file samples-dir\SQLAnywhere\C\odbc.c illustrates how to use the Unicode ODBC features.

Linking ODBC applications on Unix

An ODBC driver manager is included with SQL Anywhere and there are third party driver managers
available. This section describes how to build ODBC applications that do not use an ODBC driver manager.

ODBC driver
The ODBC driver is a shared object or shared library. Separate versions of the SQL Anywhere ODBC driver
are supplied for single-threaded and multi-threaded applications. A generic SQL Anywhere ODBC driver
is supplied that will detect the threading model in use and direct calls to the appropriate single-threaded or
multi-threaded library.

The ODBC drivers are the following files:

Operating system Threading model ODBC driver

(all Unix except Mac OS X
and HP-UX)

Generic libdbodbc10.so (libdbodbc10.so.1)

(all Unix except Mac OS X
and HP-UX)

Single threaded libdbodbc10_n.so (libdbodbc10_n.so.1)

(all Unix except Mac OS X
and HP-UX)

Multi-threaded libdbodbc10_r.so (libdbodbc10_r.so.1)

HP-UX Generic libdbodbc10.sl (libdbodbc10.sl.1)

HP-UX Single threaded libdbodbc10_n.sl (libdbodbc10_n.sl.1)

HP-UX Multi-threaded libdbodbc10_r.sl (libdbodbc10_r.sl.1)

Mac OS X Generic libdbodbc10.dylib

Mac OS X Single threaded libdbodbc10_n.dylib

Mac OS X Multi-threaded libdbodbc10_r.dylib

The libraries are installed as symbolic links to the shared library with a version number (shown in
parentheses).

SQL Anywhere ODBC API

444 Copyright © 2007, iAnywhere Solutions, Inc.

In addition, the following bundles are also provided for Mac OS X:

Operating system Threading model ODBC driver

Mac OS X Single threaded dbodbc10.bundle

Mac OS X Multi-threaded dbodbc10_r.bundle

♦ To link an ODBC application (Unix)

1. Link your application against the generic ODBC driver libdbodbc10.

2. When deploying your application, ensure that the appropriate (or all) ODBC driver versions (non-
threaded or threaded) are available in the user's library path.

Data source information
If SQL Anywhere does not detect the presence of an ODBC driver manager, it uses the system information
file for data source information. See “Using ODBC data sources on Unix” [SQL Anywhere Server - Database
Administration].

Using an ODBC driver manager on Unix

SQL Anywhere includes an ODBC driver manager for Unix. The libdbodm10 shared object can be used on
all supported Unix platforms as an ODBC driver manager. The iAnywhere ODBC driver manager can be
used to load any version 3.0 or above ODBC driver. The driver manager will not perform mappings between
ODBC 1.0/2.0 calls and ODBC 3.x calls; therefore, applications using the iAnywhere ODBC driver manager
must restrict their use of the ODBC feature set to version 3.0 and above. Also, the iAnywhere ODBC driver
manager can be used by both threaded and non-threaded applications.

The iAnywhere ODBC driver manager can perform tracing of ODBC calls for any given connection. To
turn on tracing, a user can use the TraceLevel and TraceLog directives. These directives can be part of a
connection string (in the case where SQLDriverConnect is being used) or within a DSN entry. The TraceLog
is a log file where the traced output for the connection goes while the TraceLevel is the amount of tracing
information desired. The trace levels are:

♦ NONE No tracing information is printed.

♦ MINIMAL Routine name and parameters are included in the output.

♦ LOW In addition to the above, return values are included in the output.

♦ MEDIUM In addition to the above, the date and time of execution are included in the output.

♦ HIGH In addition to the above, parameter types are included in the output.

Also, third-party ODBC driver managers for Unix are available. Consult the documentation that accompanies
these driver managers for information on their use.

Building ODBC applications

Copyright © 2007, iAnywhere Solutions, Inc. 445

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

ODBC samples
Several ODBC samples are included with SQL Anywhere. You can find the samples in the samples-dir
\SQLAnywhere subdirectories.

The samples in directories starting with ODBC illustrate separate and simple ODBC tasks, such as connecting
to a database and executing statements. A complete sample ODBC program is supplied in samples-dir
\SQLAnywhere\C\odbc.c. This program performs the same actions as the embedded SQL dynamic cursor
example program that is in the same directory.

For a description of the associated embedded SQL program, see “Sample embedded SQL
programs” on page 502.

Building the sample ODBC program

The ODBC sample program in samples-dir\SQLAnywhere\C includes a batch file (shell script for Unix) that
can be used to compile and link the sample application.

♦ To build the sample ODBC program

1. Open a command prompt and change directory to the samples-dir\SQLAnywhere\C directory.

2. Run the makeall batch file or shell script.

The format of the command is as follows:

makeall api platform compiler

The parameters are as follows:

♦ API Specify odbc to compile the ODBC example rather than an embedded SQL version of the
application.

♦ Platform Specify WINDOWS to compile for Windows operating systems.

♦ Compiler Specify the compiler to use to compile the program. The compiler can be one of the
following:

♦ WC use Watcom C/C++

♦ MC use Microsoft Visual C++

♦ BC use Borland C++ Builder

Running the sample ODBC program

♦ To run the ODBC sample

1. Start the program:

SQL Anywhere ODBC API

446 Copyright © 2007, iAnywhere Solutions, Inc.

♦ Run the file samples-dir\SQLAnywhere\C\odbcwnt.exe.

2. Choose a table:

♦ Choose one of the tables in the sample database. For example, you can enter Customers or
Employees.

ODBC samples

Copyright © 2007, iAnywhere Solutions, Inc. 447

ODBC handles
ODBC applications use a small set of handles to define basic features such as database connections and
SQL statements. A handle is a 32-bit value.

The following handles are used in essentially all ODBC applications.

♦ Environment The environment handle provides a global context in which to access data. Every ODBC
application must allocate exactly one environment handle upon starting, and must free it at the end.

The following code illustrates how to allocate an environment handle:

SQLHENV env;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL
 _NULL_HANDLE, &env);

♦ Connection A connection is specified by an ODBC driver and a data source. An application can have
several connections associated with its environment. Allocating a connection handle does not establish
a connection; a connection handle must be allocated first and then used when the connection is
established.

The following code illustrates how to allocate a connection handle:

SQLHDBC dbc;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

♦ Statement A statement handle provides access to a SQL statement and any information associated
with it, such as result sets and parameters. Each connection can have several statements. Statements are
used both for cursor operations (fetching data) and for single statement execution (for example, INSERT,
UPDATE, and DELETE).

The following code illustrates how to allocate a statement handle:

SQLHSTMT stmt;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

Allocating ODBC handles

The handle types required for ODBC programs are as follows:

Item Handle type

Environment SQLHENV

Connection SQLHDBC

Statement SQLHSTMT

SQL Anywhere ODBC API

448 Copyright © 2007, iAnywhere Solutions, Inc.

Item Handle type

Descriptor SQLHDESC

♦ To use an ODBC handle

1. Call the SQLAllocHandle function.

SQLAllocHandle takes the following parameters:

♦ an identifier for the type of item being allocated

♦ the handle of the parent item

♦ a pointer to the location of the handle to be allocated

For a full description, see SQLAllocHandle in the Microsoft ODBC Programmer's Reference.

2. Use the handle in subsequent function calls.

3. Free the object using SQLFreeHandle.

SQLFreeHandle takes the following parameters:

♦ an identifier for the type of item being freed

♦ the handle of the item being freed

For a full description, see SQLFreeHandle in the Microsoft ODBC Programmer's Reference.

Example
The following code fragment allocates and frees an environment handle:

SQLHENV env;
SQLRETURN retcode;
retcode = SQLAllocHandle(
 SQL_HANDLE_ENV,
 SQL_NULL_HANDLE,
 &env);
if(retcode == SQL_SUCCESS
 || retcode == SQL_SUCCESS_WITH_INFO) {
 // success: application Code here
}
SQLFreeHandle(SQL_HANDLE_ENV, env);

For more information about return codes and error handling, see “Handling errors” on page 466.

A first ODBC example

The following is a simple ODBC program that connects to the SQL Anywhere sample database and
immediately disconnects.

You can find this sample in samples-dir\SQLAnywhere\ODBCConnect\odbcconnect.cpp.

ODBC handles

Copyright © 2007, iAnywhere Solutions, Inc. 449

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcsqlallochandle.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcsqlfreehandle.asp

#include <stdio.h>
#include "ntodbc.h"
int main(int argc, char* argv[])
{
 SQLHENV env;
 SQLHDBC dbc;
 SQLRETURN retcode;
 retcode = SQLAllocHandle(SQL_HANDLE_ENV,
 SQL_NULL_HANDLE,
 &env);
 if (retcode == SQL_SUCCESS
 || retcode == SQL_SUCCESS_WITH_INFO) {
 printf("env allocated\n");
 /* Set the ODBC version environment attribute */
 retcode = SQLSetEnvAttr(env,
 SQL_ATTR_ODBC_VERSION,
 (void*)SQL_OV_ODBC3, 0);
 retcode = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
 if (retcode == SQL_SUCCESS
 || retcode == SQL_SUCCESS_WITH_INFO) {
 printf("dbc allocated\n");
 retcode = SQLConnect(dbc,
 (SQLCHAR*) "SQL Anywhere 10 Demo", SQL_NTS,
 (SQLCHAR*) "DBA", SQL_NTS,
 (SQLCHAR*) "sql", SQL_NTS);
 if (retcode == SQL_SUCCESS
 || retcode == SQL_SUCCESS_WITH_INFO) {
 printf("Successfully connected\n");
 }
 SQLDisconnect(dbc);
 }
 SQLFreeHandle(SQL_HANDLE_DBC, dbc);
 }
 SQLFreeHandle(SQL_HANDLE_ENV, env);
 return 0;
}

SQL Anywhere ODBC API

450 Copyright © 2007, iAnywhere Solutions, Inc.

Choosing an ODBC connection function
ODBC supplies a set of connection functions. Which one you use depends on how you expect your
application to be deployed and used:

♦ SQLConnect The simplest connection function.

SQLConnect takes a data source name and optional user ID and password. You may want to use
SQLConnect if you hard-code a data source name into your application.

For more information, see SQLConnect in the Microsoft ODBC Programmer's Reference.

♦ SQLDriverConnect Connects to a data source using a connection string.

SQLDriverConnect allows the application to use SQL Anywhere-specific connection information that
is external to the data source. Also, you can use SQLDriverConnect to request that the SQL Anywhere
driver prompt for connection information.

SQLDriverConnect can also be used to connect without specifying a data source.

For more information, see SQLDriverConnect in the Microsoft ODBC Programmer's Reference.

♦ SQLBrowseConnect Connects to a data source using a connection string, like SQLDriverConnect.

SQLBrowseConnect allows your application to build its own dialog boxes to prompt for connection
information and to browse for data sources used by a particular driver (in this case the SQL Anywhere
driver).

For more information, see SQLBrowseConnect in the Microsoft ODBC Programmer's Reference.

For a complete list of connection parameters that can be used in connection strings, see “Connection
parameters” [SQL Anywhere Server - Database Administration].

Establishing a connection

Your application must establish a connection before it can perform any database operations.

♦ To establish an ODBC connection

1. Allocate an ODBC environment.

For example:

SQLHENV env;
SQLRETURN retcode;
retcode = SQLAllocHandle(SQL_HANDLE_ENV,
 SQL_NULL_HANDLE, &env);

2. Declare the ODBC version.

Choosing an ODBC connection function

Copyright © 2007, iAnywhere Solutions, Inc. 451

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcsqlconnect.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcsqldriverconnect.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcsqlbrowseconnect.asp
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

By declaring that the application follows ODBC version 3, SQLSTATE values and some other version-
dependent features are set to the proper behavior. For example:

retcode = SQLSetEnvAttr(env,
 SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);

3. If necessary, assemble the data source or connection string.

Depending on your application, you may have a hard-coded data source or connection string, or you
may store it externally for greater flexibility.

4. Allocate an ODBC connection item.

For example:

retcode = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
5. Set any connection attributes that must be set before connecting.

Some connection attributes must be set before establishing a connection or after establishing a
connection, while others can be set either before or after. The SQL_AUTOCOMMIT attribute is one
that can be set before or after:

retcode = SQLSetConnectAttr(dbc,
 SQL_AUTOCOMMIT,
 (SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

For more information, see “Setting connection attributes” on page 453.

6. Call the ODBC connection function.

For example:

if (retcode == SQL_SUCCESS
 || retcode == SQL_SUCCESS_WITH_INFO) {
 printf("dbc allocated\n");
 retcode = SQLConnect(dbc,
 (SQLCHAR*) "SQL Anywhere 10 Demo", SQL_NTS,
 (SQLCHAR*) "DBA", SQL_NTS,
 (SQLCHAR*) "sql", SQL_NTS);
 if (retcode == SQL_SUCCESS
 || retcode == SQL_SUCCESS_WITH_INFO){
 // successfully connected.

You can find a complete sample in samples-dir\SQLAnywhere\ODBCConnect\odbcconnect.cpp.

Notes
♦ SQL_NTS Every string passed to ODBC has a corresponding length. If the length is unknown, you

can pass SQL_NTS indicating that it is a Null Terminated String whose end is marked by the null
character (\0).

♦ SQLSetConnectAttr By default, ODBC operates in autocommit mode. This mode is turned off by
setting SQL_AUTOCOMMIT to false.

For more information, see “Setting connection attributes” on page 453.

SQL Anywhere ODBC API

452 Copyright © 2007, iAnywhere Solutions, Inc.

Setting connection attributes

You use the SQLSetConnectAttr function to control details of the connection. For example, the following
statement turns off ODBC autocommit behavior.

retcode = SQLSetConnectAttr(dbc, SQL_AUTOCOMMIT,
 (SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

For more information including a list of connection attributes, see SQLSetConnectAttr in the Microsoft
ODBC Programmer's Reference.

Many aspects of the connection can be controlled through the connection parameters. For information, see
“Connection parameters” [SQL Anywhere Server - Database Administration].

Threads and connections in ODBC applications

You can develop multi-threaded ODBC applications for SQL Anywhere. It is recommended that you use a
separate connection for each thread.

You can use a single connection for multiple threads. However, the database server does not allow more
than one active request for any one connection at a time. If one thread executes a statement that takes a long
time, all other threads must wait until the request is complete.

Choosing an ODBC connection function

Copyright © 2007, iAnywhere Solutions, Inc. 453

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcsqlsetconnectattr.asp
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Executing SQL statements
ODBC includes several functions for executing SQL statements:

♦ Direct execution SQL Anywhere parses the SQL statement, prepares an access plan, and executes
the statement. Parsing and access plan preparation are called preparing the statement.

♦ Prepared execution The statement preparation is carried out separately from the execution. For
statements that are to be executed repeatedly, this avoids repeated preparation and so improves
performance.

For more information, see “Executing prepared statements” on page 456.

Executing statements directly

The SQLExecDirect function prepares and executes a SQL statement. The statement may include parameters.

The following code fragment illustrates how to execute a statement without parameters. The SQLExecDirect
function takes a statement handle, a SQL string, and a length or termination indicator, which in this case is
a null-terminated string indicator.

The procedure described in this section is straightforward but inflexible. The application cannot take any
input from the user to modify the statement. For a more flexible method of constructing statements, see
“Executing statements with bound parameters” on page 455.

♦ To execute a SQL statement in an ODBC application

1. Allocate a handle for the statement using SQLAllocHandle.

For example, the following statement allocates a handle of type SQL_HANDLE_STMT with name
stmt, on a connection with handle dbc:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
2. Call the SQLExecDirect function to execute the statement:

For example, the following lines declare a statement and execute it. The declaration of
deletestmt would usually occur at the beginning of the function:

SQLCHAR deletestmt[STMT_LEN] =
 "DELETE FROM Departments WHERE DepartmentID = 201";
SQLExecDirect(stmt, deletestmt, SQL_NTS) ;

For a complete sample with error checking, see samples-dir\SQLAnywhere\ODBCExecute
\odbcexecute.cpp.

For more information about SQLExecDirect, see SQLExecDirect in the Microsoft ODBC Programmer's
Reference.

SQL Anywhere ODBC API

454 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcsqlexecdirect.asp

Executing statements with bound parameters

This section describes how to construct and execute a SQL statement, using bound parameters to set values
for statement parameters at runtime.

♦ To execute a SQL statement with bound parameters in an ODBC application

1. Allocate a handle for the statement using SQLAllocHandle.

For example, the following statement allocates a handle of type SQL_HANDLE_STMT with name
stmt, on a connection with handle dbc:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
2. Bind parameters for the statement using SQLBindParameter.

For example, the following lines declare variables to hold the values for the department ID, department
name, and manager ID, as well as for the statement string itself. They then bind parameters to the first,
second, and third parameters of a statement executed using the stmt statement handle.

#defined DEPT_NAME_LEN 40
SQLINTEGER cbDeptID = 0,
 cbDeptName = SQL_NTS, cbManagerID = 0;
SQLCHAR deptName[DEPT_NAME_LEN + 1];
SQLSMALLINT deptID, managerID;
SQLCHAR insertstmt[STMT_LEN] =
 "INSERT INTO Departments "
 "(DepartmentID, DepartmentName, DepartmentHeadID)"
 "VALUES (?, ?, ?)";
SQLBindParameter(stmt, 1, SQL_PARAM_INPUT,
 SQL_C_SSHORT, SQL_INTEGER, 0, 0,
 &deptID, 0, &cbDeptID);
SQLBindParameter(stmt, 2, SQL_PARAM_INPUT,
 SQL_C_CHAR, SQL_CHAR, DEPT_NAME_LEN, 0,
 deptName, 0,&cbDeptName);
SQLBindParameter(stmt, 3, SQL_PARAM_INPUT,
 SQL_C_SSHORT, SQL_INTEGER, 0, 0,
 &managerID, 0, &cbManagerID);

3. Assign values to the parameters.

For example, the following lines assign values to the parameters for the fragment of step 2.

deptID = 201;
strcpy((char *) deptName, "Sales East");
managerID = 902;

Commonly, these variables would be set in response to user action.

4. Execute the statement using SQLExecDirect.

For example, the following line executes the statement string held in insertstmt on the statement
handle stmt.
SQLExecDirect(stmt, insertstmt, SQL_NTS) ;

Executing SQL statements

Copyright © 2007, iAnywhere Solutions, Inc. 455

Bind parameters are also used with prepared statements to provide performance benefits for statements that
are executed more than once. For more information, see “Executing prepared statements” on page 456

The above code fragments do not include error checking. For a complete sample, including error checking,
see samples-dir\SQLAnywhere\ODBCExecute\odbcexecute.cpp.

For more information about SQLExecDirect, see SQLExecDirect in the Microsoft ODBC Programmer's
Reference.

Executing prepared statements

Prepared statements provide performance advantages for statements that are used repeatedly. ODBC
provides a full set of functions for using prepared statements.

For an introduction to prepared statements, see “Preparing statements” on page 22.

♦ To execute a prepared SQL statement

1. Prepare the statement using SQLPrepare.

For example, the following code fragment illustrates how to prepare an INSERT statement:

SQLRETURN retcode;
SQLHSTMT stmt;
retcode = SQLPrepare(stmt,
 "INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES (?, ?, ?,)",
 SQL_NTS);

In this example:

♦ retcode Holds a return code that should be tested for success or failure of the operation.

♦ stmt Provides a handle to the statement so that it can be referenced later.

♦ ? The question marks are placeholders for statement parameters.

2. Set statement parameter values using SQLBindParameter.

For example, the following function call sets the value of the DepartmentID variable:

SQLBindParameter(stmt,
 1,
 SQL_PARAM_INPUT,
 SQL_C_SSHORT,
 SQL_INTEGER,
 0,
 0,
 &sDeptID,
 0,
 &cbDeptID);

In this example:

SQL Anywhere ODBC API

456 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcsqlexecdirect.asp

♦ stmt is the statement handle

♦ 1 indicates that this call sets the value of the first placeholder.

♦ SQL_PARAM_INPUT indicates that the parameter is an input statement.

♦ SQL_C_SHORT indicates the C data type being used in the application.

♦ SQL_INTEGER indicates SQL data type being used in the database.

♦ The next two parameters indicate the column precision and the number of decimal digits: both zero
for integers.

♦ &sDeptID is a pointer to a buffer for the parameter value.

♦ 0 indicates the length of the buffer, in bytes.

♦ &cbDeptID is a pointer to a buffer for the length of the parameter value.

3. Bind the other two parameters and assign values to sDeptId.

4. Execute the statement:

retcode = SQLExecute(stmt);

Steps 2 to 4 can be carried out multiple times.

5. Drop the statement.

Dropping the statement frees resources associated with the statement itself. You drop statements using
SQLFreeHandle.

For a complete sample, including error checking, see samples-dir\SQLAnywhere\ODBCPrepare
\odbcprepare.cpp.

For more information about SQLPrepare, see SQLPrepare in the Microsoft ODBC Programmer's
Reference.

Executing SQL statements

Copyright © 2007, iAnywhere Solutions, Inc. 457

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcsqlprepare.asp

Working with result sets
ODBC applications use cursors to manipulate and update result sets. SQL Anywhere provides extensive
support for different kinds of cursors and cursor operations.

For an introduction to cursors, see “Working with cursors” on page 28.

Choosing ODBC transaction isolation level

You can use SQLSetConnectAttr to set the transaction isolation level for a connection. The characteristics
that determine the transaction isolation level that SQL Anywhere provides include the following:

♦ SQL_TXN_READ_UNCOMMITTED Set isolation level to 0. When this attribute value is set, it
isolates any data read from changes by others and changes made by others cannot be seen. The re-
execution of the read statement is affected by others. This does not support a repeatable read. This is the
default value for isolation level.

♦ SQL_TXN_READ_COMMITTED Set isolation level to 1. When this attribute value is set, it does not
isolate data read from changes by others, and changes made by others can be seen. The re-execution of
the read statement is affected by others. This does not support a repeatable read.

♦ SQL_TXN_REPEATABLE_READ Set isolation level to 2. When this attribute value is set, it isolates
any data read from changes by others, and changes made by others cannot be seen. The re-execution of
the read statement is affected by others. This supports a repeatable read.

♦ SQL_TXN_SERIALIZABLE Set isolation level to 3. When this attribute value is set, it isolates any
data read from changes by others, and changes made by others cannot be seen. The re-execution of the
read statement is not affected by others. This supports a repeatable read.

♦ SA_SQL_TXN_SNAPSHOT Set isolation level to snapshot. When this attribute value is set, it
provides a single view of the database for the entire transaction.

♦ SA_SQL_TXN_STATEMENT_SNAPSHOT Set isolation level to statement-snapshot. When this
attribute value is set, it provides less consistency than snapshot isolation, but may be useful in cases
where long running transactions result in too much space being used in the temporary file by the version
store.

♦ SA_SQL_TXN_READONLY_STATEMENT_SNAPSHOT Set isolation level to readonly-
statement-snapshot. When this attribute value is set, it provides somewhat less consistency than
statement-snapshot isolation, but avoids the possibility of update conflicts. Therefore, it is most
appropriate for porting applications originally intended to run under different isolation levels.

For more information, see SQLSetConnectAttr in the Microsoft ODBC Programmer's Reference.

Example
The following fragment uses a snapshot isolation level:

SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
SQLSetConnectAttr(dbc, SQL_ATTR_TXN_ISOLATION,
 SA_SQL_TXN_SNAPSHOT, SQL_IS_UINTEGER);

SQL Anywhere ODBC API

458 Copyright © 2007, iAnywhere Solutions, Inc.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcsqlsetstmtattr.asp

Choosing ODBC cursor characteristics

ODBC functions that execute statements and manipulate result sets, use cursors to perform their tasks.
Applications open a cursor implicitly whenever they execute a SQLExecute or SQLExecDirect function.

For applications that move through a result set only in a forward direction and do not update the result set,
cursor behavior is relatively straightforward. By default, ODBC applications request this behavior. ODBC
defines a read-only, forward-only cursor, and SQL Anywhere provides a cursor optimized for performance
in this case.

For a simple example of a forward-only cursor, see “Retrieving data” on page 460.

For applications that need to scroll both forward and backward through a result set, such as many graphical
user interface applications, cursor behavior is more complex. What does the application when it returns to
a row that has been updated by some other application? ODBC defines a variety of scrollable cursors to
allow you to build in the behavior that suits your application. SQL Anywhere provides a full set of cursors
to match the ODBC scrollable cursor types.

You set the required ODBC cursor characteristics by calling the SQLSetStmtAttr function that defines
statement attributes. You must call SQLSetStmtAttr before executing a statement that creates a result set.

You can use SQLSetStmtAttr to set many cursor characteristics. The characteristics that determine the cursor
type that SQL Anywhere supplies include the following:

♦ SQL_ATTR_CURSOR_SCROLLABLE Set to SQL_SCROLLABLE for a scrollable cursor and
SQL_NONSCROLLABLE for a forward-only cursor. SQL_NONSCROLLABLE is the default.

♦ SQL_ATTR_CONCURRENCY Set to one of the following values:

♦ SQL_CONCUR_READ_ONLY Disallow updates. SQL_CONCUR_READ_ONLY is the
default.

♦ SQL_CONCUR_LOCK Use the lowest level of locking sufficient to ensure that the row can be
updated.

♦ SQL_CONCUR_ROWVER Use optimistic concurrency control, comparing row versions such as
SQLBase ROWID or Sybase TIMESTAMP.

♦ SQL_CONCUR_VALUES Use optimistic concurrency control, comparing values.

For more information, see SQLSetStmtAttr in the Microsoft ODBC Programmer's Reference.

Example
The following fragment requests a read-only, scrollable cursor:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
SQLSetStmtAttr(stmt, SQL_ATTR_CURSOR_SCROLLABLE,
 SQL_SCROLLABLE, SQL_IS_UINTEGER);

Working with result sets

Copyright © 2007, iAnywhere Solutions, Inc. 459

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcsqlsetstmtattr.asp

Retrieving data

To retrieve rows from a database, you execute a SELECT statement using SQLExecute or SQLExecDirect.
This opens a cursor on the statement.

You then use SQLFetch or SQLFetchScroll to fetch rows through the cursor. These functions fetch the next
rowset of data from the result set and return data for all bound columns. Using SQLFetchScroll, rowsets can
be specified at an absolute or relative position or by bookmark. SQLFetchScroll replaces the older
SQLExtendedFetch from the ODBC 2.0 specification.

When an application frees the statement using SQLFreeHandle, it closes the cursor.

To fetch values from a cursor, your application can use either SQLBindCol or SQLGetData. If you use
SQLBindCol, values are automatically retrieved on each fetch. If you use SQLGetData, you must call it for
each column after each fetch.

SQLGetData is used to fetch values in pieces for columns such as LONG VARCHAR or LONG BINARY.
As an alternative, you can set the SQL_ATTR_MAX_LENGTH statement attribute to a value large enough
to hold the entire value for the column. The default value for SQL_ATTR_MAX_LENGTH is 256 KB.

Please note that the SQL Anywhere ODBC driver implements SQL_ATTR_MAX_LENGTH in a different
way than intended by the ODBC specification. The intended meaning for SQL_ATTR_MAX_LENGTH is
that it be used as a mechanism to truncate large fetches. This might be done for a "preview" mode where
only the first part of the data is displayed. For example, instead of transmitting a 4 MB blob from the server
to the client application, only the first 500 bytes of it might be transmitted (by setting
SQL_ATTR_MAX_LENGTH to 500). The SQL Anywhere ODBC driver does not support this
implementation.

The following code fragment opens a cursor on a query and retrieves data through the cursor. Error checking
has been omitted to make the example easier to read. The fragment is taken from a complete sample, which
can be found in samples-dir\SQLAnywhere\ODBCSelect\odbcselect.cpp.

SQLINTEGER cbDeptID = 0, cbDeptName = SQL_NTS, cbManagerID = 0;
SQLCHAR deptName[DEPT_NAME_LEN + 1];
SQLSMALLINT deptID, managerID;
SQLHENV env;
SQLHDBC dbc;
SQLHSTMT stmt;
SQLRETURN retcode;
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);
SQLSetEnvAttr(env,
 SQL_ATTR_ODBC_VERSION,
 (void*)SQL_OV_ODBC3, 0);
SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
SQLConnect(dbc,
 (SQLCHAR*) "SQL Anywhere 10 Demo", SQL_NTS,
 (SQLCHAR*) "DBA", SQL_NTS,
 (SQLCHAR*) "sql", SQL_NTS);
SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
SQLBindCol(stmt, 1,
 SQL_C_SSHORT, &deptID, 0, &cbDeptID);
SQLBindCol(stmt, 2,
 SQL_C_CHAR, deptName,
 sizeof(deptName), &cbDeptName);
SQLBindCol(stmt, 3,
 SQL_C_SSHORT, &managerID, 0, &cbManagerID);
SQLExecDirect(stmt, (SQLCHAR *)

SQL Anywhere ODBC API

460 Copyright © 2007, iAnywhere Solutions, Inc.

"SELECT DepartmentID, DepartmentName, DepartmentHeadID FROM Departments "
 "ORDER BY DepartmentID", SQL_NTS);
while((retcode = SQLFetch(stmt)) != SQL_NO_DATA){
 printf("%d %20s %d\n", deptID, deptName, managerID);
}
SQLFreeHandle(SQL_HANDLE_STMT, stmt);
SQLDisconnect(dbc);
SQLFreeHandle(SQL_HANDLE_DBC, dbc);
SQLFreeHandle(SQL_HANDLE_ENV, env);

The number of row positions you can fetch in a cursor is governed by the size of an integer. You can fetch
rows numbered up to number 2147483646, which is one less than the value that can be held in a 32-bit
integer. When using negative numbers (rows from the end) you can fetch down to one more than the largest
negative value that can be held in an integer.

Data alignment requirements

When you use SQLBindCol, SQLBindParameter, or SQLGetData, a C data type is specified for the column
or parameter. On certain platforms, the storage (memory) provided for each column must be properly aligned
to fetch or store a value of the specified type. The following table lists memory alignment requirements for
all processors except x86, x64, and PowerPC platforms. Processors such as Itanium-IA64 and ARM-based
devices require memory alignment.

C Data Type Alignment required

SQL_C_CHAR none

SQL_C_BINARY none

SQL_C_GUID none

SQL_C_BIT none

SQL_C_STINYINT none

SQL_C_UTINYINT none

SQL_C_TINYINT none

SQL_C_NUMERIC none

SQL_C_DEFAULT none

SQL_C_SSHORT 2

SQL_C_USHORT 2

SQL_C_SHORT 2

SQL_C_DATE 2

SQL_C_TIME 2

Working with result sets

Copyright © 2007, iAnywhere Solutions, Inc. 461

C Data Type Alignment required

SQL_C_TIMESTAMP 2

SQL_C_TYPE_DATE 2

SQL_C_TYPE_TIME 2

SQL_C_TYPE_TIMESTAMP 2

SQL_C_WCHAR 2 (buffer size must be a multiple of 2 on all platforms)

SQL_C_SLONG 4

SQL_C_ULONG 4

SQL_C_LONG 4

SQL_C_FLOAT 4

SQL_C_DOUBLE 8

SQL_C_SBIGINT 8

SQL_C_UBIGINT 8

The x64 platform includes Advanced Micro Devices (AMD) AMD64 processors and Intel Extended Memory
64 Technology (EM64T) processors.

Updating and deleting rows through a cursor

The Microsoft ODBC Programmer's Reference suggests that you use SELECT… FOR UPDATE to indicate
that a query is updatable using positioned operations. You do not need to use the FOR UPDATE clause in
SQL Anywhere: SELECT statements are automatically updatable as long as the following conditions are
met:

♦ The underlying query supports updates.

That is to say, as long as a data modification statement on the columns in the result is meaningful, then
positioned data modification statements can be carried out on the cursor.

The ansi_update_constraints database option limits the type of queries that are updatable.

For more information, see “ansi_update_constraints option [compatibility]” [SQL Anywhere Server -
Database Administration].

♦ The cursor type supports updates.

If you are using a read-only cursor, you cannot update the result set.

ODBC provides two alternatives for carrying out positioned updates and deletes:

SQL Anywhere ODBC API

462 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

♦ Use the SQLSetPos function.

Depending on the parameters supplied (SQL_POSITION, SQL_REFRESH, SQL_UPDATE,
SQL_DELETE) SQLSetPos sets the cursor position and allows an application to refresh data, or update,
or delete data in the result set.

This is the method to use with SQL Anywhere.

♦ Send positioned UPDATE and DELETE statements using SQLExecute. This method should not be used
with SQL Anywhere.

Using bookmarks

ODBC provides bookmarks, which are values used to identify rows in a cursor. SQL Anywhere supports
bookmarks for value-sensitive and insensitive cursors. For example, this means that the ODBC cursor types
SQL_CURSOR_STATIC and SQL_CURSOR_KEYSET_DRIVEN support bookmarks while cursor types
SQL_CURSOR_DYNAMIC and SQL_CURSOR_FORWARD_ONLY do not.

Before ODBC 3.0, a database could specify only whether it supported bookmarks or not: there was no
interface to provide this information for each cursor type. There was no way for a database server to indicate
for what kind of cursor bookmarks were supported. For ODBC 2 applications, SQL Anywhere returns that
it does support bookmarks. There is therefore nothing to prevent you from trying to use bookmarks with
dynamic cursors; however, you should not use this combination.

Working with result sets

Copyright © 2007, iAnywhere Solutions, Inc. 463

Calling stored procedures
This section describes how to create and call stored procedures and process the results from an ODBC
application.

For a full description of stored procedures and triggers, see “Using Procedures, Triggers, and Batches” [SQL
Anywhere Server - SQL Usage].

Procedures and result sets
There are two types of procedures: those that return result sets and those that do not. You can use
SQLNumResultCols to tell the difference: the number of result columns is zero if the procedure does not
return a result set. If there is a result set, you can fetch the values using SQLFetch or SQLExtendedFetch
just like any other cursor.

Parameters to procedures should be passed using parameter markers (question marks). Use
SQLBindParameter to assign a storage area for each parameter marker, whether it is an INPUT, OUTPUT,
or INOUT parameter.

To handle multiple result sets, ODBC must describe the currently executing cursor, not the procedure-defined
result set. Therefore, ODBC does not always describe column names as defined in the RESULT clause of
the stored procedure definition. To avoid this problem, you can use column aliases in your procedure result
set cursor.

Example
This example creates and calls a procedure that does not return a result set. The procedure takes one INOUT
parameter, and increments its value. In the example, the variable num_col has the value zero, since the
procedure does not return a result set. Error checking has been omitted to make the example easier to read.

HDBC dbc;
HSTMT stmt;
long I;
SWORD num_col;
/* Create a procedure */
SQLAllocStmt(dbc, &stmt);
SQLExecDirect(stmt,
 "CREATE PROCEDURE Increment(INOUT a INT)" \
 " BEGIN" \
 " SET a = a + 1" \
 " END", SQL_NTS);
/* Call the procedure to increment 'I' */
I = 1;
SQLBindParameter(stmt, 1, SQL_C_LONG, SQL_INTEGER, 0,
 0, &I, NULL);
SQLExecDirect(stmt, "CALL Increment(?)",
 SQL_NTS);
SQLNumResultCols(stmt, &num_col);
do_something(I);

SQL Anywhere ODBC API

464 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf

Example
This example calls a procedure that returns a result set. In the example, the variable num_col will have the
value 2 since the procedure returns a result set with two columns. Again, error checking has been omitted
to make the example easier to read.

HDBC dbc;
HSTMT stmt;
SWORD num_col;
RETCODE retcode;
char ID[10];
char Surname[20];
/* Create the procedure */
SQLExecDirect(stmt,
 "CREATE PROCEDURE employees()" \
 " RESULT(ID CHAR(10), Surname CHAR(20))"\
 " BEGIN" \
 " SELECT EmployeeID, Surname FROM Employees" \
 " END", SQL_NTS);
/* Call the procedure - print the results */
SQLExecDirect(stmt, "CALL employees()", SQL_NTS);
SQLNumResultCols(stmt, &num_col);
SQLBindCol(stmt, 1, SQL_C_CHAR, &ID,
 sizeof(ID), NULL);
SQLBindCol(stmt, 2, SQL_C_CHAR, &Surname,
 sizeof(Surname), NULL);
for(;;) {
 retcode = SQLFetch(stmt);
 if(retcode == SQL_NO_DATA_FOUND) {
 retcode = SQLMoreResults(stmt);
 if(retcode == SQL_NO_DATA_FOUND) break;
} else {
 do_something(ID, Surname);
 }
}

Calling stored procedures

Copyright © 2007, iAnywhere Solutions, Inc. 465

Handling errors
Errors in ODBC are reported using the return value from each of the ODBC function calls and either the
SQLError function or the SQLGetDiagRec function. The SQLError function was used in ODBC versions
up to, but not including, version 3. As of version 3 the SQLError function has been deprecated and replaced
by the SQLGetDiagRec function.

Every ODBC function returns a SQLRETURN, which is one of the following status codes:

Status code Description

SQL_SUCCESS No error.

SQL_SUCCESS_WITH_INFO The function completed, but a call to SQLError will indicate
a warning.

The most common case for this status is that a value being
returned is too long for the buffer provided by the application.

SQL_ERROR The function did not complete because of an error. Call
SQLError to get more information on the problem.

SQL_INVALID_HANDLE An invalid environment, connection, or statement handle was
passed as a parameter.

This often happens if a handle is used after it has been freed,
or if the handle is the null pointer.

SQL_NO_DATA_FOUND There is no information available.

The most common use for this status is when fetching from a
cursor; it indicates that there are no more rows in the cursor.

SQL_NEED_DATA Data is needed for a parameter.

This is an advanced feature described in the ODBC SDK doc-
umentation under SQLParamData and SQLPutData.

Every environment, connection, and statement handle can have one or more errors or warnings associated
with it. Each call to SQLError or SQLGetDiagRec returns the information for one error and removes the
information for that error. If you do not call SQLError or SQLGetDiagRec to remove all errors, the errors
are removed on the next function call that passes the same handle as a parameter.

Each call to SQLError passes three handles for an environment, connection, and statement. The first call
uses SQL_NULL_HSTMT to get the error associated with a connection. Similarly, a call with both
SQL_NULL_DBC and SQL_NULL_HSTMT get any error associated with the environment handle.

Each call to SQLGetDiagRec can pass either an environment, connection or statement handle. The first call
passes in a handle of type SQL_HANDLE_DBC to get the error associated with a connection. The second
call passes in a handle of type SQL_HANDLE_STMT to get the error associated with the statement that
was just executed.

SQLError and SQLGetDiagRec return SQL_SUCCESS if there is an error to report (not SQL_ERROR),
and SQL_NO_DATA_FOUND if there are no more errors to report.

SQL Anywhere ODBC API

466 Copyright © 2007, iAnywhere Solutions, Inc.

Example 1
The following code fragment uses SQLError and return codes:

/* Declare required variables */
SQLHDBC dbc;
SQLHSTMT stmt;
SQLRETURN retcode;
UCHAR errmsg[100];
/* Code omitted here */
retcode = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
if(retcode == SQL_ERROR){
 SQLError(env, dbc, SQL_NULL_HSTMT, NULL, NULL,
 errmsg, sizeof(errmsg), NULL);
 /* Assume that print_error is defined */
 print_error("Allocation failed", errmsg);
 return;
}
/* Delete items for order 2015 */
retcode = SQLExecDirect(stmt,
 "DELETE FROM SalesOrderItems WHERE ID=2015",
 SQL_NTS);
if(retcode == SQL_ERROR) {
 SQLError(env, dbc, stmt, NULL, NULL,
 errmsg, sizeof(errmsg), NULL);
 /* Assume that print_error is defined */
 print_error("Failed to delete items", errmsg);
 return;
}

Example 2
The following code fragment uses SQLGetDiagRec and return codes:

/* Declare required variables */
SQLHDBC dbc;
SQLHSTMT stmt;
SQLRETURN retcode;
SQLSMALLINT errmsglen;
SQLINTEGER errnative;
UCHAR errmsg[255];
UCHAR errstate[5];
/* Code omitted here */
retcode = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
if(retcode == SQL_ERROR){
 SQLGetDiagRec(SQL_HANDLE_DBC, dbc, 1, errstate,
 &errnative, errmsg, sizeof(errmsg), &errmsglen);
 /* Assume that print_error is defined */
 print_error("Allocation failed",
errstate, errnative, errmsg);
 return;
}
/* Delete items for order 2015 */
retcode = SQLExecDirect(stmt,
 "DELETE FROM SalesOrderItems WHERE ID=2015",
 SQL_NTS);
if(retcode == SQL_ERROR) {
 SQLGetDiagRec(SQL_HANDLE_STMT, stmt,
 recnum, errstate,
 &errnative, errmsg, sizeof(errmsg), &errmsglen);
 /* Assume that print_error is defined */
 print_error("Failed to delete items",

Handling errors

Copyright © 2007, iAnywhere Solutions, Inc. 467

 errstate, errnative, errmsg);
 return;
}

SQL Anywhere ODBC API

468 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 12

SQL Anywhere JDBC API

Contents
Introduction to JDBC ... 470
Using the iAnywhere JDBC driver ... 473
Using the jConnect JDBC driver .. 475
Connecting from a JDBC client application ... 479
Using JDBC to access data ... 485
Using JDBC escape syntax ... 492

Copyright © 2007, iAnywhere Solutions, Inc. 469

Introduction to JDBC
JDBC can be used both from client applications and inside the database. Java classes using JDBC provide
a more powerful alternative to SQL stored procedures for incorporating programming logic into the database.

JDBC provides a SQL interface for Java applications: if you want to access relational data from Java, you
do so using JDBC calls.

The phrase client application applies both to applications running on a user's computer and to logic running
on a middle-tier application server.

The examples illustrate the distinctive features of using JDBC in SQL Anywhere. For more information
about JDBC programming, see any JDBC programming book.

You can use JDBC with SQL Anywhere in the following ways:

♦ JDBC on the client Java client applications can make JDBC calls to SQL Anywhere. The connection
takes place through a JDBC driver.

SQL Anywhere supports and includes two JDBC drivers: the iAnywhere JDBC driver, which is a Type
2 JDBC driver, and the jConnect driver for pure Java applications, which is a Type 4 JDBC driver.

♦ JDBC in the database Java classes installed into a database can make JDBC calls to access and
modify data in the database using an internal JDBC driver.

JDBC resources
♦ Example source code You can find source code for the examples in this chapter in the directory

samples-dir\SQL Anywhere\JDBC.

♦ Required software You need TCP/IP to use the jConnect driver.

The jConnect driver is available from http://www.sybase.com/products/informationmanagement/
softwaredeveloperkit/jconnect

For more information about the jConnect driver and its location, see “The jConnect driver
files” on page 475.

Choosing a JDBC driver

SQL Anywhere supports the following JDBC drivers:

♦ iAnywhere JDBC driver This driver communicates with SQL Anywhere using the Command
Sequence client/server protocol. Its behavior is consistent with ODBC, embedded SQL, and OLE DB
applications. The iAnywhere JDBC driver is the recommended JDBC driver for connecting to SQL
Anywhere databases.

♦ jConnect This driver is a 100% pure Java driver. It communicates with SQL Anywhere using the TDS
client/server protocol.

SQL Anywhere JDBC API

470 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect
http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect

jConnect and jConnect documentation are available from http://www.sybase.com/products/
informationmanagement/softwaredeveloperkit/jconnect.

When choosing which driver to use, you should consider the following factors:

♦ Features The iAnywhere JDBC driver is both JDBC 2.0 and 3.0 compliant. jConnect 5.5 is JDBC 2.0
compliant and jConnect 6.0.5 is JDBC 3.0 compliant. The iAnywhere JDBC driver provides fully-
scrollable cursors when connected to a SQL Anywhere database. The jConnect JDBC driver provides
fully-scrollable cursors only when connected to an Adaptive Server Enterprise database.

♦ Pure Java The jConnect driver is a pure Java solution. The iAnywhere JDBC driver requires the SQL
Anywhere ODBC driver and is not a pure Java solution.

♦ Performance The iAnywhere JDBC driver provides better performance for most purposes than the
jConnect driver.

♦ Compatibility The TDS protocol used by the jConnect driver is shared with Adaptive Server
Enterprise. Some aspects of the driver's behavior are governed by this protocol, and are configured to
be compatible with Adaptive Server Enterprise.

For information about platform availability for iAnywhere JDBC driver and jConnect, see the SQL
Anywhere table in SQL Anywhere Components by Platform.

For information about using jConnect with Windows CE, see “Using jConnect on Windows CE” [SQL
Anywhere Server - Database Administration].

JDBC program structure

The following sequence of events typically occurs in JDBC applications:

1. Create a Connection object Calling a getConnection class method of the DriverManager class
creates a Connection object, and establishes a connection with a database.

2. Generate a Statement object The Connection object generates a Statement object.

3. Pass a SQL statement A SQL statement that executes within the database environment is passed
to the Statement object. If the statement is a query, this action returns a ResultSet object.

The ResultSet object contains the data returned from the SQL statement, but exposes it one row at a
time (similar to the way a cursor works).

4. Loop over the rows of the result set The next method of the ResultSet object performs two actions:

♦ The current row (the row in the result set exposed through the ResultSet object) advances one row.

♦ A boolean value returns to indicate whether there is a row to advance to.

5. For each row, retrieve the values Values are retrieved for each column in the ResultSet object by
identifying either the name or position of the column. You can use the getData method to get the value
from a column on the current row.

Introduction to JDBC

Copyright © 2007, iAnywhere Solutions, Inc. 471

http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect
http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/components_platforms_1001.html
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Java objects can use JDBC objects to interact with a database and get data for their own use.

Differences between client- and server-side JDBC connections

A difference between JDBC on the client and in the database server lies in establishing a connection with
the database environment.

♦ Client side In client-side JDBC, establishing a connection requires the iAnywhere JDBC driver or the
jConnect JDBC driver. Passing arguments to DriverManager.getConnection establishes the connection.
The database environment is an external application from the perspective of the client application.

♦ Server-side When using JDBC within the database server, a connection already exists. The string
"jdbc:default:connection" is passed to DriverManager.getConnection, which allows the JDBC
application to work within the current user connection. This is a quick, efficient, and safe operation
because the client application has already passed the database security to establish the connection. The
user ID and password, having been provided once, do not need to be provided again. The server-side
JDBC driver can only connect to the database of the current connection.

You can write JDBC classes so that they can run both at the client and at the server by employing a single
conditional statement for constructing the URL. An external connection requires the host name and port
number, while the internal connection requires "jdbc:default:connection".

SQL Anywhere JDBC API

472 Copyright © 2007, iAnywhere Solutions, Inc.

Using the iAnywhere JDBC driver
The iAnywhere JDBC driver provides a JDBC driver that has some performance benefits and feature benefits
compared to the pure Java jConnect JDBC driver, but which is not a pure-Java solution. The iAnywhere
JDBC driver is recommended in most cases.

For information on choosing which JDBC driver to use, see “Choosing a JDBC driver” on page 470.

Loading the iAnywhere JDBC driver

Before you can use the iAnywhere JDBC driver in your application, you must load the appropriate driver.
Load the JDBC 3.0 version of the iAnywhere JDBC driver with the following statement:

DriverManager.registerDriver((Driver)
 Class.forName(
 "ianywhere.ml.jdbcodbc.jdbc3.IDriver").newInstance()
);

Load the JDBC 2.0 version of the iAnywhere JDBC driver with the following statement:

DriverManager.registerDriver((Driver)
 Class.forName(
 "ianywhere.ml.jdbcodbc.IDriver").newInstance()
);

Using the newInstance method works around issues in some browsers.

♦ As the classes are loaded using Class.forName, the package containing the iAnywhere JDBC driver does
not have to be imported using import statements.

♦ jodbc.jar must be in your classpath when you run the application.

set classpath=%classpath%;install-dir\java\jodbc.jar

Required files
The Java component of the iAnywhere JDBC driver is included in the jodbc.jar file installed into the Java
subdirectory of your SQL Anywhere installation. For Windows, the native component is dbjodbc10.dll in
the win32 subdirectory of your SQL Anywhere installation; for Unix, the native component is
dbjodbc10.so. This component must be in the system path. When deploying applications using this driver,
you must also deploy the ODBC driver files.

Supplying a URL to the driver

To connect to a database via the iAnywhere JDBC driver, you need to supply a URL for the database. For
example:

Connection con = DriverManager.getConnection(
 "jdbc:ianywhere:DSN=SQL Anywhere 10 Demo");

The URL contains jdbc:ianywhere: followed by a standard ODBC connection string. The connection string
is commonly an ODBC data source, but you can also use explicit individual connection parameters, separated

Using the iAnywhere JDBC driver

Copyright © 2007, iAnywhere Solutions, Inc. 473

by semicolons, in addition to or instead of the data source. For more information on the parameters that you
can use in a connection string, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

If you do not use a data source, you should specify the ODBC driver to use by including the DRIVER
parameter in your connection string:

Connection con = DriverManager.getConnection(
 "jdbc:ianywhere:DRIVER=SQL Anywhere 10;...");

SQL Anywhere JDBC API

474 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Using the jConnect JDBC driver
SQL Anywhere supports two versions of jConnect: jConnect 5.5 and jConnect 6.0.5. The jConnect driver
is available as a separate download from http://www.sybase.com/products/informationmanagement/
softwaredeveloperkit/jconnect. Documentation for jConnect can also be found on the same page.

If you want to use JDBC from an applet, you must use the jConnect JDBC driver to connect to SQL Anywhere
databases.

The jConnect driver files

SQL Anywhere supports the following versions of jConnect:

♦ jConnect 5.5
This version of jConnect is for developing JDK 1.2 applications. jConnect 5.5 is JDBC 2.0 compliant.
jConnect 5.5 is supplied as a JAR file named jconn2.jar.

♦ jConnect 6.0.5
This version of jConnect is for developing JDK 1.3 or later applications. jConnect 6.0.5 is JDBC 3.0
compliant. jConnect 6.0.5 is supplied as a JAR file named jconn3.jar.

Note
For the purposes of this documentation, all of the explanations and code samples provided assume that you
are developing JDK 1.5 applications, and using the jConnect 6.0.5 driver.

Setting the class path for jConnect
For your application to use jConnect, the jConnect classes must be in your class path at compile time and
run time, so that the Java compiler and Java runtime can locate the necessary files.

The following command adds the jConnect 6.0.5 driver to an existing CLASSPATH environment variable
where path is your SQL Anywhere installation directory.

set classpath=%classpath%;path\jConnect-6_0\classes\jconn3.jar

Importing the jConnect classes
The classes in jConnect are all in the com.sybase package.

If you are using jConnect 6.0.5, the classes are in com.sybase.jdbc3.jdbc. You must import these classes at
the beginning of each source file:

import com.sybase.jdbc3.jdbc.*

Installing jConnect system objects into a database

If you want to use jConnect to access system table information (database metadata), you must add the
jConnect system objects to your database.

Using the jConnect JDBC driver

Copyright © 2007, iAnywhere Solutions, Inc. 475

http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect
http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect

You can add the jConnect system objects to the database when creating, when upgrading, or at a later time.
If, at a later time, you update your jConnect with a newer version, you must also run the latest version of
jcatalog.sql.

You can install the jConnect system objects from Sybase Central or from Interactive SQL.

♦ To add jConnect system objects to a database (Sybase Central)

1. Connect to the database from Sybase Central as a DBA user.

2. In the left pane, select the database, and then from the File menu choose Upgrade Database.

The Upgrade Database wizard appears.

3. Follow the instructions in the wizard to add jConnect support to the database.

♦ To add jConnect system objects to a database (Interactive SQL)

• Connect to the database from Interactive SQL as a DBA user, and execute the following statement
(path is your SQL Anywhere installation directory):

READ path\scripts\jcatalog.sql

Tip
You can also add the jConnect system objects to a database from a command prompt by executing the
following command:

dbisql -c "connection-string" install-dir\scripts\jcatalog.sql

In this command, connection-string is a suitable connection string that enables access to a database and server
as a DBA user, and install-dir is your SQL Anywhere installation directory.

Loading the jConnect driver

Before you can use jConnect in your application, load the driver with the following statement:

DriverManager.registerDriver((Driver)
 Class.forName(
 "com.sybase.jdbc3.jdbc.SybDriver").newInstance()
);

Using the newInstance method works around issues in some browsers.

♦ As the classes are loaded using Class.forName, the package containing the jConnect driver does not have
to be imported using import statements.

♦ When using jConnect 5.5, jconn2.jar must be in your classpath when you run the application.
jconn2.jar is located in the classes subdirectory of your jConnect 5.5 installation.

♦ When using jConnect 6.0.5, jconn3.jar must be in your classpath when you run the application.
jconn3.jar is located in the classes subdirectory of your jConnect 6.0.5 installation.

SQL Anywhere JDBC API

476 Copyright © 2007, iAnywhere Solutions, Inc.

Supplying a URL to the driver

To connect to a database via jConnect, you need to supply a URL for the database. For example:

Connection con = DriverManager.getConnection(
 "jdbc:sybase:Tds:localhost:2638", "DBA", "sql");

The URL is composed in the following way:

jdbc:sybase:Tds:host:port

The individual components are:

♦ jdbc:sybase:Tds The Sybase jConnect JDBC driver, using the TDS application protocol.

♦ host The IP address or name of the computer on which the server is running. If you are establishing
a same-host connection, you can use localhost, which means the computer system you are logged into.

♦ port The port number on which the database server listens. The port number assigned to SQL
Anywhere is 2638. Use that number unless there are specific reasons not to do so.

The connection string must be less than 253 characters in length.

Specifying a database on a server

Each SQL Anywhere database server can have one or more databases loaded at a time. If the URL you supply
when connecting via jConnect specifies a server, but does not specify a database, then the connection attempt
is made to the default database on the server.

You can specify a particular database by providing an extended form of the URL in one of the following
ways.

Using the ServiceName parameter
jdbc:sybase:Tds:host:port?ServiceName=database

The question mark followed by a series of assignments is a standard way of providing arguments to a URL.
The case of ServiceName is not significant, and there must be no spaces around the = sign. The database
parameter is the database name, not the server name. The database name must not include the path or file
suffix. For example:

Connection con = DriverManager.getConnection(
 "jdbc:sybase:Tds:localhost:2638?ServiceName=demo", "DBA", "sql");

Using the RemotePWD parameter
A workaround exists for passing additional connection parameters to the server.

This technique allows you to provide additional connection parameters such as the database name, or a
database file, using the RemotePWD field. You set RemotePWD as a Properties field using the put method.

The following code illustrates how to use the field.

import java.util.Properties;
.

Using the jConnect JDBC driver

Copyright © 2007, iAnywhere Solutions, Inc. 477

.

.
DriverManager.registerDriver((Driver)
 Class.forName(
 "com.sybase.jdbc3.jdbc.SybDriver").newInstance()
);

Properties props = new Properties();
props.put("User", "DBA");
props.put("Password", "sql");
props.put("RemotePWD", ",DatabaseFile=mydb.db");

Connection con = DriverManager.getConnection(
 "jdbc:sybase:Tds:localhost:2638", props);

As shown in the example, a comma must precede the DatabaseFile connection parameter. Using the
DatabaseFile parameter, you can start a database on a server using jConnect. By default, the database is
started with autostop=YES. If you specify utility_db with a DatabaseFile (DBF) or DatabaseName (DBN)
connection parameter (for example, DBN=utility_db), then the utility database is started automatically.

For more information on the utility database, see “Using the utility database” [SQL Anywhere Server -
Database Administration].

Database options set for jConnect connections

When an application connects to the database using the jConnect driver, two stored procedures are called:

1. The sp_tsql_environment procedure sets some database options for compatibility with Adaptive Server
Enterprise behavior.

2. The sp_mda procedure is then called, and sets some other options. In particular, the sp_mda procedure
determines the quoted_identifier setting. To change the default behavior, you should modify the
insert dbo.spt_mda values ... statements in jcatalog.sql.

See also
♦ “sp_tsql_environment system procedure” [SQL Anywhere Server - SQL Reference]
♦ “quoted_identifier option [compatibility]” [SQL Anywhere Server - Database Administration]

SQL Anywhere JDBC API

478 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Connecting from a JDBC client application
Database metadata is always available when using the iAnywhere JDBC driver.

If you want to access database system tables (database metadata) from a JDBC application that uses jConnect,
you must add a set of jConnect system objects to your database. These procedures are installed to all databases
by default. The dbinit -i option prevents this installation.

For more information about adding the jConnect system objects to a database, see “Using the jConnect JDBC
driver” on page 475.

The following complete Java application is a command line application that connects to a running database,
prints a set of information to your command line, and terminates.

Establishing a connection is the first step any JDBC application must take when working with database data.

This example illustrates an external connection, which is a regular client/server connection. For information
on how to create an internal connection from Java classes running inside the database server, see
“Establishing a connection from a server-side JDBC class” on page 481.

Connection example code

The following is the source code for the methods used to make a connection. The source code can be found
in the file JDBCConnect.java in the samples-dir\SQLAnywhere\JDBC directory. As presented, the example
uses the JDBC 2.0 version of the iAnywhere JDBC driver to connect to the database. (To use the JDBC 3.0
version of the iAnywhere JDBC driver replace ianywhere.ml.jdbcodbc.IDriver with
ianywhere.ml.jdbcodbc.jdbc3.IDriver.) Code alternatives are included as comments in the
source code if you want to use the jConnect 6.0.5 driver.

import java.io.*;
import java.sql.*;
public class JDBCConnect
{
 public static void main(String args[])
 {
 try
 {
 // Open the connection. May throw a SQLException.
 DriverManager.registerDriver((Driver)
 Class.forName(
 // "com.sybase.jdbc3.jdbc.SybDriver").newInstance()
 "ianywhere.ml.jdbcodbc.IDriver").newInstance()
);
 Connection con = DriverManager.getConnection(
 // "jdbc:sybase:Tds:localhost:2638", "DBA", "sql");
 "jdbc:ianywhere:driver=SQL Anywhere 10;uid=DBA;pwd=sql");
 // Create a statement object, the container for the SQL
 // statement. May throw a SQLException.
 Statement stmt = con.createStatement();
 // Create a result set object by executing the query.
 // May throw a SQLException.
 ResultSet rs = stmt.executeQuery(
 "SELECT ID, GivenName, Surname FROM Customers");

Connecting from a JDBC client application

Copyright © 2007, iAnywhere Solutions, Inc. 479

 // Process the result set.
 while (rs.next())
 {
 int value = rs.getInt(1);
 String FirstName = rs.getString(2);
 String LastName = rs.getString(3);
 System.out.println(value+" "+FirstName+" "+LastName);
 }
 rs.close();
 stmt.close();
 con.close();
 }
 catch (SQLException sqe)
 {
 System.out.println("Unexpected exception : " +
 sqe.toString() + ", sqlstate = " +
 sqe.getSQLState());
 System.exit(1);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }
}

How the connection example works
The external connection example is a Java command line application.

Importing packages
The application requires a couple of packages, which are imported in the first lines of JDBCConnect.java:

♦ The java.io package contains the Sun Microsystems io classes, which are required for printing to the
console.

♦ The java.sql package contains the Sun Microsystems JDBC classes, which are required for all JDBC
applications.

The main method
Each Java application requires a class with a method named main, which is the method invoked when the
program starts. In this simple example, JDBCConnect.main is the only public method in the application.

The JDBCConnect.main method carries out the following tasks:

1. Loads the iAnywhere JDBC driver. To load the jConnect 6.0.5 JDBC driver instead, use the driver
string "com.sybase.jdbc3.jdbc.SybDriver" (as shown in comments).

Class.forName loads the driver. Using the newInstance method works around issues in some browsers.

SQL Anywhere JDBC API

480 Copyright © 2007, iAnywhere Solutions, Inc.

2. Connects to the default running database using an iAnywhere JDBC driver URL. If you are using the
jConnect driver instead, use the URL "jdbc:sybase:Tds:localhost:2638" (as shown in comments) with
"DBA" and "sql" as the user ID and password, respectively.

DriverManager.getConnection establishes a connection using the specified URL.

3. Creates a statement object, which is the container for the SQL statement.

4. Creates a result set object by executing a SQL query.

5. Iterates through the result set, printing the column information.

6. Closes each of the result set, statement, and connection objects.

Running the connection example

♦ To create and execute the external connection example application

1. At a command prompt, change to the samples-dir\SQLAnywhere\JDBC directory.

2. Start a database server with the sample database on your local computer using the following command:

dbeng10 samples-dir\demo.db
3. Set the CLASSPATH environment variable.

set classpath=%classpath%;install-dir\java\jodbc.jar

If you are using the jConnect driver instead, then use the following (where path is your jConnect
installation directory):

set classpath=%classpath%;path\jconnect-6_0\classes\jconn3.jar;
4. Enter the following to compile the example:

javac JDBCConnect.java
5. Enter the following to run the example:

java JDBCConnect
6. Confirm that a list of identification numbers with customer's names appears at the command prompt.

If the attempt to connect fails, an error message appears instead. Confirm that you have executed all
the steps as required. Check that your class path is correct. An incorrect setting may result in a failure
to locate a class.

Establishing a connection from a server-side JDBC class

SQL statements in JDBC are built using the createStatement method of a Connection object. Even classes
running inside the server need to establish a connection to create a Connection object.

Connecting from a JDBC client application

Copyright © 2007, iAnywhere Solutions, Inc. 481

Establishing a connection from a server-side JDBC class is more straightforward than establishing an external
connection. Because the user is already connected to the database, the class simply uses the current
connection.

Server-side connection example code

The following is the source code for the server-side connection example. It is a modified version of the
source code in samples-dir\SQLAnywhere\JDBC\JDBCConnect.java.

import java.io.*;
import java.sql.*;
public class JDBCConnect2
{
 public static void main(String args[])
 {
 try
 {
 // Open the connection. May throw a SQLException.
 Connection con = DriverManager.getConnection(
 "jdbc:default:connection");
 // Create a statement object, the container for the SQL
 // statement. May throw a SQLException.
 Statement stmt = con.createStatement();
 // Create a result set object by executing the query.
 // May throw a SQLException.
 ResultSet rs = stmt.executeQuery(
 "SELECT ID, GivenName, Surname FROM Customers");
 // Process the result set.
 while (rs.next())
 {
 int value = rs.getInt(1);
 String FirstName = rs.getString(2);
 String LastName = rs.getString(3);
 System.out.println(value+" "+FirstName+" "+LastName);
 }
 rs.close();
 stmt.close();
 con.close();
 }
 catch (SQLException sqe)
 {
 System.out.println("Unexpected exception : " +
 sqe.toString() + ", sqlstate = " +
 sqe.getSQLState());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

SQL Anywhere JDBC API

482 Copyright © 2007, iAnywhere Solutions, Inc.

How the server-side connection example differs

The server-side connection example is almost identical to the client-side connection example, with the
following exceptions:

1. The driver manager does not need to be loaded. The following code has been removed from the example.

DriverManager.registerDriver((Driver)
 Class.forName(
 // "com.sybase.jdbc3.jdbc.SybDriver").newInstance()
 "ianywhere.ml.jdbcodbc.IDriver").newInstance()
);

2. It connects to the default running database using the current connection. The URL in the getConnection
call has been changed as follows:

Connection con = DriverManager.getConnection(
 "jdbc:default:connection");

3. The System.exit() statements have been removed.

Running the server-side connection example

♦ To create and execute the internal connection example application

1. At a command prompt, change to the samples-dir\SQLAnywhere\JDBC directory.

2. Start a database server with the sample database on your local computer using the following command:

dbeng10 samples-dir\demo.db
3. For server-side JDBC, it is not necessary to set the CLASSPATH environment variable.

4. Enter the following command to compile the example:

javac JDBCConnect2.java
5. Install the class into the sample database using Interactive SQL. Run the following statement:

INSTALL JAVA NEW
FROM FILE 'samples-dir\SQLAnywhere\JDBC\JDBCConnect2.class'

You can also install the class using Sybase Central. While connected to the sample database, open the
Java Objects folder and choose File ► New ► Java Class. Then follow the instructions in the wizard.

6. Define a stored procedure named JDBCConnect that acts as a wrapper for the JDBCConnect2.main
method in the class:

CREATE PROCEDURE JDBCConnect()
 EXTERNAL NAME 'JDBCConnect2.main([Ljava/lang/String;)V'
 LANGUAGE JAVA;

7. Call the JDBCConnect2.main method as follows:

call JDBCConnect();

Connecting from a JDBC client application

Copyright © 2007, iAnywhere Solutions, Inc. 483

The first time a Java class is called in a session, the Java VM must be loaded. This might take a few
seconds.

8. Confirm that a list of identification numbers with customers' names appears in the Server Messages
window.

If the attempt to connect fails, an error message appears instead. Confirm that you have executed all
the steps as required.

Notes on JDBC connections

♦ Autocommit behavior The JDBC specification requires that, by default, a COMMIT is performed
after each data modification statement. Currently, the client-side JDBC behavior is to commit
(autocommit is true) and the server-side behavior is to not commit (autocommit is false). To obtain the
same behavior in both client-side and server-side applications, you can use a statement such as the
following:

con.setAutoCommit(false);

In this statement, con is the current connection object. You could also set autocommit to true.

♦ Connection defaults From server-side JDBC, only the first call to getConnection
("jdbc:default:connection") creates a new connection with the default values. Subsequent
calls return a wrapper of the current connection with all connection properties unchanged. If you set
autocommit to false in your initial connection, any subsequent getConnection calls within the same Java
code return a connection with autocommit set to false.

You may want to ensure that closing a connection restores the connection properties to their default
values, so that subsequent connections are obtained with standard JDBC values. The following code
achieves this:

Connection con =
 DriverManager.getConnection("jdbc:default:connection");
boolean oldAutoCommit = con.getAutoCommit();
try {
 // main body of code here
}
finally {
 con.setAutoCommit(oldAutoCommit);
}

This discussion applies not only to autocommit, but also to other connection properties such as transaction
isolation level and read-only mode.

For more information about the getTransactionIsolation, setTransactionIsolation, and isReadOnly
methods, see documentation on the java.sql.Connection interface.

SQL Anywhere JDBC API

484 Copyright © 2007, iAnywhere Solutions, Inc.

Using JDBC to access data
Java applications that hold some or all classes in the database have significant advantages over traditional
SQL stored procedures. At an introductory level, however, it may be helpful to use the parallels with SQL
stored procedures to demonstrate the capabilities of JDBC. In the following examples, you write Java classes
that insert a row into the Departments table.

As with other interfaces, SQL statements in JDBC can be either static or dynamic. Static SQL statements
are constructed in the Java application and sent to the database. The database server parses the statement,
selects an execution plan, and executes the statement. Together, parsing and selecting an execution plan are
referred to as preparing the statement.

If a similar statement has to be executed many times (many inserts into one table, for example), there can
be significant overhead in static SQL because the preparation step has to be executed each time.

In contrast, a dynamic SQL statement contains placeholders. The statement, prepared once using these
placeholders, can be executed many times without the additional expense of preparing. Dynamic SQL is
discussed in “Using prepared statements for more efficient access” on page 487.

Preparing for the examples

Sample code
The code fragments in this section are taken from the complete class in samples-dir\SQLAnywhere\JDBC
\JDBCExample.java.

♦ To install the JDBCExample class

1. Compile the JDBCExample.java source code.

2. Using Interactive SQL, connect to the sample database as the DBA.

3. Install the JDBCExample.class file into the sample database by executing the following statement in
Interactive SQL (samples-dir represents the SQL Anywhere samples directory):

INSTALL JAVA NEW
FROM FILE 'samples-dir\SQLAnywhere\JDBC\JDBCExample.class'

You can also install the class using Sybase Central. While connected to the sample database, open the
Java Objects folder and then choose File ► New ► Java Class. Follow the instructions in the wizard.

Inserts, updates, and deletes using JDBC

The Statement object executes static SQL statements. You execute SQL statements such as INSERT,
UPDATE, and DELETE, which do not return result sets, using the executeUpdate method of the Statement
object. Statements, such as CREATE TABLE and other data definition statements, can also be executed
using executeUpdate.

Using JDBC to access data

Copyright © 2007, iAnywhere Solutions, Inc. 485

The following code fragment illustrates how to execute an INSERT statement. It uses a Statement object
that has been passed to the InsertStatic method as an argument.

public static void InsertStatic(Statement stmt)
{
 try
 {
 int iRows = stmt.executeUpdate(
 "INSERT INTO Departments (DepartmentID, DepartmentName)"
 + " VALUES (201, 'Eastern Sales')");
 // Print the number of rows inserted
 System.out.println(iRows + " rows inserted");
 }
 catch (SQLException sqe)
 {
 System.out.println("Unexpected exception : " +
 sqe.toString() + ", sqlstate = " +
 sqe.getSQLState());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}

Source code available
This code fragment is part of the JDBCExample class included in the samples-dir\SQLAnywhere\JDBC
directory.

Notes
♦ The executeUpdate method returns an integer that reflects the number of rows affected by the operation.

In this case, a successful INSERT would return a value of one (1).

♦ When run as a server-side class, the output from System.out.println goes to the Server Messages
window.

♦ To run the JDBC Insert example

1. Using Interactive SQL, connect to the sample database as the DBA.

2. Ensure the JDBCExample class has been installed.

For more information about installing the Java examples classes, see “Preparing for the
examples” on page 485.

3. Define a stored procedure named JDBCExample that acts as a wrapper for the JDBCExample.main
method in the class:

CREATE PROCEDURE JDBCExample(IN arg CHAR(50))
 EXTERNAL NAME 'JDBCExample.main([Ljava/lang/String;)V'
 LANGUAGE JAVA;

4. Call the JDBCExample.main method as follows:

SQL Anywhere JDBC API

486 Copyright © 2007, iAnywhere Solutions, Inc.

CALL JDBCExample('insert');

The argument string 'insert' causes the InsertStatic method to be invoked.

5. Confirm that a row has been added to the Departments table.

SELECT * FROM Departments;

The example program displays the updated contents of the Departments table in the Server Messages
window.

6. There is a similar method in the example class called DeleteStatic that shows how to delete the row
that has just been added. Call the JDBCExample.main method as follows:

CALL JDBCExample('delete');

The argument string 'delete' causes the DeleteStatic method to be invoked.

7. Confirm that the row has been deleted from the Departments table.

SELECT * FROM Departments;

The example program displays the updated contents of the Departments table in the Server Messages
window.

Using prepared statements for more efficient access

If you use the Statement interface, you parse each statement that you send to the database, generate an access
plan, and execute the statement. The steps prior to actual execution are called preparing the statement.

You can achieve performance benefits if you use the PreparedStatement interface. This allows you to prepare
a statement using placeholders, and then assign values to the placeholders when executing the statement.

Using prepared statements is particularly useful when carrying out many similar actions, such as inserting
many rows.

For more information about prepared statements, see “Preparing statements” on page 22.

Example
The following example illustrates how to use the PreparedStatement interface, although inserting a single
row is not a good use of prepared statements.

The following InsertDynamic method of the JDBCExample class carries out a prepared statement:

public static void InsertDynamic(Connection con,
 String ID, String name)
{
 try {
 // Build the INSERT statement
 String sqlStr = "INSERT INTO Departments " +
 "(DepartmentID, DepartmentName) " +
 "VALUES (? , ?)";
 // Prepare the statement
 PreparedStatement stmt =

Using JDBC to access data

Copyright © 2007, iAnywhere Solutions, Inc. 487

 con.prepareStatement(sqlStr);
 // Set some values
 int idValue = Integer.valueOf(ID);
 stmt.setInt(1, idValue);
 stmt.setString(2, name);
 // Execute the statement
 int iRows = stmt.executeUpdate();
 // Print the number of rows inserted
 System.out.println(iRows + " rows inserted");
 }
 catch (SQLException sqe)
 {
 System.out.println("Unexpected exception : " +
 sqe.toString() + ", sqlstate = " +
 sqe.getSQLState());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}

Source code available
This code fragment is part of the JDBCExample class included in the samples-dir\SQLAnywhere\JDBC
directory.

Notes
♦ The executeUpdate method returns an integer that reflects the number of rows affected by the operation.

In this case, a successful INSERT would return a value of one (1).

♦ When run as a server-side class, the output from System.out.println goes to the Server Messages
window.

♦ To run the JDBC Insert example

1. Using Interactive SQL, connect to the sample database as the DBA.

2. Ensure the JDBCExample class has been installed.

For more information about installing the Java examples classes, see “Preparing for the
examples” on page 485.

3. Define a stored procedure named JDBCInsert that acts as a wrapper for the JDBCExample.Insert
method in the class:

CREATE PROCEDURE JDBCInsert(IN arg1 INTEGER, IN arg2 CHAR(50))
 EXTERNAL NAME 'JDBCExample.Insert(ILjava/lang/String;)V'
 LANGUAGE JAVA;

4. Call the JDBCExample.Insert method as follows:

CALL JDBCInsert(202, 'Southeastern Sales');

SQL Anywhere JDBC API

488 Copyright © 2007, iAnywhere Solutions, Inc.

The Insert method causes the InsertDynamic method to be invoked.

5. Confirm that a row has been added to the Departments table.

SELECT * FROM Departments;

The example program displays the updated contents of the Departments table in the Server Messages
window.

6. There is a similar method in the example class called DeleteDynamic that shows how to delete the row
that has just been added.

Define a stored procedure named JDBCDelete that acts as a wrapper for the JDBCExample.Delete
method in the class:

CREATE PROCEDURE JDBCDelete(in arg1 integer)
 EXTERNAL NAME 'JDBCExample.Delete(I)V'
 LANGUAGE JAVA;

7. Call the JDBCExample.Delete method as follows:

CALL JDBCDelete(202);

The Delete method causes the DeleteDynamic method to be invoked.

8. Confirm that the row has been deleted from the Departments table.

SELECT * FROM Departments;

The example program displays the updated contents of the Departments table in the Server Messages
window.

Returning result sets

This section describes how to make one or more result sets available from Java methods.

You must write a Java method that returns one or more result sets to the calling environment, and wrap this
method in a SQL stored procedure. The following code fragment illustrates how multiple result sets can be
returned to the calling SQL code. It uses three executeQuery statements to obtain three different result sets.

public static void Results(ResultSet[] rset)
 throws SQLException
{
 // Demonstrate returning multiple result sets
 Connection con = DriverManager.getConnection(
 "jdbc:default:connection");
 rset[0] = con.createStatement().executeQuery(
 "SELECT * FROM Employees" +
 " ORDER BY EmployeeID");
 rset[1] = con.createStatement().executeQuery(
 "SELECT * FROM Departments" +
 " ORDER BY DepartmentID");
 rset[2] = con.createStatement().executeQuery(
 "SELECT i.ID,i.LineID,i.ProductID,i.Quantity," +
 " s.OrderDate,i.ShipDate," +
 " s.Region,e.GivenName||' '||e.Surname" +

Using JDBC to access data

Copyright © 2007, iAnywhere Solutions, Inc. 489

 " FROM SalesOrderItems AS i" +
 " JOIN SalesOrders AS s" +
 " JOIN Employees AS e" +
 " WHERE s.ID=i.ID" +
 " AND s.SalesRepresentative=e.EmployeeID");
 con.close();
}

Source code available
This code fragment is part of the JDBCExample class included in the samples-dir\SQLAnywhere\JDBC
directory.

Notes
♦ This server-side JDBC example connects to the default running database using the current connection

using getConnection.

♦ The executeQuery methods return result sets.

♦ To run the JDBC result set example

1. Using Interactive SQL, connect to the sample database as the DBA.

2. Ensure the JDBCExample class has been installed.

For more information about installing the Java examples classes, see “Preparing for the
examples” on page 485.

3. Define a stored procedure named JDBCResults that acts as a wrapper for the JDBCExample.Results
method in the class:

CREATE PROCEDURE JDBCResults()
 DYNAMIC RESULT SETS 3
 EXTERNAL NAME 'JDBCExample.Results([Ljava/sql/ResultSet;)V'
 LANGUAGE JAVA;

4. Set the following Interactive SQL options so you can see all the results of the query:

a. From the Tools menu, choose Options.

The Options dialog appears.

b. Click Results.

c. Set the value for Maximum Number of Rows to Display to 5000.

d. Select Show Multiple Result Sets.

e. Click OK.

5. Call the JDBCExample.Results method as follows:

CALL JDBCResults();
6. Check each of the three results tabs, Result Set 1, Result Set 2, and Result Set 3.

SQL Anywhere JDBC API

490 Copyright © 2007, iAnywhere Solutions, Inc.

Miscellaneous JDBC notes

♦ Access permissions Like all Java classes in the database, classes containing JDBC statements can
be accessed by any user provided that the GRANT EXECUTE statement has granted them permission
to execute the stored procedure that is acting as a wrapper for the Java method.

♦ Execution permissions Java classes are executed with the permissions of the connection executing
them. This behavior is different from that of stored procedures, which execute with the permissions of
the owner.

Using JDBC to access data

Copyright © 2007, iAnywhere Solutions, Inc. 491

Using JDBC escape syntax
You can use JDBC escape syntax from any JDBC application, including Interactive SQL. This escape syntax
allows you to call stored procedures regardless of the database management system you are using. The
general form for the escape syntax is

{{ keyword parameters }}

In Interactive SQL, the braces must be doubled. There must not be a space between successive braces: "{{"
is acceptable, but "{ {" is not. As well, you cannot use newline characters in the statement. The escape syntax
cannot be used in stored procedures because they are not executed by Interactive SQL.

You can use the escape syntax to access a library of functions implemented by the JDBC driver that includes
number, string, time, date, and system functions.

For example, to obtain the name of the current user in a database management system-neutral way, you
would execute the following:

SELECT {{ FN USER() }}

The functions that are available depend on the JDBC driver that you are using. The following tables list the
functions that are supported by the iAnywhere JDBC driver and by the jConnect driver.

iAnywhere JDBC driver supported functions

Numeric functions String functions System functions Time/date functions

ABS ASCII IFNULL CURDATE

ACOS CHAR USERNAME CURTIME

ASIN CONCAT DAYNAME

ATAN DIFFERENCE DAYOFMONTH

ATAN2 INSERT DAYOFWEEK

CEILING LCASE DAYOFYEAR

COS LEFT HOUR

COT LENGTH MINUTE

DEGREES LOCATE MONTH

EXP LOCATE_2 MONTHNAME

FLOOR LTRIM NOW

LOG REPEAT QUARTER

LOG10 RIGHT SECOND

SQL Anywhere JDBC API

492 Copyright © 2007, iAnywhere Solutions, Inc.

Numeric functions String functions System functions Time/date functions

MOD RTRIM WEEK

PI SOUNDEX YEAR

POWER SPACE

RADIANS SUBSTRING

RAND UCASE

ROUND

SIGN

SIN

SQRT

TAN

TRUNCATE

jConnect supported functions

Numeric functions String functions System functions Time/date functions

ABS ASCII DATABASE CURDATE

ACOS CHAR IFNULL CURTIME

ASIN CONCAT USER DAYNAME

ATAN DIFFERENCE CONVERT DAYOFMONTH

ATAN2 LCASE DAYOFWEEK

CEILING LENGTH HOUR

COS REPEAT MINUTE

COT RIGHT MONTH

DEGREES SOUNDEX MONTHNAME

EXP SPACE NOW

FLOOR SUBSTRING QUARTER

LOG UCASE SECOND

LOG10 TIMESTAMPADD

Using JDBC escape syntax

Copyright © 2007, iAnywhere Solutions, Inc. 493

Numeric functions String functions System functions Time/date functions

PI TIMESTAMPDIFF

POWER YEAR

RADIANS

RAND

ROUND

SIGN

SIN

SQRT

TAN

A statement using the escape syntax should work in SQL Anywhere, Adaptive Server Enterprise, Oracle,
SQL Server, or another database management system to which you are connected.

For example, to obtain database properties with the sa_db_info procedure using SQL escape syntax, you
would execute the following in Interactive SQL:

{{CALL sa_db_info(0) }}

SQL Anywhere JDBC API

494 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 13

SQL Anywhere Embedded SQL

Contents
Introduction to embedded SQL .. 496
Sample embedded SQL programs .. 502
Embedded SQL data types ... 507
Using host variables .. 511
The SQL Communication Area (SQLCA) .. 519
Static and dynamic SQL .. 525
The SQL descriptor area (SQLDA) .. 529
Fetching data ... 537
Sending and retrieving long values ... 545
Using simple stored procedures .. 549
Embedded SQL programming techniques .. 552
SQL preprocessor ... 553
Library function reference .. 557
Embedded SQL command summary .. 578

Copyright © 2007, iAnywhere Solutions, Inc. 495

Introduction to embedded SQL
Embedded SQL is a database programming interface for the C and C++ programming languages. It consists
of SQL statements intermixed with (embedded in) C or C++ source code. These SQL statements are
translated by a SQL preprocessor into C or C++ source code, which you then compile.

At runtime, embedded SQL applications use a SQL Anywhere interface library to communicate with a
database server. The interface library is a dynamic link library (DLL) or shared library on most platforms.

♦ On Windows operating systems, the interface library is dblib10.dll.

♦ On Unix operating systems, the interface library is libdblib10.so, libdblib10.sl, or libdblib10.a,
depending on the operating system.

♦ On Mac OS X, the interface library is libdblib10.dylib.1.

SQL Anywhere provides two flavors of embedded SQL. Static embedded SQL is simpler to use, but is less
flexible than dynamic embedded SQL.

Development process overview

C Source Code

SQL
Preprocessor

C Compiler

Linker

Custom
Application DLL

DLL Import
Library

Database

SQL Anywhere Embedded SQL

496 Copyright © 2007, iAnywhere Solutions, Inc.

Once the program has been successfully preprocessed and compiled, it is linked with the import library for
the SQL Anywhere interface library to form an executable file. When the database server is running, this
executable file uses the SQL Anywhere DLL to interact with the database server. The database server does
not have to be running when the program is preprocessed.

For Windows, there are separate import libraries for Watcom C/C++, for Microsoft Visual C++, and for
Borland C++.

Using import libraries is the standard development method for applications that call functions in DLLs. SQL
Anywhere also provides an alternative, and recommended method which avoids the use of import libraries.
For more information, see “Loading the interface library dynamically” on page 500.

Running the SQL preprocessor

The SQL preprocessor is an executable named sqlpp.exe.

The SQLPP command line is as follows:

sqlpp [options] sql-filename [output-filename]

The SQL preprocessor processes a C program with embedded SQL before the C or C++ compiler is run.
The preprocessor translates the SQL statements into C/C++ language source that is put into the output file.
The normal extension for source programs with embedded SQL is .sqc. The default output file name is the
sql-filename with an extension of .c. If the sql-filename already has a .c extension, then the output file name
extension is .cc by default.

For a full listing of the command line options, see “SQL preprocessor” on page 553.

Supported compilers

The C language SQL preprocessor has been used in conjunction with the following compilers:

Operating system Compiler Version

Windows Watcom C/C++ 9.5 and above

Windows Microsoft Visual C++ 6.0 and above

Windows Borland C++ 4.5

Windows CE Microsoft Visual C++ 2005

Windows CE Microsoft eMbedded Visual C++ 3.0, 4.0

Unix GNU or native compiler

NetWare Watcom C/C++ 10.6, 11

For instructions on building NetWare NLMs, see “Building NetWare Loadable Modules” on page 501.

Introduction to embedded SQL

Copyright © 2007, iAnywhere Solutions, Inc. 497

Embedded SQL header files

All header files are installed in the h subdirectory of your SQL Anywhere installation directory.

File name Description

sqlca.h Main header file included in all embedded SQL programs. This file includes the
structure definition for the SQL Communication Area (SQLCA) and prototypes
for all embedded SQL database interface functions.

sqlda.h SQL Descriptor Area structure definition included in embedded SQL programs
that use dynamic SQL.

sqldef.h Definition of embedded SQL interface data types. This file also contains structure
definitions and return codes needed for starting the database server from a C
program.

sqlerr.h Definitions for error codes returned in the sqlcode field of the SQLCA.

sqlstate.h Definitions for ANSI/ISO SQL standard error states returned in the sqlstate field
of the SQLCA.

pshpk1.h, pshpk2.h,
poppk.h

These headers ensure that structure packing is handled correctly.

Import libraries

All import libraries are installed in the lib subdirectory, under the operating system subdirectory of the SQL
Anywhere installation directory. For example, Windows import libraries are stored in the win32\lib, x64
\lib, and the ia64\lib subdirectories. Windows CE import libraries are installed in the lib subdirectories of
the respective platform-dependent directories, for example, ce\arm.50.

Operating system Compiler Import library

Windows Watcom C/C++ (32-bit only) dblibtw.lib

Windows Microsoft Visual C++ dblibtm.lib

Windows Borland Delphi (32-bit only) dblibtb.lib

Windows CE Microsoft Visual C++ 2005 dblib10.lib

Windows CE Microsoft eMbedded Visual C++ dblib10.lib

NetWare Watcom C/C++ dblib10.lib

Solaris (unthreaded applications) All compilers libdblib10.so,
libdbtasks10.so

Solaris (threaded applications) All compilers libdblib10_r.so,
libdbtasks10_r.so

SQL Anywhere Embedded SQL

498 Copyright © 2007, iAnywhere Solutions, Inc.

The libdbtasks10 libraries are called by the libdblib10 library. Some compilers locate libdbtasks10
automatically, while for others you need to specify it explicitly.

A simple example

The following is a very simple example of an embedded SQL program.

#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main()
{
 db_init(&sqlca);
 EXEC SQL WHENEVER SQLERROR GOTO error;
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "sql";
 EXEC SQL UPDATE Employees
 SET Surname = 'Plankton'
 WHERE EmployeeID = 195;
 EXEC SQL COMMIT WORK;
 EXEC SQL DISCONNECT;
 db_fini(&sqlca);
 return(0);
error:
 printf("update unsuccessful -- sqlcode = %ld\n",
 sqlca.sqlcode);
 db_fini(&sqlca);
 return(-1);
}

This example connects to the database, updates the last name of employee number 195, commits the change,
and exits. There is virtually no interaction between the SQL and C code. The only thing the C code is used
for in this example is control flow. The WHENEVER statement is used for error checking. The error action
(GOTO in this example) is executed after any SQL statement that causes an error.

For a description of fetching data, see “Fetching data” on page 537.

Structure of embedded SQL programs

SQL statements are placed (embedded) within regular C or C++ code. All embedded SQL statements start
with the words EXEC SQL and end with a semicolon (;). Normal C language comments are allowed in the
middle of embedded SQL statements.

Every C program using embedded SQL must contain the following statement before any other embedded
SQL statements in the source file.

EXEC SQL INCLUDE SQLCA;

The first embedded SQL statement executed by the C program must be a CONNECT statement. The
CONNECT statement is used to establish a connection with the database server and to specify the user ID
that is used for authorizing all statements executed during the connection.

Introduction to embedded SQL

Copyright © 2007, iAnywhere Solutions, Inc. 499

Some embedded SQL commands do not generate any C code, or do not involve communication with the
database. These commands are thus allowed before the CONNECT statement. Most notable are the
INCLUDE statement and the WHENEVER statement for specifying error processing.

Loading the interface library dynamically

The usual practice for developing applications that use functions from DLLs is to link the application against
an import library, which contains the required function definitions.

This section describes an alternative to using an import library for developing SQL Anywhere applications.
The SQL Anywhere interface library can be loaded dynamically, without having to link against the import
library, using the esqldll.c module in the src subdirectory of your installation directory.

♦ To load the interface DLL dynamically

1. Your program must call db_init_dll to load the DLL, and must call db_fini_dll to free the DLL. The
db_init_dll call must be before any function in the database interface, and no function in the interface
can be called after db_fini_dll.

You must still call the db_init and db_fini library functions.

2. You must #include the esqldll.h header file before the EXEC SQL INCLUDE SQLCA statement or
#include <sqlca.h> line in your embedded SQL program.

3. A SQL OS macro must be defined. The header file sqlca.h, which is included by esqdll.c, attempts to
determine the appropriate macro and define it. However, certain combinations of platforms and
compilers may cause this to fail. In this case, you must add a #define to the top of this file, or make the
definition using a compiler option.

Macro Platforms

_SQL_OS_NETWARE NetWare

_SQL_OS_UNIX Unix

_SQL_OS_UNIX64 64-bit Unix

_SQL_OS_WINDOWS All Windows operating systems

4. Compile esqldll.c.

5. Instead of linking against the imports library, link the object module esqldll.obj with your embedded
SQL application objects.

Sample
You can find a sample program illustrating how to load the interface library dynamically in the samples-dir
\SQLAnywhere\ESQLDynamicLoad directory. The source code is in sample.sqc.

SQL Anywhere Embedded SQL

500 Copyright © 2007, iAnywhere Solutions, Inc.

Building NetWare Loadable Modules

You must use the Watcom C/C++ compiler, version 10.6 or 11.0, to compile embedded SQL programs as
NetWare Loadable Modules (NLM).

♦ To create an embedded SQL NLM

1. On Windows, preprocess the embedded SQL file using the following command:

sqlpp -o NETWARE srcfile.sqc

This instruction creates a file with .c extension.

2. Compile file.c using the Watcom compiler (10.6 or 11.0), using the /bt=netware option.

3. Link the resulting object file using the Watcom linker with the following options:

FORMAT NOVELL
MODULE dblib10
OPTION CASEEXACT
IMPORT @dblib10.imp
LIBRARY dblib10.lib

The files dblib10.imp and dblib10.lib are shipped with SQL Anywhere, in the nlm\lib directory. The
IMPORT and LIBRARY lines may require a full path.

Introduction to embedded SQL

Copyright © 2007, iAnywhere Solutions, Inc. 501

Sample embedded SQL programs
Sample embedded SQL programs are included with the SQL Anywhere installation. They are placed in the
samples-dir\SQLAnywhere\C directory. For Windows CE, an additional example is located in the samples-
dir\SQLAnywhere\CE\esql_sample directory.

♦ The static cursor embedded SQL example, cur.sqc, demonstrates the use of static SQL statements.

♦ The dynamic cursor embedded SQL example, dcur.sqc, demonstrates the use of dynamic SQL
statements.

To reduce the amount of code that is duplicated by the sample programs, the mainlines and the data printing
functions have been placed into a separate file. This is mainch.c for character mode systems and
mainwin.c for windowing environments.

The sample programs each supply the following three routines, which are called from the mainlines:

♦ WSQLEX_Init Connects to the database and opens the cursor.

♦ WSQLEX_Process_Command Processes commands from the user, manipulating the cursor as
necessary.

♦ WSQLEX_Finish Closes the cursor and disconnect from the database.

The function of the mainline is to:

1. Call the WSQLEX_Init routine

2. Loop, getting commands from the user and calling WSQL_Process_Command until the user quits

3. Call the WSQLEX_Finish routine

Connecting to the database is accomplished with the embedded SQL CONNECT command supplying the
appropriate user ID and password.

In addition to these samples, you may find other programs and source files as part of SQL Anywhere that
demonstrate features available for particular platforms.

Building the sample programs

Files to build the sample programs are supplied with the sample code.

♦ For Windows and NetWare operating systems, hosted on Windows operating systems, use
makeall.bat to compile the sample programs.

♦ For Unix, use the shell script makeall.

♦ For Windows CE, use the esql_sample.sln project file for Microsoft Visual C++. This file appears in
samples-dir\SQLAnywhere\CE\esql_sample.

SQL Anywhere Embedded SQL

502 Copyright © 2007, iAnywhere Solutions, Inc.

The format of the command is as follows:

makeall {Example} {Platform} {Compiler}

The first parameter is the name of the example program that you want to compile. It is one of the following:

♦ CUR static cursor example

♦ DCUR dynamic cursor example

♦ ODBC ODBC example

The second parameter is the target platform. It is one of the following:

♦ WINDOWS compile for Windows

♦ WINIA64 compile for Windows

♦ WINX64 compile for Windows

♦ NETWARE compile for NetWare NLM

♦ UNIX compile for Unix

♦ UNIX64 compile for 64-bit Unix

The third parameter is the compiler to use to compile the program. The compiler can be one of:

♦ WC use Watcom C/C++

♦ MC use Microsoft C/C++

♦ BC use Borland C++

For x64 or IA64 platform builds, you may need to set up the correct environment for compiling and linking.
Here is an example that builds the dynamic cursor example for an x64 platform.

c:\x64sdk\SetEnv /XP64
makeall dcur winx64 mc

Running the sample programs

The executable files and corresponding source code are located in the samples-dir\SQLAnywhere\C
directory. For Windows CE, an additional example is located in the samples-dir\SQLAnywhere\CE
\esql_sample directory.

♦ To run the static cursor sample program

1. Start the SQL Anywhere sample database, demo.db.

2. Run the file curwnt.exe.

3. Follow the on-screen instructions.

Sample embedded SQL programs

Copyright © 2007, iAnywhere Solutions, Inc. 503

The various commands manipulate a database cursor and print the query results on the screen. Enter
the letter of the command you want to perform. Some systems may require you to press Enter after the
letter.

♦ To run the dynamic cursor sample program

1. Run the file dcurwnt.exe.

2. Each sample program presents a console-type user interface and prompts you for a command. Enter
the following connection string to connect to the sample database:

DSN=SQL Anywhere 10 Demo
3. Each sample program prompts you for a table. Choose one of the tables in the sample database. For

example, you can enter Customers or Employees.

4. Follow the on-screen instructions.

The various commands manipulate a database cursor and print the query results on the screen. Enter
the letter of the command you want to perform. Some systems may require you to press Enter after the
letter.

Windows samples
The Windows versions of the example programs use the Windows graphical user interface. However, to
keep the user interface code relatively simple, some simplifications have been made. In particular, these
applications do not repaint their Windows on WM_PAINT messages except to reprint the prompt.

Static cursor sample

This example demonstrates the use of cursors. The particular cursor used here retrieves certain information
from the Employees table in the sample database. The cursor is declared statically, meaning that the actual
SQL statement to retrieve the information is hard coded into the source program. This is a good starting
point for learning how cursors work. The Dynamic Cursor sample takes this first example and converts it to
use dynamic SQL statements. See “Dynamic cursor sample” on page 505.

For information on where the source code can be found and how to build this example program, see “Sample
embedded SQL programs” on page 502.

The open_cursor routine both declares a cursor for the specific SQL command and also opens the cursor.

Printing a page of information is accomplished by the print routine. It loops pagesize times, fetching a single
row from the cursor and printing it out. Note that the fetch routine checks for warning conditions (such as
Row not found) and prints appropriate messages when they arise. In addition, the cursor is repositioned
by this program to the row before the one that appears at the top of the current page of data.

The move, top, and bottom routines use the appropriate form of the FETCH statement to position the cursor.
Note that this form of the FETCH statement doesn't actually get the data—it only positions the cursor. Also,
a general relative positioning routine, move, has been implemented to move in either direction depending
on the sign of the parameter.

SQL Anywhere Embedded SQL

504 Copyright © 2007, iAnywhere Solutions, Inc.

When the user quits, the cursor is closed and the database connection is also released. The cursor is closed
by a ROLLBACK WORK statement, and the connection is released by a DISCONNECT.

Dynamic cursor sample

This sample demonstrates the use of cursors for a dynamic SQL SELECT statement. It is a slight modification
of the static cursor example. If you have not yet looked at Static Cursor sample, it would be helpful to do so
before looking at this sample. See “Static cursor sample” on page 504.

For information on where the source code can be found and how to build this sample program, see “Sample
embedded SQL programs” on page 502.

The dcur program allows the user to select a table to look at with the n command. The program then presents
as much information from that table as fits on the screen.

When this program is run, it prompts for a connection string of the form:

UID=DBA;PWD=sql;DBF=samples-dir\demo.db

The C program with the embedded SQL is held in the samples-dir\SQLAnywhere\C directory. For Windows
CE, a dynamic cursor example is located in the samples-dir\SQLAnywhere\CE\esql_sample directory. The
program looks much like the static cursor sample with the exception of the connect, open_cursor, and print
functions.

The connect function uses the embedded SQL interface function db_string_connect to connect to the
database. This function provides the extra functionality to support the connection string that is used to connect
to the database.

The open_cursor routine first builds the SELECT statement

SELECT * FROM table-name

where table-name is a parameter passed to the routine. It then prepares a dynamic SQL statement using this
string.

The embedded SQL DESCRIBE command is used to fill in the SQLDA structure the results of the SELECT
statement.

Size of the SQLDA
An initial guess is taken for the size of the SQLDA (3). If this is not big enough, the actual size of the select
list returned by the database server is used to allocate a SQLDA of the correct size.
The SQLDA structure is then filled with buffers to hold strings that represent the results of the query. The
fill_s_sqlda routine converts all data types in the SQLDA to DT_STRING and allocates buffers of the
appropriate size.

A cursor is then declared and opened for this statement. The rest of the routines for moving and closing the
cursor remain the same.

The fetch routine is slightly different: it puts the results into the SQLDA structure instead of into a list of
host variables. The print routine has changed significantly to print results from the SQLDA structure up to

Sample embedded SQL programs

Copyright © 2007, iAnywhere Solutions, Inc. 505

the width of the screen. The print routine also uses the name fields of the SQLDA to print headings for each
column.

SQL Anywhere Embedded SQL

506 Copyright © 2007, iAnywhere Solutions, Inc.

Embedded SQL data types
To transfer information between a program and the database server, every piece of data must have a data
type. The embedded SQL data type constants are prefixed with DT_, and can be found in the sqldef.h header
file. You can create a host variable of any one of the supported types. You can also use these types in a
SQLDA structure for passing data to and from the database.

You can define variables of these data types using the DECL_ macros listed in sqlca.h. For example, a
variable holding a BIGINT value could be declared with DECL_BIGINT.

The following data types are supported by the embedded SQL programming interface:

♦ DT_BIT
8-bit signed integer.

♦ DT_SMALLINT
16-bit signed integer.

♦ DT_UNSSMALLINT
16-bit unsigned integer.

♦ DT_TINYINT
8-bit signed integer.

♦ DT_BIGINT
64-bit signed integer.

♦ DT_UNSBIGINT
64-bit unsigned integer.

♦ DT_INT
32-bit signed integer.

♦ DT_UNSINT
16-bit unsigned integer.

♦ DT_FLOAT
4-byte floating point number.

♦ DT_DOUBLE
8-byte floating point number.

♦ DT_DECIMAL
Packed decimal number (proprietary format).

typedef struct TYPE_DECIMAL {
 char array[1];
} TYPE_DECIMAL;

♦ DT_STRING
Null-terminated character string, in the CHAR character set. The string is blank-padded if the database
is initialized with blank-padded strings.

Embedded SQL data types

Copyright © 2007, iAnywhere Solutions, Inc. 507

♦ DT_NSTRING
Null-terminated character string, in the NCHAR character set. The string is blank-padded if the database
is initialized with blank-padded strings.

♦ DT_DATE
Null-terminated character string that is a valid date.

♦ DT_TIME
Null-terminated character string that is a valid time.

♦ DT_TIMESTAMP
Null-terminated character string that is a valid timestamp.

♦ DT_FIXCHAR
Fixed-length blank-padded character string, in the CHAR character set. The maximum length, specified
in bytes, is 32767. The data is not null-terminated.

♦ DT_NFIXCHAR
Fixed-length blank-padded character string, in the NCHAR character set. The maximum length, specified
in bytes, is 32767. The data is not null-terminated.

♦ DT_VARCHAR
Varying length character string, in the CHAR character set, with a two-byte length field. The maximum
length is 32765 bytes . When sending data, you must set the length field. When fetching data, the database
server sets the length field. The data is not null-terminated or blank-padded.

typedef struct VARCHAR {
 unsigned short int len;
 char array[1];
} VARCHAR;

♦ DT_NVARCHAR
Varying length character string, in the NCHAR character set, with a two-byte length field. The maximum
length is 32765 bytes. When sending data, you must set the length field. When fetching data, the database
server sets the length field. The data is not null-terminated or blank-padded.

typedef struct NVARCHAR {
 unsigned short int len;
 char array[1];
} NVARCHAR;

♦ DT_LONGVARCHAR
Long varying length character string, in the CHAR character set.

typedef struct LONGVARCHAR {
 a_sql_uint32 array_len; /* number of allocated bytes in array */
 a_sql_uint32 stored_len; /* number of bytes stored in array
 * (never larger than array_len) */
 a_sql_uint32 untrunc_len;/* number of bytes in untruncated expression
 * (may be larger than array_len) */
 char array[1]; /* the data */
} LONGVARCHAR, LONGNVARCHAR, LONGBINARY;

The LONGVARCHAR structure can be used with more than 32767 bytes of data. Large data can be
fetched all at once, or in pieces using the GET DATA statement. Large data can be supplied to the server

SQL Anywhere Embedded SQL

508 Copyright © 2007, iAnywhere Solutions, Inc.

all at once, or in pieces by appending to a database variable using the SET statement. The data is not
null-terminated or blank-padded.

For more information, see “Sending and retrieving long values” on page 545.

♦ DT_LONGNVARCHAR
Long varying length character string, in the NCHAR character set. The macro defines a structure, as
follows:

typedef struct LONGVARCHAR {
 a_sql_uint32 array_len; /* number of allocated bytes in array */
 a_sql_uint32 stored_len; /* number of bytes stored in array
 * (never larger than array_len) */
 a_sql_uint32 untrunc_len;/* number of bytes in untruncated expression
 * (may be larger than array_len) */
 char array[1]; /* the data */
} LONGVARCHAR, LONGNVARCHAR, LONGBINARY;

The LONGNVARCHAR structure can be used with more than 32767 bytes of data. Large data can be
fetched all at once, or in pieces using the GET DATA statement. Large data can be supplied to the server
all at once, or in pieces by appending to a database variable using the SET statement. The data is not
null-terminated or blank-padded.

For more information, see “Sending and retrieving long values” on page 545.

♦ DT_BINARY
Varying length binary data with a two-byte length field. The maximum length is 32765 bytes. When
supplying information to the database server, you must set the length field. When fetching information
from the database server, the server sets the length field.

typedef struct BINARY {
 unsigned short int len;
 char array[1];
} BINARY;

♦ DT_LONGBINARY
Long binary data. The macro defines a structure, as follows:

typedef struct LONGVARCHAR {
 a_sql_uint32 array_len; /* number of allocated bytes in array */
 a_sql_uint32 stored_len; /* number of bytes stored in array
 * (never larger than array_len) */
 a_sql_uint32 untrunc_len;/* number of bytes in untruncated expression
 * (may be larger than array_len) */
 char array[1]; /* the data */
} LONGVARCHAR, LONGNVARCHAR, LONGBINARY;

The LONGBINARY structure may be used with more than 32767 bytes of data. Large data can be fetched
all at once, or in pieces using the GET DATA statement. Large data can be supplied to the server all at
once, or in pieces by appending to a database variable using the SET statement.

For more information, see “Sending and retrieving long values” on page 545.

♦ DT_TIMESTAMP_STRUCT
SQLDATETIME structure with fields for each part of a timestamp.

Embedded SQL data types

Copyright © 2007, iAnywhere Solutions, Inc. 509

typedef struct sqldatetime {
 unsigned short year; /* for example 1999 */
 unsigned char month; /* 0-11 */
 unsigned char day_of_week; /* 0-6 0=Sunday */
 unsigned short day_of_year; /* 0-365 */
 unsigned char day; /* 1-31 */
 unsigned char hour; /* 0-23 */
 unsigned char minute; /* 0-59 */
 unsigned char second; /* 0-59 */
 unsigned long microsecond; /* 0-999999 */
} SQLDATETIME;

The SQLDATETIME structure can be used to retrieve fields of DATE, TIME, and TIMESTAMP type
(or anything that can be converted to one of these). Often, applications have their own formats and date
manipulation code. Fetching data in this structure makes it easier for a programmer to manipulate this
data. Note that DATE, TIME, and TIMESTAMP fields can also be fetched and updated with any
character type.

If you use a SQLDATETIME structure to enter a date, time, or timestamp into the database, the
day_of_year and day_of_week members are ignored.

See:

♦ “date_format option [compatibility]” [SQL Anywhere Server - Database Administration]
♦ “date_order option [compatibility]” [SQL Anywhere Server - Database Administration]
♦ “time_format option [compatibility]” [SQL Anywhere Server - Database Administration]
♦ “timestamp_format option [compatibility]” [SQL Anywhere Server - Database Administration]

♦ DT_VARIABLE
Null-terminated character string. The character string must be the name of a SQL variable whose value
is used by the database server. This data type is used only for supplying data to the database server. It
cannot be used when fetching data from the database server.

The structures are defined in the sqlca.h file. VARCHAR, NVARCHAR, BINARY, DECIMAL, and the
LONG data types contain a one-character array and are thus not useful for declaring host variables but they
are useful for allocating variables dynamically or typecasting other variables.

DATE and TIME database types
There are no corresponding embedded SQL interface data types for the various DATE and TIME database
types. These database types are all fetched and updated using either the SQLDATETIME structure or
character strings.

For more information see “GET DATA statement [ESQL]” [SQL Anywhere Server - SQL Reference] and
“SET statement” [SQL Anywhere Server - SQL Reference].

SQL Anywhere Embedded SQL

510 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Using host variables
Host variables are C variables that are identified to the SQL preprocessor. Host variables can be used to send
values to the database server or receive values from the database server.

Host variables are quite easy to use, but they have some restrictions. Dynamic SQL is a more general way
of passing information to and from the database server using a structure known as the SQL Descriptor Area
(SQLDA). The SQL preprocessor automatically generates a SQLDA for each statement in which host
variables are used.

You cannot use host variables in batches.

For information about dynamic SQL, see “Static and dynamic SQL” on page 525.

Declaring host variables

Host variables are defined by putting them into a declaration section. According to the ANSI embedded
SQL standard, host variables are defined by surrounding the normal C variable declarations with the
following:

EXEC SQL BEGIN DECLARE SECTION;
/* C variable declarations */
EXEC SQL END DECLARE SECTION;

These host variables can then be used in place of value constants in any SQL statement. When the database
server executes the command, the value of the host variable is used. Note that host variables cannot be used
in place of table or column names: dynamic SQL is required for this. The variable name is prefixed with a
colon (:) in a SQL statement to distinguish it from other identifiers allowed in the statement.

The SQL preprocessor does not scan C language code except inside a DECLARE SECTION. Thus,
TYPEDEF types and structures are not allowed. Initializers on the variables are allowed inside a DECLARE
SECTION.

Example
The following sample code illustrates the use of host variables on an INSERT command. The variables are
filled in by the program and then inserted into the database:

EXEC SQL BEGIN DECLARE SECTION;
long employee_number;
char employee_name[50];
char employee_initials[8];
char employee_phone[15];
EXEC SQL END DECLARE SECTION;
/* program fills in variables with appropriate values
*/
EXEC SQL INSERT INTO Employees
VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone);

For a more extensive example, see “Static cursor sample” on page 504.

Using host variables

Copyright © 2007, iAnywhere Solutions, Inc. 511

C host variable types

Only a limited number of C data types are supported as host variables. Also, certain host variable types do
not have a corresponding C type.

Macros defined in the sqlca.h header file can be used to declare host variables of the following types:
NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR, LONGNVARCHAR, BINARY,
LONGBINARY, DECIMAL, FIXCHAR, NFIXCHAR, DATETIME (SQLDATETIME), BIT, BIGINT, or
UNSIGNED BIGINT. They are used as follows:

EXEC SQL BEGIN DECLARE SECTION;
DECL_NCHAR v_nchar[10];
DECL_VARCHAR(10) v_varchar;
DECL_NVARCHAR(10) v_nvarchar;
DECL_LONGVARCHAR(32768) v_longvarchar;
DECL_LONGNVARCHAR(32768) v_longnvarchar;
DECL_BINARY(4000) v_binary;
DECL_LONGBINARY(128000) v_longbinary;
DECL_DECIMAL(30, 6) v_decimal;
DECL_FIXCHAR(10) v_fixchar;
DECL_NFIXCHAR(10) v_nfixchar;
DECL_DATETIME v_datetime;
DECL_BIT v_bit;
DECL_BIGINT v_bigint;
DECL_UNSIGNED_BIGINT v_ubigint;
EXEC SQL END DECLARE SECTION;

The preprocessor recognizes these macros within a declaration section and treats the variable as the
appropriate type. It is recommended that the DECIMAL (DT_DECIMAL, DECL_DECIMAL) type not be
used since the format of decimal numbers is proprietary.

The following table lists the C variable types that are allowed for host variables and their corresponding
embedded SQL interface data types.

C data type Embedded SQL interface
type

Description

short si;
short int si;

DT_SMALLINT 16-bit signed integer.

unsigned short int usi; DT_UNSSMALLINT 16-bit unsigned integer.

long l;
long int l;

DT_INT 32-bit signed integer.

unsigned long int ul; DT_UNSINT 32-bit unsigned integer.

DECL_BIGINT ll; DT_BIGINT 64-bit signed integer.

DECL_UNSIGNED_BIGINT ull; DT_UNSBIGINT 64-bit unsigned integer.

float f; DT_FLOAT 4-byte floating point.

double d; DT_DOUBLE 8-byte floating point.

SQL Anywhere Embedded SQL

512 Copyright © 2007, iAnywhere Solutions, Inc.

C data type Embedded SQL interface
type

Description

char a[n]; /*n>=1*/ DT_STRING Null-terminated string, in
CHAR character set. The string
is blank-padded if the database
is initialized with blank-padded
strings. This variable holds n-1
bytes plus the null terminator.

char *a; DT_STRING Null-terminated string, in
CHAR character set. This vari-
able points to an area that can
hold up to 32766 bytes plus the
null terminator.

DECL_NCHAR a[n]; /*n>=1*/ DT_NSTRING Null-terminated string, in
NCHAR character set. The
string is blank-padded if the
database is initialized with
blank-padded strings. This
variable holds n-1 bytes plus the
null terminator.

DECL_NCHAR *a; DT_NSTRING Null-terminated string, in
NCHAR character set. This
variable points to an area that
can hold up to 32766 bytes plus
the null terminator.

DECL_VARCHAR(n) a; DT_VARCHAR Varying length character string,
in CHAR character set, with 2-
byte length field. Not null-ter-
minated or blank-padded. The
maximum value for n is 32765
(bytes).

DECL_NVARCHAR(n) a; DT_NVARCHAR Varying length character string,
in NCHAR character set, with
2-byte length field. Not null-
terminated or blank-padded.
The maximum value for n is
32765 (bytes).

DECL_LONGVARCHAR(n) a; DT_LONGVARCHAR Varying length long character
string, in CHAR character set,
with three 4-byte length fields.
Not null-terminated or blank-
padded.

DECL_LONGNVARCHAR(n) a; DT_LONGNVARCHAR Varying length long character
string, in NCHAR character set,
with three 4-byte length fields.
Not null-terminated or blank-
padded.

Using host variables

Copyright © 2007, iAnywhere Solutions, Inc. 513

C data type Embedded SQL interface
type

Description

DECL_BINARY(n) a; DT_BINARY Varying length binary data with
2-byte length field. The maxi-
mum value for n is 32765
(bytes).

DECL_LONGBINARY(n) a; DT_LONGBINARY Varying length long binary data
with three 4-byte length fields.

char a; /*n=1*/
DECL_FIXCHAR(n) a;

DT_FIXCHAR Fixed length character string, in
CHAR character set. Blank-
padded but not null-terminated.
The maximum value for n is
32767 (bytes).

DECL_NCHAR a; /*n=1*/
DECL_NFIXCHAR(n) a;

DT_NFIXCHAR Fixed length character string, in
NCHAR character set. Blank-
padded but not null-terminated.
The maximum value for n is
32767 (bytes).

DECL_DATETIME a; DT_TIMESTAMP_STRU
CT

SQLDATETIME structure

Character sets

For DT_FIXCHAR, DT_STRING, DT_VARCHAR, and DT_LONGVARCHAR, character data is in the
application's CHAR character set, which is usually the character set of the application's locale. An application
can change the CHAR character set either by using the CHARSET connection parameter, or by calling the
db_change_char_charset function.

For DT_NFIXCHAR, DT_NSTRING, DT_NVARCHAR, and DT_LONGNVARCHAR, data is in the
application's NCHAR character set. By default, the application's NCHAR character set is the same as the
CHAR character set. An application can change the NCHAR character set by calling the
db_change_nchar_charset function.

For more information about locales and character sets, see “Understanding locales” [SQL Anywhere Server
- Database Administration].

For more information about changing the CHAR character set, see “CharSet connection parameter
[CS]” [SQL Anywhere Server - Database Administration] or “db_change_char_charset
function” on page 562.

For more information about changing the NCHAR character set, see “db_change_nchar_charset
function” on page 562.

Data lengths

Regardless of the CHAR and NCHAR character sets in use, all data lengths are specified in bytes.

SQL Anywhere Embedded SQL

514 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

If character set conversion occurs between the server and the application, it is the application's responsibility
to ensure that buffers are sufficiently large to handle the converted data, and to issue additional GET DATA
statements if data is truncated.

Pointers to char
The database interface considers a host variable declared as a pointer to char (char * a) to be 32767 bytes
long. Any host variable of type pointer to char used to retrieve information from the database must point to
a buffer large enough to hold any value that could possibly come back from the database.

This is potentially quite dangerous because someone could change the definition of the column in the
database to be larger than it was when the program was written. This could cause random memory corruption
problems. It is better to use a declared array, even as a parameter to a function, where it is passed as a pointer
to char. This technique allows the embedded SQL statements to know the size of the array.

Scope of host variables
A standard host-variable declaration section can appear anywhere that C variables can normally be declared.
This includes the parameter declaration section of a C function. The C variables have their normal scope
(available within the block in which they are defined). However, since the SQL preprocessor does not scan
C code, it does not respect C blocks.

As far as the SQL preprocessor is concerned, host variables are global to the source file; two host variables
cannot have the same name.

Host variable usage

Host variables can be used in the following circumstances:

♦ SELECT, INSERT, UPDATE, and DELETE statements in any place where a number or string constant
is allowed.

♦ The INTO clause of SELECT and FETCH statements.

♦ Host variables can also be used in place of a statement name, a cursor name, or an option name in
commands specific to embedded SQL.

♦ For CONNECT, DISCONNECT, and SET CONNECT statements, a host variable can be used in place
of a server name, database name, connection name, user ID, password, or connection string.

♦ For SET OPTION and GET OPTION, a host variable can be used in place of a user ID, option name, or
option value.

♦ Host variables cannot be used in place of a table name or a column name in any statement.

SQLCODE and SQLSTATE host variables
The ISO/ANSI standard allows an embedded SQL source file to declare the following special host variables
within a declaration section:

long SQLCODE;
char SQLSTATE[6];

Using host variables

Copyright © 2007, iAnywhere Solutions, Inc. 515

If used, these variables are set after any embedded SQL statement that makes a database request (EXEC
SQL statements other than DECLARE SECTION, INCLUDE, WHENEVER SQLCODE, and so on).

The SQLCODE and SQLSTATE host variables must be visible in the scope of every embedded SQL
statement that generates database requests.

For more information, see the description of the sqlpp -k option in “SQL preprocessor” on page 553.

The following is valid embedded SQL:

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
long SQLCODE;
EXEC SQL END DECLARE SECTION;
sub1() {
 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 EXEC SQL END DECLARE SECTION;
 exec SQL CREATE TABLE ...
}

The following is not valid embedded SQL:

EXEC SQL INCLUDE SQLCA;
sub1() {
 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 EXEC SQL END DECLARE SECTION;
 exec SQL CREATE TABLE...
}
sub2() {
 exec SQL DROP TABLE...
 // No SQLSTATE in scope of this statement
}

Indicator variables

Indicator variables are C variables that hold supplementary information when you are fetching or putting
data. There are several distinct uses for indicator variables:

♦ NULL values To enable applications to handle NULL values.

♦ String truncation To enable applications to handle cases when fetched values must be truncated to
fit into host variables.

♦ Conversion errors To hold error information.

An indicator variable is a host variable of type short int that is placed immediately following a regular host
variable in a SQL statement. For example, in the following INSERT statement, :ind_phone is an indicator
variable:

EXEC SQL INSERT INTO Employees
 VALUES (:employee_number, :employee_name,
 :employee_initials, :employee_phone:ind_phone);

SQL Anywhere Embedded SQL

516 Copyright © 2007, iAnywhere Solutions, Inc.

Using indicator variables to handle NULL

Do not confuse the SQL concept of NULL with the C-language constant of the same name. In the SQL
language, NULL represents either an unknown attribute or inapplicable information. The C-language
constant represents a pointer value that does not point to a memory location.

When NULL is used in the SQL Anywhere documentation, it refers to the SQL database meaning given
above. The C language constant is referred to as the null pointer (lower case).

NULL is not the same as any value of the column's defined type. Thus, to pass NULL values to the database
or receive NULL results back, something extra is required beyond regular host variables. Indicator
variables are used for this purpose.

Using indicator variables when inserting NULL
An INSERT statement could include an indicator variable as follows:

EXEC SQL BEGIN DECLARE SECTION;
short int employee_number;
char employee_name[50];
char employee_initials[6];
char employee_phone[15];
short int ind_phone;
EXEC SQL END DECLARE SECTION;

/*
This program fills in the employee number,
name, initials, and phone number.
*/
if(/* Phone number is unknown */) {
 ind_phone = -1;
} else {
 ind_phone = 0;
}
EXEC SQL INSERT INTO Employees
 VALUES (:employee_number, :employee_name,
 :employee_initials, :employee_phone:ind_phone);

If the indicator variable has a value of –1, a NULL is written. If it has a value of 0, the actual value of
employee_phone is written.

Using indicator variables when fetching NULL
Indicator variables are also used when receiving data from the database. They are used to indicate that a
NULL value was fetched (indicator is negative). If a NULL value is fetched from the database and an
indicator variable is not supplied, an error is generated (SQLE_NO_INDICATOR).

Using indicator variables for truncated values

Indicator variables indicate whether any fetched values were truncated to fit into a host variable. This enables
applications to handle truncation appropriately.

If a value is truncated on fetching, the indicator variable is set to a positive value, containing the actual length
of the database value before truncation. If the length of the value is greater than 32767 bytes, then the indicator
variable contains 32767.

Using host variables

Copyright © 2007, iAnywhere Solutions, Inc. 517

Using indicator values for conversion errors

By default, the conversion_error database option is set to On, and any data type conversion failure leads to
an error, with no row returned.

You can use indicator variables to tell which column produced a data type conversion failure. If you set the
database option conversion_error to Off, any data type conversion failure gives a CANNOT_CONVERT
warning, rather than an error. If the column that suffered the conversion error has an indicator variable, that
variable is set to a value of –2.

If you set the conversion_error option to Off when inserting data into the database, a value of NULL is
inserted when a conversion failure occurs.

Summary of indicator variable values

The following table provides a summary of indicator variable usage.

Indicator val-
ue

Supplying value to database Receiving value from database

> 0 Host variable value Retrieved value was truncated—actual length in indi-
cator variable

0 Host variable value Fetch successful, or conversion_error set to On

–1 NULL value NULL result

–2 NULL value Conversion error (when conversion_error is set to Off
only). SQLCODE indicates a CANNOT_CONVERT
warning

< –2 NULL value NULL result

For more information about retrieving long values, see “GET DATA statement [ESQL]” [SQL Anywhere
Server - SQL Reference].

SQL Anywhere Embedded SQL

518 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

The SQL Communication Area (SQLCA)
The SQL Communication Area (SQLCA) is an area of memory that is used on every database request for
communicating statistics and errors from the application to the database server and back to the application.
The SQLCA is used as a handle for the application-to-database communication link. It is passed in to all
database library functions that need to communicate with the database server. It is implicitly passed on all
embedded SQL statements.

A global SQLCA variable is defined in the interface library. The preprocessor generates an external reference
for the global SQLCA variable and an external reference for a pointer to it. The external reference is named
sqlca and is of type SQLCA. The pointer is named sqlcaptr. The actual global variable is declared in the
imports library.

The SQLCA is defined by the sqlca.h header file, included in the h subdirectory of your installation directory.

SQLCA provides error codes
You reference the SQLCA to test for a particular error code. The sqlcode and sqlstate fields contain error
codes when a database request has an error. Some C macros are defined for referencing the sqlcode field,
the sqlstate field, and some other fields.

SQLCA fields

The fields in the SQLCA have the following meanings:

♦ sqlcaid
An 8-byte character field that contains the string SQLCA as an identification of the SQLCA structure.
This field helps in debugging when you are looking at memory contents.

♦ sqlcabc
A long integer that contains the length of the SQLCA structure (136 bytes).

♦ sqlcode
A long integer that specifies the error code when the database detects an error on a request. Definitions
for the error codes can be found in the header file sqlerr.h. The error code is 0 (zero) for a successful
operation, positive for a warning, and negative for an error.

For a full listing of error codes, see SQL Anywhere 10 - Error Messages [SQL Anywhere 10 - Error
Messages].

♦ sqlerrml
The length of the information in the sqlerrmc field.

♦ sqlerrmc
Zero or more character strings to be inserted into an error message. Some error messages contain one or
more placeholder strings (%1, %2, …) that are replaced with the strings in this field.

For example, if a Table Not Found error is generated, sqlerrmc contains the table name, which is
inserted into the error message at the appropriate place.

The SQL Communication Area (SQLCA)

Copyright © 2007, iAnywhere Solutions, Inc. 519

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf

For a full listing of error messages, see SQL Anywhere 10 - Error Messages [SQL Anywhere 10 - Error
Messages].

♦ sqlerrp
Reserved.

♦ sqlerrd
A utility array of long integers.

♦ sqlwarn
Reserved.

♦ sqlstate
The SQLSTATE status value. The ANSI SQL standard defines this type of return value from a SQL
statement in addition to the SQLCODE value. The SQLSTATE value is always a five-character null-
terminated string, divided into a two-character class (the first two characters) and a three-character
subclass. Each character can be a digit from 0 through 9 or an uppercase alphabetic character A through
Z.

Any class or subclass that begins with 0 through 4 or A through H is defined by the SQL standard; other
classes and subclasses are implementation defined. The SQLSTATE value '00000' means that there has
been no error or warning.

For more SQLSTATE values, see SQL Anywhere 10 - Error Messages [SQL Anywhere 10 - Error
Messages].

sqlerror array
The sqlerror field array has the following elements.

♦ sqlerrd[1] (SQLIOCOUNT) The actual number of input/output operations that were required to
complete a command.

The database server does not set this number to zero for each command. Your program can set this
variable to zero before executing a sequence of commands. After the last command, this number is the
total number of input/output operations for the entire command sequence.

♦ sqlerrd[2] (SQLCOUNT) The value of this field depends on which statement is being executed.

♦ INSERT, UPDATE, PUT, and DELETE statements The number of rows that were affected by
the statement.

On a cursor OPEN, this field is filled in with either the actual number of rows in the cursor (a value
greater than or equal to 0) or an estimate thereof (a negative number whose absolute value is the
estimate). It is the actual number of rows if the database server can compute it without counting the
rows. The database can also be configured to always return the actual number of rows using the
row_counts option.

♦ FETCH cursor statement The SQLCOUNT field is filled if a SQLE_NOTFOUND warning is
returned. It contains the number of rows by which a FETCH RELATIVE or FETCH ABSOLUTE
statement goes outside the range of possible cursor positions (a cursor can be on a row, before the

SQL Anywhere Embedded SQL

520 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf

first row, or after the last row). In the case of a wide fetch, SQLCOUNT is the number of rows actually
fetched, and is less than or equal to the number of rows requested. During a wide fetch,
SQLE_NOTFOUND is only set if no rows are returned.

For more information on wide fetches, see “Fetching more than one row at a time” on page 540.

The value is 0 if the row was not found, but the position is valid, for example, executing FETCH
RELATIVE 1 when positioned on the last row of a cursor. The value is positive if the attempted
fetch was beyond the end of the cursor, and negative if the attempted fetch was before the beginning
of the cursor.

♦ GET DATA statement The SQLCOUNT field holds the actual length of the value.

♦ DESCRIBE statement In the WITH VARIABLE RESULT clause used to describe procedures
that may have more than one result set, SQLCOUNT is set to one of the following values:

♦ 0 The result set may change: the procedure call should be described again following each OPEN
statement.

♦ 1 The result set is fixed. No re-describing is required.

In the case of a syntax error, SQLE_SYNTAX_ERROR, this field contains the approximate character
position within the command string where the error was detected.

♦ sqlerrd[3] (SQLIOESTIMATE) The estimated number of input/output operations that are required to
complete the command. This field is given a value on an OPEN or EXPLAIN command.

SQLCA management for multi-threaded or reentrant code

You can use embedded SQL statements in multi-threaded or reentrant code. However, if you use a single
connection, you are restricted to one active request per connection. In a multi-threaded application, you
should not use the same connection to the database on each thread unless you use a semaphore to control
access.

There are no restrictions on using separate connections on each thread that wants to use the database. The
SQLCA is used by the runtime library to distinguish between the different thread contexts. Thus, each thread
wanting to use the database concurrently must have its own SQLCA.

Any given database connection is accessible only from one SQLCA, with the exception of the cancel
instruction, which must be issued from a separate thread.

For information on canceling requests, see “Implementing request management” on page 552.

The following is an example of multi-threaded embedded SQL reentrant code.

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <ctype.h>
#include <stdlib.h>
#include <process.h>
#include <windows.h>

The SQL Communication Area (SQLCA)

Copyright © 2007, iAnywhere Solutions, Inc. 521

EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;

#define TRUE 1
#define FALSE 0
// multithreading support
typedef struct a_thread_data {
 SQLCA sqlca;
 int num_iters;
 int thread;
 int done;
} a_thread_data;

// each thread's ESQL test
EXEC SQL SET SQLCA "&thread_data->sqlca";
static void PrintSQLError(a_thread_data * thread_data)
/**/
{
 char buffer[200];
 printf("%d: SQL error %d -- %s ... aborting\n",
 thread_data->thread,
 SQLCODE,
 sqlerror_message(&thread_data->sqlca,
 buffer, sizeof(buffer)));
 exit(1);
}

EXEC SQL WHENEVER SQLERROR { PrintSQLError(thread_data); };
static void do_one_iter(void * data)
{
 a_thread_data * thread_data = (a_thread_data *)data;
 int i;
 EXEC SQL BEGIN DECLARE SECTION;
 char user[20];
 EXEC SQL END DECLARE SECTION;

 if(db_init(&thread_data->sqlca) != 0) {
 for(i = 0; i < thread_data->num_iters; i++) {
 EXEC SQL CONNECT "dba" IDENTIFIED BY "sql";
 EXEC SQL SELECT USER INTO :user;
 EXEC SQL DISCONNECT;
 }
 printf("Thread %d did %d iters successfully\n",
 thread_data->thread, thread_data->num_iters);
 db_fini(&thread_data->sqlca);
 }
 thread_data->done = TRUE;
}

int main()
{
 int num_threads = 4;
 int thread;

SQL Anywhere Embedded SQL

522 Copyright © 2007, iAnywhere Solutions, Inc.

 int num_iters = 300;
 int num_done = 0;
 a_thread_data *thread_data;

 thread_data = (a_thread_data *)malloc(sizeof(a_thread_data) *
num_threads);
 for(thread = 0; thread < num_threads; thread++) {
 thread_data[thread].num_iters = num_iters;
 thread_data[thread].thread = thread;
 thread_data[thread].done = FALSE;
 if(_beginthread(do_one_iter,
 8096,
 (void *)&thread_data[thread]) <= 0) {
 printf("FAILED creating thread.\n");
 return(1);
 }
 }
 while(num_done != num_threads) {
 Sleep(1000);
 num_done = 0;
 for(thread = 0; thread < num_threads; thread++) {
 if(thread_data[thread].done == TRUE) {
 num_done++;
 }
 }
 }
 return(0);
}

Using multiple SQLCAs

♦ To manage multiple SQLCAs in your application

1. You must not use the option on the SQL preprocessor that generates non-reentrant code (-r-). The
reentrant code is a little larger and a little slower because statically initialized global variables cannot
be used. However, these effects are minimal.

2. Each SQLCA used in your program must be initialized with a call to db_init and cleaned up at the end
with a call to db_fini.

Caution
Failure to call db_fini for each db_init on NetWare can cause the database server to fail and the NetWare
file server to fail.

3. The embedded SQL statement SET SQLCA is used to tell the SQL preprocessor to use a different
SQLCA for database requests. Usually, a statement such as: EXEC SQL SET SQLCA
'task_data->sqlca'; is used at the top of your program or in a header file to set the SQLCA
reference to point at task specific data. This statement does not generate any code and thus has no
performance impact. It changes the state within the preprocessor so that any reference to the SQLCA
uses the given string.

The SQL Communication Area (SQLCA)

Copyright © 2007, iAnywhere Solutions, Inc. 523

For information about creating SQLCAs, see “SET SQLCA statement [ESQL]” [SQL Anywhere Server -
SQL Reference].

When to use multiple SQLCAs

You can use the multiple SQLCA support in any of the supported embedded SQL environments, but it is
only required in reentrant code.

The following list details the environments where multiple SQLCAs must be used:

♦ Multi-threaded applications Each thread must have its own SQLCA. This can also happen when
you have a DLL that uses embedded SQL and is called by more than one thread in your application.

♦ Dynamic link libraries and shared libraries A DLL has only one data segment. While the database
server is processing a request from one application, it may yield to another application that makes a
request to the database server. If your DLL uses the global SQLCA, both applications are using it at the
same time. Each Windows application must have its own SQLCA.

♦ A DLL with one data segment A DLL can be created with only one data segment or one data segment
for each application. If your DLL has only one data segment, you cannot use the global SQLCA for the
same reason that a DLL cannot use the global SQLCA. Each application must have its own SQLCA.

Connection management with multiple SQLCAs

You do not need to use multiple SQLCAs to connect to more than one database or have more than one
connection to a single database.

Each SQLCA can have one unnamed connection. Each SQLCA has an active or current connection See
“SET CONNECTION statement [Interactive SQL] [ESQL]” [SQL Anywhere Server - SQL Reference].

All operations on a given database connection must use the same SQLCA that was used when the connection
was established.

Record locking
Operations on different connections are subject to the normal record locking mechanisms and may cause
each other to block and possibly to deadlock. For information about locking, see “Using Transactions and
Isolation Levels” [SQL Anywhere Server - SQL Usage].

SQL Anywhere Embedded SQL

524 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf

Static and dynamic SQL
There are two ways to embed SQL statements into a C program:

♦ Static statements
♦ Dynamic statements

Until now, static SQL has been discussed. This section compares static and dynamic SQL.

Static SQL statements
All standard SQL data manipulation and data definition statements can be embedded in a C program by
prefixing them with EXEC SQL and suffixing the command with a semicolon (;). These statements are
referred to as static statements.

Static statements can contain references to host variables. All examples to this point have used static
embedded SQL statements. See “Using host variables” on page 511.

Host variables can only be used in place of string or numeric constants. They cannot be used to substitute
column names or table names; dynamic statements are required to perform those operations.

Dynamic SQL statements

In the C language, strings are stored in arrays of characters. Dynamic statements are constructed in C language
strings. These statements can then be executed using the PREPARE and EXECUTE statements. These SQL
statements cannot reference host variables in the same manner as static statements since the C language
variables are not accessible by name when the C program is executing.

To pass information between the statements and the C language variables, a data structure called the SQL
Descriptor Area (SQLDA) is used. This structure is set up for you by the SQL preprocessor if you specify
a list of host variables on the EXECUTE command in the USING clause. These variables correspond by
position to place holders in the appropriate positions of the prepared command string.

For information on the SQLDA, see “The SQL descriptor area (SQLDA)” on page 529.

A place holder is put in the statement to indicate where host variables are to be accessed. A place holder is
either a question mark (?) or a host variable reference as in static statements (a host variable name preceded
by a colon). In the latter case, the host variable name used in the actual text of the statement serves only as
a place holder indicating a reference to the SQL descriptor area.

A host variable used to pass information to the database is called a bind variable.

Example
For example:

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];
char Street[30];
char City[20];

Static and dynamic SQL

Copyright © 2007, iAnywhere Solutions, Inc. 525

short int cityind;
long empnum;
EXEC SQL END DECLARE SECTION;

. . .
sprintf(comm,
 "UPDATE %s SET Street = :?, City = :?"
 "WHERE employee_number = :?",
 tablename);
EXEC SQL PREPARE S1 FROM :comm;
EXEC SQL EXECUTE S1 USING :Street, :City:cityind, :empnum;

This method requires you to know how many host variables there are in the statement. Usually, this is not
the case. So, you can set up your own SQLDA structure and specify this SQLDA in the USING clause on
the EXECUTE command.

The DESCRIBE BIND VARIABLES statement returns the host variable names of the bind variables that
are found in a prepared statement. This makes it easier for a C program to manage the host variables. The
general method is as follows:

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];
EXEC SQL END DECLARE SECTION;
. . .
sprintf(comm, "update %s set Street = :Street,
 City = :City"
 " where EmployeeNumber = :empnum",
 tablename);
EXEC SQL PREPARE S1 FROM :comm;
/* Assume that there are no more than 10 host variables.
 * See next example if you cannot put a limit on it. */
sqlda = alloc_sqlda(10);
EXEC SQL DESCRIBE BIND VARIABLES FOR S1 USING DESCRIPTOR sqlda;
/* sqlda->sqld will tell you how many
 host variables there were. */
/* Fill in SQLDA_VARIABLE fields with
 values based on name fields in sqlda. */
. . .
EXEC SQL EXECUTE S1 USING DESCRIPTOR sqlda;
free_sqlda(sqlda);

SQLDA contents
The SQLDA consists of an array of variable descriptors. Each descriptor describes the attributes of the
corresponding C program variable or the location that the database stores data into or retrieves data from:

♦ data type
♦ length if type is a string type
♦ memory address
♦ indicator variable

For a complete description of the SQLDA structure, see “The SQL descriptor area
(SQLDA)” on page 529.

SQL Anywhere Embedded SQL

526 Copyright © 2007, iAnywhere Solutions, Inc.

Indicator variables and NULL
The indicator variable is used to pass a NULL value to the database or retrieve a NULL value from the
database. The database server also uses the indicator variable to indicate truncation conditions encountered
during a database operation. The indicator variable is set to a positive value when not enough space was
provided to receive a database value.

For more information, see “Indicator variables” on page 516.

Dynamic SELECT statement

A SELECT statement that returns only a single row can be prepared dynamically, followed by an EXECUTE
with an INTO clause to retrieve the one-row result. SELECT statements that return multiple rows, however,
are managed using dynamic cursors.

With dynamic cursors, results are put into a host variable list or a SQLDA that is specified on the FETCH
statement (FETCH INTO and FETCH USING DESCRIPTOR). Since the number of select list items is
usually unknown to the C programmer, the SQLDA route is the most common. The DESCRIBE SELECT
LIST statement sets up a SQLDA with the types of the select list items. Space is then allocated for the values
using the fill_sqlda or fill_s_sqlda functions, and the information is retrieved by the FETCH USING
DESCRIPTOR statement.

The typical scenario is as follows:

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];
EXEC SQL END DECLARE SECTION;
int actual_size;
SQLDA * sqlda;
. . .
sprintf(comm, "select * from %s", table_name);
EXEC SQL PREPARE S1 FROM :comm;
/* Initial guess of 10 columns in result.
 If it is wrong, it is corrected right
 after the first DESCRIBE by reallocating
 sqlda and doing DESCRIBE again. */
sqlda = alloc_sqlda(10);
EXEC SQL DESCRIBE SELECT LIST FOR S1
 USING DESCRIPTOR sqlda;
if(sqlda->sqld > sqlda->sqln)
{
 actual_size = sqlda->sqld;
 free_sqlda(sqlda);
 sqlda = alloc_sqlda(actual_size);
 EXEC SQL DESCRIBE SELECT LIST FOR S1
 USING DESCRIPTOR sqlda;
}
fill_sqlda(sqlda);
EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
EXEC SQL WHENEVER NOTFOUND {break};
for(;;)
{
 EXEC SQL FETCH C1 USING DESCRIPTOR sqlda;
 /* do something with data */
}

Static and dynamic SQL

Copyright © 2007, iAnywhere Solutions, Inc. 527

EXEC SQL CLOSE C1;
EXEC SQL DROP STATEMENT S1;

Drop statements after use
To avoid consuming unnecessary resources, ensure that statements are dropped after use.

For a complete example using cursors for a dynamic select statement, see “Dynamic cursor
sample” on page 505.

For more information about the functions mentioned above, see “Library function
reference” on page 557.

SQL Anywhere Embedded SQL

528 Copyright © 2007, iAnywhere Solutions, Inc.

The SQL descriptor area (SQLDA)
The SQLDA (SQL Descriptor Area) is an interface structure that is used for dynamic SQL statements. The
structure passes information regarding host variables and SELECT statement results to and from the
database. The SQLDA is defined in the header file sqlda.h.

There are functions in the database interface library or DLL that you can use to manage SQLDAs. For
descriptions, see “Library function reference” on page 557.

When host variables are used with static SQL statements, the preprocessor constructs a SQLDA for those
host variables. It is this SQLDA that is actually passed to and from the database server.

The SQLDA header file
The contents of sqlda.h are as follows:

#ifndef _SQLDA_H_INCLUDED
#define _SQLDA_H_INCLUDED
#define II_SQLDA
#include "sqlca.h"
#if defined(_SQL_PACK_STRUCTURES)
#include "pshpk1.h"
#endif
#define SQL_MAX_NAME_LEN 30
#define _sqldafar
typedef short int a_sql_type;
struct sqlname
{
 short int length; /* length of char data */
 char data[SQL_MAX_NAME_LEN]; /* data */
};
struct sqlvar
{ /* array of variable descriptors */
 short int sqltype; /* type of host variable */
 short int sqllen; /* length of host variable */
 void *sqldata; /* address of variable */
 short int *sqlind; /* indicator variable pointer */
 struct sqlname sqlname;
};
struct sqlda
{
 unsigned char sqldaid[8]; /* eye catcher "SQLDA" */
 a_sql_int32 sqldabc; /* length of sqlda structure */
 short int sqln; /* descriptor size in number of entries */
 short int sqld; /* number of variables found by DESCRIBE */
 struct sqlvar sqlvar[1]; /* array of variable descriptors */
};

typedef struct sqlda SQLDA;
typedef struct sqlvar SQLVAR, SQLDA_VARIABLE;
typedef struct sqlname SQLNAME, SQLDA_NAME;

The SQL descriptor area (SQLDA)

Copyright © 2007, iAnywhere Solutions, Inc. 529

#ifndef SQLDASIZE
#define SQLDASIZE(n) (sizeof(struct sqlda) + \
 (n-1) * sizeof(struct sqlvar))
#endif
#if defined(_SQL_PACK_STRUCTURES)
#include "poppk.h"
#endif
#endif

SQLDA fields

The SQLDA fields have the following meanings:

Field Description

sqldaid An 8-byte character field that contains the string SQLDA as an identification of the
SQLDA structure. This field helps in debugging when you are looking at memory
contents.

sqldabc A long integer containing the length of the SQLDA structure.

sqln The number of variable descriptors allocated in the sqlvar array.

sqld The number of variable descriptors that are valid (contain information describing
a host variable). This field is set by the DESCRIBE statement and sometimes by
the programmer when supplying data to the database server.

sqlvar An array of descriptors of type struct sqlvar, each describing a host variable.

SQLDA host variable descriptions

Each sqlvar structure in the SQLDA describes a host variable. The fields of the sqlvar structure have the
following meanings:

♦ sqltype The type of the variable that is described by this descriptor. See “Embedded SQL data
types” on page 507.

The low order bit indicates whether NULL values are allowed. Valid types and constant definitions can
be found in the sqldef.h header file.

This field is filled by the DESCRIBE statement. You can set this field to any type when supplying data
to the database server or retrieving data from the database server. Any necessary type conversion is done
automatically.

♦ sqllen The length of the variable. What the length actually means depends on the type information
and how the SQLDA is being used.

For LONG VARCHAR, LONG NVARCHAR, and LONG BINARY data types, the array_len field of
the DT_LONGVARCHAR, DT_LONGNVARCHAR, or DT_LONGBINARY data type structure is
used instead of the sqllen field.

SQL Anywhere Embedded SQL

530 Copyright © 2007, iAnywhere Solutions, Inc.

For more information on the length field, see “SQLDA sqllen field values” on page 532.

♦ sqldata A pointer to the memory occupied by this variable. This memory must correspond to the
sqltype and sqllen fields.

For storage formats, see “Embedded SQL data types” on page 507.

For UPDATE and INSERT commands, this variable is not involved in the operation if the sqldata pointer
is a null pointer. For a FETCH, no data is returned if the sqldata pointer is a null pointer. In other words,
the column returned by the sqldata pointer is an unbound column.

If the DESCRIBE statement uses LONG NAMES, this field holds the long name of the result set column.
If, in addition, the DESCRIBE statement is a DESCRIBE USER TYPES statement, then this field holds
the long name of the user-defined data type, instead of the column. If the type is a base type, the field is
empty.

♦ sqlind A pointer to the indicator value. An indicator value is a short int. A negative indicator value
indicates a NULL value. A positive indicator value indicates that this variable has been truncated by a
FETCH statement, and the indicator value contains the length of the data before truncation. A value of
–2 indicates a conversion error if the conversion_error database option is set to Off. See
“conversion_error option [compatibility]” [SQL Anywhere Server - Database Administration].

For more information, see “Indicator variables” on page 516.

If the sqlind pointer is the null pointer, no indicator variable pertains to this host variable.

The sqlind field is also used by the DESCRIBE statement to indicate parameter types. If the type is a
user-defined data type, this field is set to DT_HAS_USERTYPE_INFO. In this case, you may want to
perform a DESCRIBE USER TYPES to obtain information on the user-defined data types.

♦ sqlname A VARCHAR-like structure, as follows:

struct sqlname {
 short int length;
 char data[SQL_MAX_NAME_LEN];
};

It is filled by a DESCRIBE statement and is not otherwise used. This field has a different meaning for
the two formats of the DESCRIBE statement:

♦ SELECT LIST The name data buffer is filled with the column heading of the corresponding item
in the select list.

♦ BIND VARIABLES The name data buffer is filled with the name of the host variable that was used
as a bind variable, or "?" if an unnamed parameter marker is used.

On a DESCRIBE SELECT LIST command, any indicator variables present are filled with a flag
indicating whether the select list item is updatable or not. More information on this flag can be found in
the sqldef.h header file.

If the DESCRIBE statement is a DESCRIBE USER TYPES statement, then this field holds the long
name of the user-defined data type instead of the column. If the type is a base type, the field is empty.

The SQL descriptor area (SQLDA)

Copyright © 2007, iAnywhere Solutions, Inc. 531

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

SQLDA sqllen field values

The sqllen field length of the sqlvar structure in a SQLDA is used in the following kinds of interactions with
the database server:

♦ describing values The DESCRIBE statement gets information about the host variables required to
store data retrieved from the database, or host variables required to pass data to the database. See
“Describing values” on page 532.

♦ retrieving values Retrieving values from the database. See “Retrieving values” on page 535.

♦ sending values Sending information to the database. See “Sending values” on page 534.

♦ These interactions are described in this section.

The following tables detail each of these interactions. These tables list the interface constant types (the
DT_ types) found in the sqldef.h header file. These constants would be placed in the SQLDA sqltype field.

For information about sqltype field values, see “Embedded SQL data types” on page 507.

In static SQL, a SQLDA is still used, but it is generated and completely filled in by the SQL preprocessor.
In this static case, the tables give the correspondence between the static C language host variable types and
the interface constants.

Describing values

The following table indicates the values of the sqllen and sqltype structure members returned by the
DESCRIBE command for the various database types (both SELECT LIST and BIND VARIABLE
DESCRIBE statements). In the case of a user-defined database data type, the base type is described.

Your program can use the types and lengths returned from a DESCRIBE, or you may use another type. The
database server performs type conversions between any two types. The memory pointed to by the sqldata
field must correspond to the sqltype and sqllen fields. The embedded SQL type is obtained by a bitwise AND
of sqltype with DT_TYPES (sqltype & DT_TYPES).

For information on embedded SQL data types, see “Embedded SQL data types” on page 507.

Database field type Embedded SQL type returned Length (in bytes) returned on
describe

BIGINT DT_BIGINT 8

BINARY(n) DT_BINARY n

BIT DT_BIT 1

CHAR(n) DT_FIXCHAR n

DATE DT_DATE length of longest formatted string

SQL Anywhere Embedded SQL

532 Copyright © 2007, iAnywhere Solutions, Inc.

Database field type Embedded SQL type returned Length (in bytes) returned on
describe

DECIMAL(p,s) DT_DECIMAL high byte of length field in SQL-
DA set to p, and low byte set to s

DOUBLE DT_DOUBLE 8

FLOAT DT_FLOAT 4

INT DT_INT 4

LONG BINARY DT_LONGBINARY 32767

LONG NVARCHAR DT_LONGNVARCHAR1 32767

LONG VARCHAR DT_LONGVARCHAR 32767

NCHAR(n) DT_NFIXCHAR1 n times maximum character
length in client's NCHAR char-
acter set

NVARCHAR(n) DT_NVARCHAR1 n times maximum character
length in client's NCHAR char-
acter set

REAL DT_FLOAT 4

SMALLINT DT_SMALLINT 2

TIME DT_TIME length of longest formatted string

TIMESTAMP DT_TIMESTAMP length of longest formatted string

TINYINT DT_TINYINT 1

UNSIGNED BIGINT DT_UNSBIGINT 8

UNSIGNED INT DT_UNSINT 4

UNSIGNED SMALLINT DT_UNSSMALLINT 2

VARCHAR(n) DT_VARCHAR n

1 In embedded SQL, NCHAR, NVARCHAR, and LONG NVARCHAR are described as either
DT_FIXCHAR, DT_VARCHAR, and DT_LONGVARCHAR, respectively, by default. If the
db_change_nchar_charset function has been called, the types are described as DT_NFIXCHAR,
DT_NVARCHAR, and DT_LONGNVARCHAR, respectively. See “db_change_nchar_charset
function” on page 562.

The SQL descriptor area (SQLDA)

Copyright © 2007, iAnywhere Solutions, Inc. 533

Sending values

The following table indicates how you specify lengths of values when you supply data to the database server
in the SQLDA.

Only the data types displayed in the table are allowed in this case. The DT_DATE, DT_TIME, and
DT_TIMESTAMP types are treated the same as DT_STRING when supplying information to the database;
the value must be a null-terminated character string in an appropriate date format.

Embedded SQL data type Program action to set the length

DT_BIGINT No action required.

DT_BINARY(n) Length taken from field in BINARY structure.

DT_BIT No action required.

DT_DATE Length determined by terminating \0.

DT_DOUBLE No action required.

DT_FIXCHAR(n) Length field in SQLDA determines length of string.

DT_FLOAT No action required.

DT_INT No action required.

DT_LONGBINARY Length field ignored. See “Sending LONG
data” on page 547.

DT_LONGNVARCHAR Length field ignored. See “Sending LONG
data” on page 547.

DT_LONGVARCHAR Length field ignored. See “Sending LONG
data” on page 547.

DT_NFIXCHAR(n) Length field in SQLDA determines length of string.

DT_NSTRING Length determined by terminating \0. If the ansi_blanks
option is On and the database is blank-padded, then the
length field in the SQLDA must be set to the length of the
buffer containing the value (at least the length of the value
plus space for the terminating null character).

DT_NVARCHAR Length taken from field in NVARCHAR structure.

DT_SMALLINT No action required.

DT_STRING Length determined by terminating \0. If the ansi_blanks
option is On and the database is blank-padded, then the
length field in the SQLDA must be set to the length of the
buffer containing the value (at least the length of the value
plus space for the terminating null character).

DT_TIME Length determined by terminating \0.

SQL Anywhere Embedded SQL

534 Copyright © 2007, iAnywhere Solutions, Inc.

Embedded SQL data type Program action to set the length

DT_TIMESTAMP Length determined by terminating \0.

DT_TIMESTAMP_STRUCT No action required.

DT_UNSBIGINT No action required.

DT_UNSINT No action required.

DT_UNSSMALLINT No action required.

DT_VARCHAR(n) Length taken from field in VARCHAR structure.

DT_VARIABLE Length determined by terminating \0.

Retrieving values

The following table indicates the values of the length field when you retrieve data from the database using
a SQLDA. The sqllen field is never modified when you retrieve data.

Only the interface data types displayed in the table are allowed in this case. The DT_DATE, DT_TIME, and
DT_TIMESTAMP data types are treated the same as DT_STRING when you retrieve information from the
database. The value is formatted as a character string in the current date format.

Embedded SQL data type What the program must set
length field to when receiving

How the database returns
length information after fetch-
ing a value

DT_BIGINT No action required. No action required.

DT_BINARY(n) Maximum length of BINARY
structure (n+2). The maximum
value for n is 32765.

len field of BINARY structure set
to actual length in bytes.

DT_BIT No action required. No action required.

DT_DATE Length of buffer. \0 at end of string.

DT_DOUBLE No action required. No action required.

DT_FIXCHAR(n) Length of buffer, in bytes. The
maximum value for n is 32767.

Padded with blanks to length of
buffer.

DT_FLOAT No action required. No action required.

DT_INT No action required. No action required.

DT_LONGBINARY Length field ignored. See “Re-
trieving LONG
data” on page 546.

Length field ignored. See “Re-
trieving LONG
data” on page 546.

The SQL descriptor area (SQLDA)

Copyright © 2007, iAnywhere Solutions, Inc. 535

Embedded SQL data type What the program must set
length field to when receiving

How the database returns
length information after fetch-
ing a value

DT_LONGNVARCHAR Length field ignored. See “Re-
trieving LONG
data” on page 546.

Length field ignored. See “Re-
trieving LONG
data” on page 546.

DT_LONGVARCHAR Length field ignored. See “Re-
trieving LONG
data” on page 546.

Length field ignored. See “Re-
trieving LONG
data” on page 546.

DT_NFIXCHAR(n) Length of buffer, in bytes. The
maximum value for n is 32767.

Padded with blanks to length of
buffer.

DT_NSTRING Length of buffer. \0 at end of string.

DT_NVARCHAR(n) Maximum length of NVARCHAR
structure (n+2). The maximum
value for n is 32765.

len field of NVARCHAR struc-
ture set to actual length in bytes of
string.

DT_SMALLINT No action required. No action required.

DT_STRING Length of buffer. \0 at end of string.

DT_TIME Length of buffer. \0 at end of string.

DT_TIMESTAMP Length of buffer. \0 at end of string.

DT_TIMESTAMP_ STRUCT No action required. No action required.

DT_UNSBIGINT No action required. No action required.

DT_UNSINT No action required. No action required.

DT_UNSSMALLINT No action required. No action required.

DT_VARCHAR(n) Maximum length of VARCHAR
structure (n+2). The maximum
value for n is 32765.

len field of VARCHAR structure
set to actual length in bytes of
string.

SQL Anywhere Embedded SQL

536 Copyright © 2007, iAnywhere Solutions, Inc.

Fetching data
Fetching data in embedded SQL is done using the SELECT statement. There are two cases:

♦ The SELECT statement returns at most one row Use an INTO clause to assign the returned values
directly to host variables. See “SELECT statements that return at most one row” on page 537.

♦ The SELECT statement may return multiple rows Use cursors to manage the rows of the result
set. See “Using cursors in embedded SQL” on page 538.

SELECT statements that return at most one row

A single row query retrieves at most one row from the database. A single-row query SELECT statement has
an INTO clause following the select list and before the FROM clause. The INTO clause contains a list of
host variables to receive the value for each select list item. There must be the same number of host variables
as there are select list items. The host variables may be accompanied by indicator variables to indicate NULL
results.

When the SELECT statement is executed, the database server retrieves the results and places them in the
host variables. If the query results contain more than one row, the database server returns an error.

If the query results in no rows being selected, a Row Not Found warning is returned. Errors and warnings
are returned in the SQLCA structure. See “The SQL Communication Area (SQLCA)” on page 519.

Example
The following code fragment returns 1 if a row from the Employees table is fetched successfully, 0 if the
row doesn't exist, and –1 if an error occurs.

EXEC SQL BEGIN DECLARE SECTION;
long ID;
char name[41];
char Sex;
char birthdate[15];
short int ind_birthdate;
EXEC SQL END DECLARE SECTION;
. . .
int find_employee(long Employees)
{
 ID = Employees;

 EXEC SQL SELECT GivenName ||
 ' ' || Surname, Sex, BirthDate
 INTO :name, :Sex,
 :birthdate:ind_birthdate
 FROM Employees
 WHERE EmployeeID = :ID;
 if(SQLCODE == SQLE_NOTFOUND)
 {
 return(0); /* Employees not found */
 }
 else if(SQLCODE < 0)
 {
 return(-1); /* error */
 }

Fetching data

Copyright © 2007, iAnywhere Solutions, Inc. 537

 else
 {
 return(1); /* found */
 }
}

Using cursors in embedded SQL

A cursor is used to retrieve rows from a query that has multiple rows in its result set. A cursor is a handle
or an identifier for the SQL query and a position within the result set.

For an introduction to cursors, see “Working with cursors” on page 28.

♦ To manage a cursor in embedded SQL

1. Declare a cursor for a particular SELECT statement, using the DECLARE statement.

2. Open the cursor using the OPEN statement.

3. Retrieve results one row at a time from the cursor using the FETCH statement.

4. Fetch rows until the Row Not Found warning is returned.

Errors and warnings are returned in the SQLCA structure. See “The SQL Communication Area
(SQLCA)” on page 519.

5. Close the cursor, using the CLOSE statement.

By default, cursors are automatically closed at the end of a transaction (on COMMIT or ROLLBACK).
Cursors that are opened with a WITH HOLD clause are kept open for subsequent transactions until they are
explicitly closed.

The following is a simple example of cursor usage:

void print_employees(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char name[50];
 char Sex;
 char birthdate[15];
 short int ind_birthdate;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT GivenName || ' ' || Surname,
 Sex, BirthDate
 FROM Employees;

 EXEC SQL OPEN C1;
 for(;;)
 {
 EXEC SQL FETCH C1 INTO :name, :Sex,
 :birthdate:ind_birthdate;
 if(SQLCODE == SQLE_NOTFOUND)
 {
 break;
 }
 else if(SQLCODE < 0)

SQL Anywhere Embedded SQL

538 Copyright © 2007, iAnywhere Solutions, Inc.

 {
 break;
 }

 if(ind_birthdate < 0)
 {
 strcpy(birthdate, "UNKNOWN");
 }
 printf("Name: %s Sex: %c Birthdate:
 %s.n",name, Sex, birthdate);
 }
 EXEC SQL CLOSE C1;
}

For complete examples using cursors, see “Static cursor sample” on page 504 and “Dynamic cursor
sample” on page 505.

Cursor positioning
A cursor is positioned in one of three places:

♦ On a row

♦ Before the first row

♦ After the last row

0

1

2

3

n – 2

n – 1

n

n + 1

–n – 1

–n

–n + 1

–n + 2

–3

–2

–1

0After last row

Before first row

Absolute row
from start

Absolute row
from end

Fetching data

Copyright © 2007, iAnywhere Solutions, Inc. 539

When a cursor is opened, it is positioned before the first row. The cursor position can be moved using the
FETCH command. It can be positioned to an absolute position either from the start or from the end of the
query results. It can also be moved relative to the current cursor position. See “FETCH statement [ESQL]
[SP]” [SQL Anywhere Server - SQL Reference].

There are special positioned versions of the UPDATE and DELETE statements that can be used to update
or delete the row at the current position of the cursor. If the cursor is positioned before the first row or after
the last row, a No Current Row of Cursor error is returned.

The PUT statement can be used to insert a row into a cursor. See “PUT statement [ESQL]” [SQL Anywhere
Server - SQL Reference].

Cursor positioning problems
Inserts and some updates to DYNAMIC SCROLL cursors can cause problems with cursor positioning. The
database server does not put inserted rows at a predictable position within a cursor unless there is an ORDER
BY clause on the SELECT statement. In some cases, the inserted row does not appear at all until the cursor
is closed and opened again.

With SQL Anywhere, this occurs if a temporary table had to be created to open the cursor.

For a description, see “Use work tables in query processing (use All-rows optimization goal)” [SQL
Anywhere Server - SQL Usage].

The UPDATE statement can cause a row to move in the cursor. This happens if the cursor has an ORDER
BY clause that uses an existing index (a temporary table is not created).

Fetching more than one row at a time

The FETCH statement can be modified to fetch more than one row at a time, which may improve
performance. This is called a wide fetch or an array fetch.

SQL Anywhere also supports wide puts and inserts. See “PUT statement [ESQL]” [SQL Anywhere Server
- SQL Reference] and “EXECUTE statement [ESQL]” [SQL Anywhere Server - SQL Reference].

To use wide fetches in embedded SQL, include the fetch statement in your code as follows:

EXEC SQL FETCH . . . ARRAY nnn

where ARRAY nnn is the last item of the FETCH statement. The fetch count nnn can be a host variable.
The number of variables in the SQLDA must be the product of nnn and the number of columns per row. The
first row is placed in SQLDA variables 0 to (columns per row) – 1, and so on.

Each column must be of the same type in each row of the SQLDA, or a SQLDA_INCONSISTENT error is
returned.

The server returns in SQLCOUNT the number of records that were fetched, which is always greater than
zero unless there is an error or warning. On a wide fetch, a SQLCOUNT of one with no error condition
indicates that one valid row has been fetched.

SQL Anywhere Embedded SQL

540 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Example
The following example code illustrates the use of wide fetches. You can also find this code in samples-dir
\SQLAnywhere\esqlwidefetch\widefetch.sqc.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sqldef.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR { PrintSQLError();
 goto err; };
static void PrintSQLError()
{
 char buffer[200];
 printf("SQL error %d -- %s\n",
 SQLCODE,
 sqlerror_message(&sqlca,
 buffer,
 sizeof(buffer)));
}
static SQLDA * PrepareSQLDA(
 a_sql_statement_number stat0,
 unsigned width,
 unsigned *cols_per_row)
/* Allocate a SQLDA to be used for fetching from
 the statement identified by "stat0". "width"
 rows are retrieved on each FETCH request.
 The number of columns per row is assigned to
 "cols_per_row". */
{
 int num_cols;
 unsigned row, col, offset;
 SQLDA * sqlda;
 EXEC SQL BEGIN DECLARE SECTION;
 a_sql_statement_number stat;
 EXEC SQL END DECLARE SECTION;
 stat = stat0;
 sqlda = alloc_sqlda(100);
 if(sqlda == NULL) return(NULL);
 EXEC SQL DESCRIBE :stat INTO sqlda;
 *cols_per_row = num_cols = sqlda->sqld;
 if(num_cols * width > sqlda->sqln)
 {
 free_sqlda(sqlda);
 sqlda = alloc_sqlda(num_cols * width);
 if(sqlda == NULL) return(NULL);
 EXEC SQL DESCRIBE :stat INTO sqlda;
 }
 // copy first row in SQLDA setup by describe
 // to following (wide) rows
 sqlda->sqld = num_cols * width;
 offset = num_cols;
 for(row = 1; row < width; row++)
 {
 for(col = 0;
 col < num_cols;

Fetching data

Copyright © 2007, iAnywhere Solutions, Inc. 541

 col++, offset++)
 {
 sqlda->sqlvar[offset].sqltype =
 sqlda->sqlvar[col].sqltype;
 sqlda->sqlvar[offset].sqllen =
 sqlda->sqlvar[col].sqllen;
 // optional: copy described column name
 memcpy(&sqlda->sqlvar[offset].sqlname,
 &sqlda->sqlvar[col].sqlname,
 sizeof(sqlda->sqlvar[0].sqlname));
 }
 }
 fill_s_sqlda(sqlda, 40);
 return(sqlda);
err:
 return(NULL);
}
static void PrintFetchedRows(
 SQLDA * sqlda,
 unsigned cols_per_row)
{
 /* Print rows already wide fetched in the SQLDA */
 long rows_fetched;
 int row, col, offset;
 if(SQLCOUNT == 0)
 {
 rows_fetched = 1;
 }
 else
 {
 rows_fetched = SQLCOUNT;
 }
 printf("Fetched %d Rows:\n", rows_fetched);
 for(row = 0; row < rows_fetched; row++)
 {
 for(col = 0; col < cols_per_row; col++)
 {
 offset = row * cols_per_row + col;
 printf(" \"%s\"",
 (char *)sqlda->sqlvar[offset].sqldata);
 }
 printf("\n");
 }
}
static int DoQuery(
 char * query_str0,
 unsigned fetch_width0)
{
 /* Wide Fetch "query_str0" select statement
 * using a width of "fetch_width0" rows" */
 SQLDA * sqlda;
 unsigned cols_per_row;
 EXEC SQL BEGIN DECLARE SECTION;
 a_sql_statement_number stat;
 char * query_str;
 unsigned fetch_width;
 EXEC SQL END DECLARE SECTION;
 query_str = query_str0;
 fetch_width = fetch_width0;

SQL Anywhere Embedded SQL

542 Copyright © 2007, iAnywhere Solutions, Inc.

 EXEC SQL PREPARE :stat FROM :query_str;
 EXEC SQL DECLARE QCURSOR CURSOR FOR :stat
 FOR READ ONLY;
 EXEC SQL OPEN QCURSOR;
 sqlda = PrepareSQLDA(stat,
 fetch_width,
 &cols_per_row);
 if(sqlda == NULL)
 {
 printf("Error allocating SQLDA\n");
 return(SQLE_NO_MEMORY);
 }
 for(;;)
 {
 EXEC SQL FETCH QCURSOR INTO DESCRIPTOR sqlda
 ARRAY :fetch_width;
 if(SQLCODE != SQLE_NOERROR) break;
 PrintFetchedRows(sqlda, cols_per_row);
 }
 EXEC SQL CLOSE QCURSOR;
 EXEC SQL DROP STATEMENT :stat;
 free_filled_sqlda(sqlda);
err:
 return(SQLCODE);
}
void main(int argc, char *argv[])
{
 /* Optional first argument is a select statement,
 * optional second argument is the fetch width */
 char *query_str =
 "select GivenName, Surname from Employees";
 unsigned fetch_width = 10;
 if(argc > 1)
 {
 query_str = argv[1];
 if(argc > 2)
 {
 fetch_width = atoi(argv[2]);
 if(fetch_width < 2)
 {
 fetch_width = 2;
 }
 }
 }
 db_init(&sqlca);
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "sql";
 DoQuery(query_str, fetch_width);
 EXEC SQL DISCONNECT;
err:
 db_fini(&sqlca);
}

Notes on using wide fetches
♦ In the function PrepareSQLDA, the SQLDA memory is allocated using the alloc_sqlda function. This

allows space for indicator variables, rather than using the alloc_sqlda_noind function.

Fetching data

Copyright © 2007, iAnywhere Solutions, Inc. 543

♦ If the number of rows fetched is fewer than the number requested, but is not zero (at the end of the cursor
for example), the SQLDA items corresponding to the rows that were not fetched are returned as NULL
by setting the indicator value. If no indicator variables are present, an error is generated
(SQLE_NO_INDICATOR: no indicator variable for NULL result).

♦ If a row being fetched has been updated, generating a SQLE_ROW_UPDATED_WARNING warning,
the fetch stops on the row that caused the warning. The values for all rows processed to that point
(including the row that caused the warning) are returned. SQLCOUNT contains the number of rows that
were fetched, including the row that caused the warning. All remaining SQLDA items are marked as
NULL.

♦ If a row being fetched has been deleted or is locked, generating a SQLE_NO_CURRENT_ROW or
SQLE_LOCKED error, SQLCOUNT contains the number of rows that were read prior to the error. This
does not include the row that caused the error. The SQLDA does not contain values for any of the rows
since SQLDA values are not returned on errors. The SQLCOUNT value can be used to reposition the
cursor, if necessary, to read the rows.

SQL Anywhere Embedded SQL

544 Copyright © 2007, iAnywhere Solutions, Inc.

Sending and retrieving long values
The method for sending and retrieving LONG VARCHAR, LONG NVARCHAR, and LONG BINARY
values in embedded SQL applications is different from that for other data types. The standard SQLDA fields
are limited to 32767 bytes of data as the fields holding the length information (sqldata, sqllen, sqlind) are
16-bit values. Changing these values to 32-bit values would break existing applications.

The method of describing LONG VARCHAR, LONG NVARCHAR, and LONG BINARY values is the
same as for other data types.

For information about how to retrieve and send values, see “Retrieving LONG data” on page 546, and
“Sending LONG data” on page 547.

Static SQL structures
Separate fields are used to hold the allocated, stored, and untruncated lengths of LONG BINARY, LONG
VARCHAR, and LONG NVARCHAR data types. The static SQL data types are defined in sqlca.h as
follows:

#define DECL_LONGVARCHAR(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size+1];\
 }
#define DECL_LONGNVARCHAR(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size+1];\
 }
#define DECL_LONGBINARY(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size]; \
 }

Dynamic SQL structures
For dynamic SQL, set the sqltype field to DT_LONGVARCHAR, DT_LONGNVARCHAR, or
DT_LONGBINARY as appropriate. The associated LONGVARCHAR, LONGNVARCHAR, and
LONGBINARY structures are as follows:

typedef struct LONGVARCHAR {
 a_sql_uint32 array_len;
 a_sql_uint32 stored_len;
 a_sql_uint32 untrunc_len;
 char array[1];
} LONGVARCHAR, LONGNVARCHAR, LONGBINARY;

Structure member definitions
For both static and dynamic SQL structures, the structure members are defined as follows:

♦ array_len (Sending and retrieving.) The number of bytes allocated for the array part of the structure.

Sending and retrieving long values

Copyright © 2007, iAnywhere Solutions, Inc. 545

♦ stored_len (Sending and retrieving.) The number of bytes stored in the array. Always less than or
equal to array_len and untrunc_len.

♦ untrunc_len (Retrieving only.) The number of bytes that would be stored in the array if the value was
not truncated. Always greater than or equal to stored_len. If truncation occurs, this value is larger than
array_len.

Retrieving LONG data

This section describes how to retrieve LONG values from the database. For background information, see
“Sending and retrieving long values” on page 545.

The procedures are different depending on whether you are using static or dynamic SQL.

♦ To receive a LONG VARCHAR, LONG NVARCHAR, or LONG BINARY value (static SQL)

1. Declare a host variable of type DECL_LONGVARCHAR, DECL_LONGNVARCHAR, or
DECL_LONGBINARY, as appropriate. The array_len member is filled in automatically.

2. Retrieve the data using FETCH, GET DATA, or EXECUTE INTO. SQL Anywhere sets the following
information:

♦ indicator variable Negative if the value is NULL, 0 if there is no truncation, otherwise the
positive untruncated length in bytes up to a maximum of 32767.

For more information, see “Indicator variables” on page 516.

♦ stored_len The number of bytes stored in the array. Always less than or equal to array_len and
untrunc_len.

♦ untrunc_len The number of bytes that would be stored in the array if the value was not truncated.
Always greater than or equal to stored_len. If truncation occurs, this value is larger than array_len.

♦ To receive a value into a LONGVARCHAR, LONGNVARCHAR, or LONGBINARY structure
(dynamic SQL)

1. Set the sqltype field to DT_LONGVARCHAR, DT_LONGNVARCHAR, or DT_LONGBINARY as
appropriate.

2. Set the sqldata field to point to the LONGVARCHAR, LONGNVARCHAR, or LONGBINARY host
variable structure.

You can use the LONGVARCHARSIZE(n), LONGNVARCHARSIZE(n), or
LONGBINARYSIZE(n) macro to determine the total number of bytes to allocate to hold n bytes
of data in the array field.

3. Set the array_len field of the host variable structure to the number of bytes allocated for the array field.

4. Retrieve the data using FETCH, GET DATA, or EXECUTE INTO. SQL Anywhere sets the following
information:

SQL Anywhere Embedded SQL

546 Copyright © 2007, iAnywhere Solutions, Inc.

♦ * sqlind This sqlda field is negative if the value is NULL, 0 if there is no truncation, and is the
positive untruncated length in bytes up to a maximum of 32767.

♦ stored_len The number of bytes stored in the array. Always less than or equal to array_len and
untrunc_len.

♦ untrunc_len The number of bytes that would be stored in the array if the value was not truncated.
Always greater than or equal to stored_len. If truncation occurs, this value is larger than array_len.

The following code fragment illustrates the mechanics of retrieving LONG VARCHAR data using dynamic
embedded SQL. It is not intended to be a practical application:

#define DATA_LEN 128000
void get_test_var()
{
 LONGVARCHAR *longptr;
 SQLDA *sqlda;
 SQLVAR *sqlvar;
 sqlda = alloc_sqlda(1);
 longptr = (LONGVARCHAR *)malloc(
 LONGVARCHARSIZE(DATA_LEN));
 if(sqlda == NULL || longptr == NULL)
 {
 fatal_error("Allocation failed");
 }
 // init longptr for receiving data
 longptr->array_len = DATA_LEN;
 // init sqlda for receiving data
 // (sqllen is unused with DT_LONG types)
 sqlda->sqld = 1; // using 1 sqlvar
 sqlvar = &sqlda->sqlvar[0];
 sqlvar->sqltype = DT_LONGVARCHAR;
 sqlvar->sqldata = longptr;
 printf("fetching test_var\n");
 EXEC SQL PREPARE select_stmt FROM 'SELECT test_var';
 EXEC SQL EXECUTE select_stmt INTO DESCRIPTOR sqlda;
 EXEC SQL DROP STATEMENT select_stmt;
 printf("stored_len: %d, untrunc_len: %d, "
 "1st char: %c, last char: %c\n",
 longptr->stored_len,
 longptr->untrunc_len,
 longptr->array[0],
 longptr->array[DATA_LEN-1]);
 free_sqlda(sqlda);
 free(longptr);
}

Sending LONG data

This section describes how to send LONG values to the database from embedded SQL applications. For
background information, see “Sending and retrieving long values” on page 545.

The procedures are different depending on whether you are using static or dynamic SQL.

Sending and retrieving long values

Copyright © 2007, iAnywhere Solutions, Inc. 547

♦ To send a LONG value (static SQL)

1. Declare a host variable of type DECL_LONGVARCHAR, DECL_LONGNVARCHAR, or
DECL_LONGBINARY, as appropriate.

2. If you are sending NULL, set the indicator variable to a negative value.

For more information, see “Indicator variables” on page 516.

3. Set the stored_len field of the host variable structure to the number of bytes of data in the array field.

4. Send the data by opening the cursor or executing the statement.

The following code fragment illustrates the mechanics of sending a LONG VARCHAR using static
embedded SQL. It is not intended to be a practical application.

#define DATA_LEN 12800
EXEC SQL BEGIN DECLARE SECTION;
// SQLPP initializes longdata.array_len
DECL_LONGVARCHAR(128000) longdata;
EXEC SQL END DECLARE SECTION;
void set_test_var()
{
 // init longdata for sending data
 memset(longdata.array, 'a', DATA_LEN);
 longdata.stored_len = DATA_LEN;
 printf("Setting test_var to %d a's\n", DATA_LEN);
 EXEC SQL SET test_var = :longdata;
}

♦ To send a LONG value (dynamic SQL)

1. Set the sqltype field to DT_LONGVARCHAR, DT_LONGNVARCHAR, or DT_LONGBINARY, as
appropriate.

2. If you are sending NULL, set * sqlind to a negative value.

3. If you are not sending NULL, set the sqldata field to point to the LONGVARCHAR,
LONGNVARCHAR, or LONGBINARY host variable structure.

You can use the LONGVARCHARSIZE(n), LONGNVARCHARSIZE(n), or
LONGBINARYSIZE(n) macros to determine the total number of bytes to allocate to hold n bytes
of data in the array field.

4. Set the array_len field of the host variable structure to the number of bytes allocated for the array field.

5. Set the stored_len field of the host variable structure to the number of bytes of data in the array field.
This must not be more than array_len.

6. Send the data by opening the cursor or executing the statement.

SQL Anywhere Embedded SQL

548 Copyright © 2007, iAnywhere Solutions, Inc.

Using simple stored procedures
You can create and call stored procedures in embedded SQL.

You can embed a CREATE PROCEDURE just like any other data definition statement, such as CREATE
TABLE. You can also embed a CALL statement to execute a stored procedure. The following code fragment
illustrates both creating and executing a stored procedure in embedded SQL:

EXEC SQL CREATE PROCEDURE pettycash(
 IN Amount DECIMAL(10,2))
BEGIN
 UPDATE account
 SET balance = balance - Amount
 WHERE name = 'bank';
 UPDATE account
 SET balance = balance + Amount
 WHERE name = 'pettycash expense';
END;
EXEC SQL CALL pettycash(10.72);

If you want to pass host variable values to a stored procedure or to retrieve the output variables, you prepare
and execute a CALL statement. The following code fragment illustrates the use of host variables. Both the
USING and INTO clauses are used on the EXECUTE statement.

EXEC SQL BEGIN DECLARE SECTION;
double hv_expense;
double hv_balance;
EXEC SQL END DECLARE SECTION;
// Code here
EXEC SQL CREATE PROCEDURE pettycash(
 IN expense DECIMAL(10,2),
 OUT endbalance DECIMAL(10,2))
BEGIN
 UPDATE account
 SET balance = balance - expense
 WHERE name = 'bank';
 UPDATE account
 SET balance = balance + expense
 WHERE name = 'pettycash expense';
 SET endbalance = (SELECT balance FROM account
 WHERE name = 'bank');
END;
EXEC SQL PREPARE S1 FROM 'CALL pettycash(?, ?)';
EXEC SQL EXECUTE S1 USING :hv_expense INTO :hv_balance;

For more information, see “EXECUTE statement [ESQL]” [SQL Anywhere Server - SQL Reference], and
“PREPARE statement [ESQL]” [SQL Anywhere Server - SQL Reference].

Stored procedures with result sets

Database procedures can also contain SELECT statements. The procedure is declared using a RESULT
clause to specify the number, name, and types of the columns in the result set. Result set columns are different

Using simple stored procedures

Copyright © 2007, iAnywhere Solutions, Inc. 549

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

from output parameters. For procedures with result sets, the CALL statement can be used in place of a
SELECT statement in the cursor declaration:

EXEC SQL BEGIN DECLARE SECTION;
 char hv_name[100];
EXEC SQL END DECLARE SECTION;
EXEC SQL CREATE PROCEDURE female_employees()
 RESULT(name char(50))
BEGIN
 SELECT GivenName || Surname FROM Employees
 WHERE Sex = 'f';
END;

EXEC SQL PREPARE S1 FROM 'CALL female_employees()';
EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
for(;;)
{
 EXEC SQL FETCH C1 INTO :hv_name;
 if(SQLCODE != SQLE_NOERROR) break;
 printf("%s\\n", hv_name);
}
EXEC SQL CLOSE C1;

In this example, the procedure has been invoked with an OPEN statement rather than an EXECUTE
statement. The OPEN statement causes the procedure to execute until it reaches a SELECT statement. At
this point, C1 is a cursor for the SELECT statement within the database procedure. You can use all forms
of the FETCH command (backward and forward scrolling) until you are finished with it. The CLOSE
statement terminates execution of the procedure.

If there had been another statement following the SELECT in the procedure, it would not have been executed.
To execute statements following a SELECT, use the RESUME cursor-name command. The RESUME
command either returns the warning SQLE_PROCEDURE_COMPLETE or it returns SQLE_NOERROR
indicating that there is another cursor. The example illustrates a two-select procedure:

EXEC SQL CREATE PROCEDURE people()
 RESULT(name char(50))
BEGIN
 SELECT GivenName || Surname
 FROM Employees;
 SELECT GivenName || Surname
 FROM Customers;
END;
EXEC SQL PREPARE S1 FROM 'CALL people()';

EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
while(SQLCODE == SQLE_NOERROR)
{
 for(;;)
 {
 EXEC SQL FETCH C1 INTO :hv_name;
 if(SQLCODE != SQLE_NOERROR) break;
 printf("%s\\n", hv_name);
 }
 EXEC SQL RESUME C1;

SQL Anywhere Embedded SQL

550 Copyright © 2007, iAnywhere Solutions, Inc.

}
EXEC SQL CLOSE C1;

Dynamic cursors for CALL statements
These examples have used static cursors. Full dynamic cursors can also be used for the CALL statement.

For a description of dynamic cursors, see “Dynamic SELECT statement” on page 527.

The DESCRIBE statement works fully for procedure calls. A DESCRIBE OUTPUT produces a SQLDA
that has a description for each of the result set columns.

If the procedure does not have a result set, the SQLDA has a description for each INOUT or OUT parameter
for the procedure. A DESCRIBE INPUT statement produces a SQLDA having a description for each IN or
INOUT parameter for the procedure.

DESCRIBE ALL
DESCRIBE ALL describes IN, INOUT, OUT, and RESULT set parameters. DESCRIBE ALL uses the
indicator variables in the SQLDA to provide additional information.

The DT_PROCEDURE_IN and DT_PROCEDURE_OUT bits are set in the indicator variable when a CALL
statement is described. DT_PROCEDURE_IN indicates an IN or INOUT parameter and
DT_PROCEDURE_OUT indicates an INOUT or OUT parameter. Procedure RESULT columns have both
bits clear.

After a describe OUTPUT, these bits can be used to distinguish between statements that have result sets
(need to use OPEN, FETCH, RESUME, CLOSE) and statements that do not (need to use EXECUTE).

For a complete description, see “DESCRIBE statement [ESQL]” [SQL Anywhere Server - SQL
Reference].

Multiple result sets
If you have a procedure that returns multiple result sets, you must re-describe after each RESUME statement
if the result sets change shapes.

You need to describe the cursor, not the statement, to re-describe the current position of the cursor.

Using simple stored procedures

Copyright © 2007, iAnywhere Solutions, Inc. 551

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Embedded SQL programming techniques
This section contains a set of tips for developers of embedded SQL programs.

Implementing request management

The default behavior of the interface DLL is for applications to wait for completion of each database request
before carrying out other functions. This behavior can be changed using request management functions. For
example, when using Interactive SQL, the operating system is still active while Interactive SQL is waiting
for a response from the database and Interactive SQL carries out some tasks in that time.

You can achieve application activity while a database request is in progress by providing a callback function.
In this callback function you must not do another database request except db_cancel_request. You can use
the db_is_working function in your message handlers to determine if you have a database request in progress.

The db_register_a_callback function is used to register your application callback functions.

See also
♦ “db_register_a_callback function” on page 568
♦ “db_cancel_request function” on page 561
♦ “db_is_working function” on page 565

Backup functions

The db_backup function provides support for online backup in embedded SQL applications. The backup
utility makes use of this function. You should only need to write a program to use this function if your backup
requirements are not satisfied by the SQL Anywhere backup utility.

BACKUP statement is recommended
Although this function provides one way to add backup features to an application, the recommended way
to accomplish this task is to use the BACKUP statement. See “BACKUP statement” [SQL Anywhere Server
- SQL Reference].

You can also access the backup utility directly using the Database Tools DBBackup function. See
“DBBackup function” on page 731.

See also
♦ “db_backup function” on page 557

SQL Anywhere Embedded SQL

552 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

SQL preprocessor
The SQL preprocessor processes a C or C++ program containing embedded SQL before the compiler is run.

Syntax
sqlpp [options] input-file [output-file]

Option Description

-d Generate code that reduces data space size. Data
structures are reused and initialized at execution
time before use. This increases code size.

-e level Flag as an error any static embedded SQL that is
not part of a specified standard. The level value
indicates the standard to use. For example,
sqlpp -e c03 ... flags any syntax that is
not part of the core SQL/2003 standard. The sup-
ported level values are:

♦ c03 Flag syntax that is not core SQL/2003
syntax

♦ p03 Flag syntax that is not full SQL/2003
syntax

♦ c99 Flag syntax that is not core SQL/1999
syntax

♦ p99 Flag syntax that is not full SQL/1999
syntax

♦ e92 Flag syntax that is not entry-level SQL/
1992 syntax

♦ i92 Flag syntax that is not intermediate-lev-
el SQL/1992 syntax

♦ f92 Flag syntax that is not full-SQL/1992
syntax

♦ t Flag non-standard host variable types

♦ u Flag syntax that is not supported by Ul-
traLite

For compatibility with previous SQL Anywhere
versions, you can also specify e, i, and f, which
correspond to e92, i92, and f92, respectively.

-h width Limit the maximum length of lines output by
sqlpp to width. The continuation character is a
backslash (\) and the minimum value of width is
10.

SQL preprocessor

Copyright © 2007, iAnywhere Solutions, Inc. 553

Option Description

-k Notify the preprocessor that the program to be
compiled includes a user declaration of SQL-
CODE. The definition must be of type LONG,
but does not need to be in a declaration section.

-n Generate line number information in the C file.
This consists of #line directives in the appropriate
places in the generated C code. If the compiler
that you are using supports the #line directive, this
option makes the compiler report errors on line
numbers in the SQC file (the one with the em-
bedded SQL) as opposed to reporting errors on
line numbers in the C file generated by the SQL
preprocessor. Also, the #line directives are used
indirectly by the source level debugger so that
you can debug while viewing the SQC source
file.

-o operating-system Specify the target operating system. The support-
ed operating systems are:

♦ WINDOWS Microsoft Windows

♦ NETWARE Novell NetWare

♦ UNIX Use this option if you are creating a
32-bit Unix application.

♦ UNIX64 Use this option if you are creating
a 64-bit Unix application.

-q Quiet mode—do not print messages.

-r- Generate non-reentrant code. For more informa-
tion on reentrant code, see “SQLCA management
for multi-threaded or reentrant
code” on page 521.

-s len Set the maximum size string that the preprocessor
puts into the C file. Strings longer than this value
are initialized using a list of characters ('a','b','c',
and so on). Most C compilers have a limit on the
size of string literal they can handle. This option
is used to set that upper limit. The default value
is 500.

-u Generate code for UltraLite. For more informa-
tion, see “Embedded SQL API Reference” [Ul-
traLite - C and C++ Programming].

SQL Anywhere Embedded SQL

554 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/ulcpen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/ulcpen10.pdf

Option Description

-w level Flag as a warning any static embedded SQL that
is not part of a specified standard. The level value
indicates the standard to use. For example,
sqlpp -w c03 ... flags any SQL syntax
that is not part of the core SQL/2003 syntax. The
supported level values are:

♦ c03 Flag syntax that is not core SQL/2003
syntax

♦ p03 Flag syntax that is not full SQL/2003
syntax

♦ c99 Flag syntax that is not core SQL/1999
syntax

♦ p99 Flag syntax that is not full SQL/1999
syntax

♦ e92 Flag syntax that is not entry-level SQL/
1992 syntax

♦ i92 Flag syntax that is not intermediate-lev-
el SQL/1992 syntax

♦ f92 Flag syntax that is not full-SQL/1992
syntax

♦ t Flag non-standard host variable types

♦ u Flag syntax that is not supported by Ul-
traLite

For compatibility with previous SQL Anywhere
versions, you can also specify e, i, and f, which
correspond to e92, i92, and f92, respectively.

-x Change multibyte strings to escape sequences so
that they can pass through compilers.

SQL preprocessor

Copyright © 2007, iAnywhere Solutions, Inc. 555

Option Description

-z cs Specify the collation sequence. For a list of rec-
ommended collation sequences, enter dbinit -l at
a command prompt.

The collation sequence is used to help the pre-
processor understand the characters used in the
source code of the program, for example, in iden-
tifying alphabetic characters suitable for use in
identifiers. If -z is not specified, the preprocessor
attempts to determine a reasonable collation to
use based on the operating system and the
SALANG and SACHARSET environment vari-
ables. See “SACHARSET environment vari-
able” [SQL Anywhere Server - Database Admin-
istration], and “SALANG environment vari-
able” [SQL Anywhere Server - Database
Administration].

input-file A C or C++ program containing embedded SQL
to be processed.

output-file The C language source file created by the SQL
preprocessor.

Description
The SQL preprocessor translates the SQL statements in the input-file into C language source that is put into
the output-file. The normal extension for source programs with embedded SQL is .sqc. The default output
file name is the input-file with an extension of .c. If input-file has a .c extension, the default output file name
extension is .cc.

See also
♦ “Introduction to embedded SQL” on page 496
♦ “sql_flagger_error_level option [compatibility]” [SQL Anywhere Server - Database Administration]
♦ “sql_flagger_warning_level option [compatibility]” [SQL Anywhere Server - Database

Administration]
♦ “SQLFLAGGER function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
♦ “sa_ansi_standard_packages system procedure” [SQL Anywhere Server - SQL Reference]
♦ “SQL Preprocessor Error Messages” [SQL Anywhere 10 - Error Messages]

SQL Anywhere Embedded SQL

556 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dberen10.pdf

Library function reference
The SQL preprocessor generates calls to functions in the interface library or DLL. In addition to the calls
generated by the SQL preprocessor, a set of library functions is provided to make database operations easier
to perform. Prototypes for these functions are included by the EXEC SQL INCLUDE SQLCA command.

This section contains a reference description of these various functions.

DLL entry points
The DLL entry points are the same except that the prototypes have a modifier appropriate for DLLs.

You can declare the entry points in a portable manner using _esqlentry_, which is defined in sqlca.h. It
resolves to the value __stdcall.

alloc_sqlda function

Prototype
struct sqlda * alloc_sqlda(unsigned numvar);

Description
Allocates a SQLDA with descriptors for numvar variables. The sqln field of the SQLDA is initialized to
numvar. Space is allocated for the indicator variables, the indicator pointers are set to point to this space,
and the indicator value is initialized to zero. A null pointer is returned if memory cannot be allocated. It is
recommended that you use this function instead of the alloc_sqlda_noind function.

alloc_sqlda_noind function

Prototype
struct sqlda * alloc_sqlda_noind(unsigned numvar);

Description
Allocates a SQLDA with descriptors for numvar variables. The sqln field of the SQLDA is initialized to
numvar. Space is not allocated for indicator variables; the indicator pointers are set to the null pointer. A
null pointer is returned if memory cannot be allocated.

db_backup function

Prototype
void db_backup(
SQLCA * sqlca,
int op,
int file_num,
unsigned long page_num,
struct sqlda * sqlda);

Library function reference

Copyright © 2007, iAnywhere Solutions, Inc. 557

Authorization
Must be connected as a user with DBA authority, REMOTE DBA authority (SQL Remote), or BACKUP
authority.

Description

BACKUP statement is recommended
Although this function provides one way to add backup features to an application, the recommended way
to accomplish this task is to use the BACKUP statement. See “BACKUP statement” [SQL Anywhere Server
- SQL Reference].

The action performed depends on the value of the op parameter:

♦ DB_BACKUP_START Must be called before a backup can start. Only one backup can be running
per database at one time against any given database server. Database checkpoints are disabled until the
backup is complete (db_backup is called with an op value of DB_BACKUP_END). If the backup cannot
start, the SQLCODE is SQLE_BACKUP_NOT_STARTED. Otherwise, the SQLCOUNT field of the
sqlca is set to the database page size. Backups are processed one page at a time.

The file_num, page_num, and sqlda parameters are ignored.

♦ DB_BACKUP_OPEN_FILE Open the database file specified by file_num, which allows pages of the
specified file to be backed up using DB_BACKUP_READ_PAGE. Valid file numbers are 0 through
DB_BACKUP_MAX_FILE for the root database files, and 0 through
DB_BACKUP_TRANS_LOG_FILE for the transaction log file. If the specified file does not exist, the
SQLCODE is SQLE_NOTFOUND. Otherwise, SQLCOUNT contains the number of pages in the file,
SQLIOESTIMATE contains a 32-bit value (POSIX time_t) that identifies the time that the database file
was created, and the operating system file name is in the sqlerrmc field of the SQLCA.

The page_num and sqlda parameters are ignored.

♦ DB_BACKUP_READ_PAGE Read one page of the database file specified by file_num. The
page_num should be a value from 0 to one less than the number of pages returned in SQLCOUNT by a
successful call to db_backup with the DB_BACKUP_OPEN_FILE operation. Otherwise, SQLCODE is
set to SQLE_NOTFOUND. The sqlda descriptor should be set up with one variable of type DT_BINARY
or DT_LONG_BINARY pointing to a buffer. The buffer should be large enough to hold binary data of
the size returned in the SQLCOUNT field on the call to db_backup with the DB_BACKUP_START
operation.

DT_BINARY data contains a two-byte length followed by the actual binary data, so the buffer must be
two bytes longer than the page size.

Application must save buffer
This call makes a copy of the specified database page into the buffer, but it is up to the application to save
the buffer on some backup media.

♦ DB_BACKUP_READ_RENAME_LOG This action is the same as DB_BACKUP_READ_PAGE,
except that after the last page of the transaction log has been returned, the database server renames the
transaction log and starts a new one.

SQL Anywhere Embedded SQL

558 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

If the database server is unable to rename the log at the current time (for example in version 7.0.x or earlier
databases there may be incomplete transactions), the
SQLE_BACKUP_CANNOT_RENAME_LOG_YET error is set. In this case, do not use the page
returned, but instead reissue the request until you receive SQLE_NOERROR and then write the page.
Continue reading the pages until you receive the SQLE_NOTFOUND condition.

The SQLE_BACKUP_CANNOT_RENAME_LOG_YET error may be returned multiple times and on
multiple pages. In your retry loop, you should add a delay so as not to slow the server down with too many
requests.

When you receive the SQLE_NOTFOUND condition, the transaction log has been backed up successfully
and the file has been renamed. The name for the old transaction file is returned in the sqlerrmc field of
the SQLCA.

You should check the sqlda->sqlvar[0].sqlind value after a db_backup call. If this value is greater than
zero, the last log page has been written and the log file has been renamed. The new name is still in
sqlca.sqlerrmc, but the SQLCODE value is SQLE_NOERROR.

You should not call db_backup again after this, except to close files and finish the backup. If you do, you
get a second copy of your backed up log file and you receive SQLE_NOTFOUND.

♦ DB_BACKUP_CLOSE_FILE Must be called when processing of one file is complete to close the
database file specified by file_num.

The page_num and sqlda parameters are ignored.

♦ DB_BACKUP_END Must be called at the end of the backup. No other backup can start until this
backup has ended. Checkpoints are enabled again.

The file_num, page_num and sqlda parameters are ignored.

♦ DB_BACKUP_PARALLEL_START Starts a parallel backup. Like DB_BACKUP_START, only
one backup can be running against a database at one time on any given database server. Database
checkpoints are disabled until the backup is complete (until db_backup is called with an op value of
DB_BACKUP_END). If the backup cannot start, you receive SQLE_BACKUP_NOT_STARTED.
Otherwise, the SQLCOUNT field of the sqlca is set to the database page size.

The file_num parameter instructs the database server to rename the transaction log and start a new one
after the last page of the transaction log has been returned. If the value is non-zero then the transaction
log is renamed or restarted. Otherwise, it is not renamed and restarted. This parameter eliminates the need
for the DB_BACKUP_READ_RENAME_LOG operation, which is not allowed during a parallel backup
operation.

The page_num parameter informs the database server of the maximum size of the client's buffer, in
database pages. On the server side, the parallel backup readers try to read sequential blocks of pages—
this value lets the server know how large to allocate these blocks: passing a value of N lets the server know
that the client is willing to accept at most N database pages at a time from the server. The server may
return blocks of pages of less than size N if it is unable to allocate enough memory for blocks of N pages.
If the client does not know the size of database pages until after the call to
DB_BACKUP_PARALLEL_START, this value can be provided to the server with the
DB_BACKUP_INFO operation. This value must be provided before the first call to retrieve backup pages
(DB_BACKUP_PARALLEL_READ).

Library function reference

Copyright © 2007, iAnywhere Solutions, Inc. 559

Note
If you are using db_backup to start a parallel backup, db_backup does not create writer threads. The caller
of db_backup must receive the data and act as the writer.

♦ DB_BACKUP_INFO This parameter provides additional information to the database server about the
parallel backup. The file_num parameter indicates the type of information being provided, and the
page_num parameter provides the value. You can specify the following additional information with
DB_BACKUP_INFO:

♦ DB_BACKUP_INFO_PAGES_IN_BLOCK The page_num argument contains the maximum
number of pages that should be sent back in one block.

♦ DB_BACKUP_INFO_CHKPT_LOG This is the client-side equivalent to the WITH
CHECKPOINT LOG option of the BACKUP statement. A page_num value of
DB_BACKUP_CHKPT_COPY indicates COPY, while the value DB_BACKUP_CHKPT_NOCOPY
indicates NO COPY. If this value is not provided it defaults to COPY.

♦ DB_BACKUP_PARALLEL_READ This operation reads a block of pages from the database server.
Before this operation is invoked, all of the files that are to be backed up must have been opened using the
DB_BACKUP_OPEN_FILE operation. DB_BACKUP_PARALLEL_READ ignores the file_num and
page_num arguments.

The sqlda descriptor should be set up with one variable of type DT_LONGBINARY pointing to a buffer.
The buffer should be large enough to hold binary data of the size N pages (specified in the
DB_BACKUP_START_PARALLEL operation, or in a DB_BACKUP_INFO operation). For more
information on this data type, see DT_LONGBINARY in “Embedded SQL data types” on page 507.

The server returns a sequential block of database pages for a particular database file. The page number of
the first page in the block is returned in the SQLCOUNT field. The file number that the pages belong to
is returned in the SQLIOESTIMATE field, and this value matches one of the file numbers used in the
DB_BACKUP_OPEN_FILE calls. The size of the data returned is available in the stored_len field of the
DT_LONGBINARY variable, and is always a multiple of the database page size. While the data returned
by this call contains a block of sequential pages for a given file, it is not safe to assume that separate blocks
of data are returned in sequential order, or that all of one database file's pages are returned before another
database file's pages. The caller should be prepared to receive portions of another individual file out of
sequential order, or of any opened database file on any given call.

An application should make repeated calls to this operation until the size of the read data is 0, or the value
of sqlda->sqlvar[0].sqlind is greater than 0. If the backup is started with transaction log renaming/
restarting, SQLERROR could be set to SQLE_BACKUP_CANNOT_RENAME_LOG_YET. In this case,
do not use the pages returned, but instead reissue the request until you receive SQLE_NOERROR, and
then write the data. The SQLE_BACKUP_CANNOT_RENAME_LOG_YET error may be returned
multiple times and on multiple pages. In your retry loop, you should add a delay so the database server is
not slowed down by too many requests. Continue reading the pages until either of the first two conditions
are met.

The dbbackup utility uses the following algorithm. Note that this is not C code, and does not include error
checking.

sqlda->sqld = 1;
sqlda->sqlvar[0].sqltype = DT_LONGBINARY

SQL Anywhere Embedded SQL

560 Copyright © 2007, iAnywhere Solutions, Inc.

/* Allocate LONGBINARY value for page buffer. It MUST have */
/* enough room to hold the requested number (128) of database pages */
sqlda->sqlvar[0].sqldata = allocated buffer
/* Open the server files needing backup */
for file_num = 0 to DB_BACKUP_MAX_FILE
 db_backup(... DB_BACKUP_OPEN_FILE, file_num ...)
 if SQLCODE == SQLE_NO_ERROR
 /* The file exists */
 num_pages = SQLCOUNT
 file_time = SQLE_IO_ESTIMATE
 open backup file with name from sqlca.sqlerrmc
end for
/* read pages from the server, write them locally */
while TRUE
 /* file_no and page_no are ignored */
 db_backup(&sqlca, DB_BACKUP_PARALLEL_READ, 0, 0, &sqlda);
 if SQLCODE != SQLE_NO_ERROR
 break;
 if buffer->stored_len == 0 || sqlda->sqlvar[0].sqlind > 0
 break;
 /* SQLCOUNT contains the starting page number of the block */
 /* SQLIOESTIMATE contains the file number the pages belong to */
 write block of pages to appropriate backup file
end while
/* close the server backup files */
for file_num = 0 to DB_BACKUP_MAX_FILE
 /* close backup file */
 db_backup(... DB_BACKUP_CLOSE_FILE, file_num ...)
end for
/* shut down the backup */
db_backup(... DB_BACKUP_END ...)
/* cleanup */
free page buffer

db_cancel_request function

Prototype
int db_cancel_request(SQLCA * sqlca);

Description
Cancels the currently active database server request. This function checks to make sure a database server
request is active before sending the cancel request. If the function returns 1, then the cancel request was sent;
if it returns 0, then no request was sent.

A non-zero return value does not mean that the request was canceled. There are a few critical timing cases
where the cancel request and the response from the database or server cross. In these cases, the cancel simply
has no effect, even though the function still returns TRUE.

Library function reference

Copyright © 2007, iAnywhere Solutions, Inc. 561

The db_cancel_request function can be called asynchronously. This function and db_is_working are the only
functions in the database interface library that can be called asynchronously using a SQLCA that might be
in use by another request.

If you cancel a request that is carrying out a cursor operation, the position of the cursor is indeterminate.
You must locate the cursor by its absolute position or close it, following the cancel.

db_change_char_charset function

Prototype
unsigned int db_change_char_charset(
SQLCA * sqlca,
char * charset);

Description
Changes the application's CHAR character set for this connection. Data sent and fetched using FIXCHAR,
VARCHAR, LONGVARCHAR, and STRING types are in the CHAR character set.

Returns 1 if the change is successful, 0 otherwise.

For a list of recommended character sets, see “Recommended character sets and collations” [SQL Anywhere
Server - Database Administration].

db_change_nchar_charset function

Prototype
unsigned int db_change_nchar_charset(
SQLCA * sqlca,
char * charset);

Description
Changes the application's NCHAR character set for this connection. Data sent and fetched using
NFIXCHAR, NVARCHAR, LONGNVARCHAR, and NSTRING host variable types are in the NCHAR
character set.

If the db_change_nchar_charset function is not called, all data is sent and fetched using the CHAR character
set. Typically, an application that wants to send and fetch Unicode data should set the NCHAR character
set to UTF-8.

If this function is called, the charset parameter is usually "UTF-8". The NCHAR character set cannot be set
to UTF-16.

Returns 1 if the change is successful, 0 otherwise.

In embedded SQL, NCHAR, NVARCHAR and LONG NVARCHAR are described as DT_FIXCHAR,
DT_VARCHAR, and DT_LONGVARCHAR, respectively, by default. If the db_change_nchar_charset

SQL Anywhere Embedded SQL

562 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

function has been called, these types are described as DT_NFIXCHAR, DT_NVARCHAR, and
DT_LONGNVARCHAR, respectively.

For a list of recommended character sets, see “Recommended character sets and collations” [SQL Anywhere
Server - Database Administration].

db_delete_file function

Prototype
void db_delete_file(
SQLCA * sqlca,
char * filename);

Authorization
Must be connected to a user ID with DBA authority or REMOTE DBA authority (SQL Remote).

Description
The db_delete_file function requests the database server to delete filename. This can be used after backing
up and renaming the transaction log to delete the old transaction log. See
DB_BACKUP_READ_RENAME_LOG in “db_backup function” on page 557.

You must be connected to a user ID with DBA authority.

db_find_engine function

Prototype
unsigned short db_find_engine(
SQLCA * sqlca,
char * name);

Description
Returns an unsigned short value, which indicates status information about the database server whose name
is name. If no server can be found with the specified name, the return value is 0. A non-zero value indicates
that the server is currently running.

Each bit in the return value conveys some information. Constants that represent the bits for the various pieces
of information are defined in the sqldef.h header file. If a null pointer is specified for name, information is
returned about the default database server.

db_fini function

Prototype
int db_fini(SQLCA * sqlca);

Library function reference

Copyright © 2007, iAnywhere Solutions, Inc. 563

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Description
This function frees resources used by the database interface or DLL. You must not make any other library
calls or execute any embedded SQL commands after db_fini is called. If an error occurs during processing,
the error code is set in SQLCA and the function returns 0. If there are no errors, a non-zero value is returned.

You need to call db_fini once for each SQLCA being used.

Caution
Failure to call db_fini for each db_init on NetWare can cause the database server to fail and the NetWare
file server to fail.

For information about using db_init in UltraLite applications, see “db_fini function” [UltraLite - C and C+
+ Programming].

db_get_property function

Prototype
unsigned int db_get_property(
SQLCA * sqlca,
a_db_property property,
char * value_buffer,
int value_buffer_size);

Description
This function is used to obtain information about the database interface or the server to which you are
connected.

The arguments are as follows:

♦ a_db_property The property requested, either DB_PROP_SERVER_ADDRESS or
DB_PROP_DBLIB_VERSION.

♦ value_buffer This argument is filled with the property value as a null-terminated string.

♦ value_buffer_size The maximum length of the string value_buffer, including the terminating null
character.

The following properties are supported:

♦ DB_PROP_SERVER_ADDRESS This property value gets the current connection's server network
address as a printable string. The shared memory protocol always returns the empty string for the address.
TCP/IP and SPX protocols return non-empty string addresses.

♦ DB_PROP_DBLIB_VERSION This property value gets the database interface library's version (for
example, "10.0.1.3309").

Returns 1 if successful, 0 otherwise.

SQL Anywhere Embedded SQL

564 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/ulcpen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/ulcpen10.pdf

db_init function

Prototype
int db_init(SQLCA * sqlca);

Description
This function initializes the database interface library. This function must be called before any other library
call is made and before any embedded SQL command is executed. The resources the interface library required
for your program are allocated and initialized on this call.

Returns 1 if successful, 0 otherwise.

Use db_fini to free the resources at the end of your program. If there are any errors during processing, they
are returned in the SQLCA and 0 is returned. If there are no errors, a non-zero value is returned and you can
begin using embedded SQL commands and functions.

In most cases, this function should be called only once (passing the address of the global sqlca variable
defined in the sqlca.h header file). If you are writing a DLL or an application that has multiple threads using
embedded SQL, call db_init once for each SQLCA that is being used.

For more information, see “SQLCA management for multi-threaded or reentrant code” on page 521.

Caution
Failure to call db_fini for each db_init on NetWare can cause the database server to fail, and the NetWare
file server to fail.

For information about using db_init in UltraLite applications, see “db_init function” [UltraLite - C and C+
+ Programming].

db_is_working function

Prototype
unsigned short db_is_working(SQLCA * sqlca);

Description
Returns 1 if your application has a database request in progress that uses the given sqlca and 0 if there is no
request in progress that uses the given sqlca.

This function can be called asynchronously. This function and db_cancel_request are the only functions in
the database interface library that can be called asynchronously using a SQLCA that might be in use by
another request.

Library function reference

Copyright © 2007, iAnywhere Solutions, Inc. 565

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/ulcpen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/ulcpen10.pdf

db_locate_servers function

Prototype
unsigned intdb_locate_servers(
SQLCA * sqlca,
SQL_CALLBACK_PARM callback_address,
void * callback_user_data);

Description
Provides programmatic access to the information displayed by the dblocate utility, listing all the SQL
Anywhere database servers on the local network that are listening on TCP/IP.

The callback function must have the following prototype:

int (*)(SQLCA * sqlca,
a_server_address * server_addr,
void * callback_user_data);

The callback function is called for each server found. If the callback function returns 0, db_locate_servers
stops iterating through servers.

The sqlca and callback_user_data passed to the callback function are those passed into db_locate_servers.
The second parameter is a pointer to an a_server_address structure. a_server_address is defined in sqlca.h,
with the following definition:

typedef struct a_server_address {
 a_sql_uint32 port_type;
 a_sql_uint32 port_num;
 char *name;
 char *address;
} a_server_address;

♦ port_type Is always PORT_TYPE_TCP at this time (defined to be 6 in sqlca.h).

♦ port_num Is the TCP port number on which this server is listening.

♦ name Points to a buffer containing the server name.

♦ address Points to a buffer containing the IP address of the server.

Returns 1 if successful, 0 otherwise.

See also
♦ “Server Enumeration utility (dblocate)” [SQL Anywhere Server - Database Administration]

db_locate_servers_ex function

Prototype
unsigned int db_locate_servers_ex(
SQLCA * sqlca,
SQL_CALLBACK_PARM callback_address,

SQL Anywhere Embedded SQL

566 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

void * callback_user_data,
unsigned int bitmask);

Description
Provides programmatic access to the information displayed by the dblocate utility, listing all the SQL
Anywhere database servers on the local network that are listening on TCP/IP, and provides a mask parameter
used to select addresses passed to the callback function.

The callback function must have the following prototype:

int (*)(SQLCA * sqlca,
a_server_address * server_addr,
void * callback_user_data);

The callback function is called for each server found. If the callback function returns 0, db_locate_servers_ex
stops iterating through servers.

The sqlca and callback_user_data passed to the callback function are those passed into db_locate_servers.
The second parameter is a pointer to an a_server_address structure. a_server_address is defined in sqlca.h,
with the following definition:

typedef struct a_server_address {
 a_sql_uint32 port_type;
 a_sql_uint32 port_num;
 char *name;
 char *address;
 char *dbname;
} a_server_address;

♦ port_type Is always PORT_TYPE_TCP at this time (defined to be 6 in sqlca.h).

♦ port_num Is the TCP port number on which this server is listening.

♦ name Points to a buffer containing the server name.

♦ address Points to a buffer containing the IP address of the server.

♦ dbname Points to a buffer containing the database name.

Three bitmask flags are supported:

♦ DB_LOOKUP_FLAG_NUMERIC
♦ DB_LOOKUP_FLAG_ADDRESS_INCLUDES_PORT
♦ DB_LOOKUP_FLAG_DATABASES

These flags are defined in sqlca.h and can be ORed together.

DB_LOOKUP_FLAG_NUMERIC ensures that addresses passed to the callback function are IP addresses,
instead of host names.

DB_LOOKUP_FLAG_ADDRESS_INCLUDES_PORT specifies that the address includes the TCP/IP port
number in the a_server_address structure passed to the callback function.

Library function reference

Copyright © 2007, iAnywhere Solutions, Inc. 567

DB_LOOKUP_FLAG_DATABASES specifies that the callback function is called once for each database
found, or once for each database server found if the database server doesn't support sending database
information (version 9.0.2 and earlier database servers).

Returns 1 if successful, 0 otherwise.

For more information, see “Server Enumeration utility (dblocate)” [SQL Anywhere Server - Database
Administration].

db_register_a_callback function

Prototype
void db_register_a_callback(
SQLCA * sqlca,
a_db_callback_index index,
(SQL_CALLBACK_PARM) callback);

Description
This function registers callback functions.

If you do not register a DB_CALLBACK_WAIT callback, the default action is to do nothing. Your
application blocks, waiting for the database response. You must register a callback for the MESSAGE TO
CLIENT statement. See “MESSAGE statement” [SQL Anywhere Server - SQL Reference].

To remove a callback, pass a null pointer as the callback function.

The following values are allowed for the index parameter:

♦ DB_CALLBACK_DEBUG_MESSAGE The supplied function is called once for each debug message
and is passed a null-terminated string containing the text of the debug message. The string normally has
a newline character (\n) immediately before the terminating null character. The prototype of the callback
function is as follows:

void SQL_CALLBACK debug_message_callback(
SQLCA * sqlca,
char * message_string);

♦ DB_CALLBACK_START The prototype is as follows:

void SQL_CALLBACK start_callback(SQLCA * sqlca);

This function is called just before a database request is sent to the server. DB_CALLBACK_START is
used only on Windows.

♦ DB_CALLBACK_FINISH The prototype is as follows:

void SQL_CALLBACK finish_callback(SQLCA * sqlca);

SQL Anywhere Embedded SQL

568 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

This function is called after the response to a database request has been received by the interface DLL.
DB_CALLBACK_FINISH is used only on Windows operating systems.

♦ DB_CALLBACK_CONN_DROPPED The prototype is as follows:

void SQL_CALLBACK conn_dropped_callback (
SQLCA * sqlca,
char * conn_name);

This function is called when the database server is about to drop a connection because of a liveness
timeout, through a DROP CONNECTION statement, or because the database server is being shut down.
The connection name conn_name is passed in to allow you to distinguish between connections. If the
connection was not named, it has a value of NULL.

♦ DB_CALLBACK_WAIT The prototype is as follows:

void SQL_CALLBACK wait_callback(SQLCA * sqlca);

This function is called repeatedly by the interface library while the database server or client library is
busy processing your database request.

You would register this callback as follows:

db_register_a_callback(&sqlca,
 DB_CALLBACK_WAIT,
 (SQL_CALLBACK_PARM)&db_wait_request);

♦ DB_CALLBACK_MESSAGE This is used to enable the application to handle messages received from
the server during the processing of a request.

The callback prototype is as follows:

void SQL_CALLBACK message_callback(
SQLCA * sqlca,
unsigned char msg_type,
an_sql_code code,
unsigned short length,
char * msg
);

The msg_type parameter states how important the message is and you may want to handle different
message types in different ways. The available message types are MESSAGE_TYPE_INFO,
MESSAGE_TYPE_WARNING, MESSAGE_TYPE_ACTION, and MESSAGE_TYPE_STATUS.
These constants are defined in sqldef.h. The code field may provide a SQLCODE associated with the
message, otherwise the value is 0. The length field tells you how long the message is. The message is
not null-terminated.

For example, the Interactive SQL callback displays STATUS and INFO message on the Messages tab,
while messages of type ACTION and WARNING go to a dialog. If an application does not register this
callback, there is a default callback, which causes all messages to be written to the server logfile (if
debugging is on and a logfile is specified). In addition, messages of type MESSAGE_TYPE_WARNING

Library function reference

Copyright © 2007, iAnywhere Solutions, Inc. 569

and MESSAGE_TYPE_ACTION are more prominently displayed, in an operating system-dependent
manner.

db_start_database function

Prototype
unsigned int db_start_database(SQLCA * sqlca, char * parms);

Arguments
sqlca A pointer to a SQLCA structure. For information, see “The SQL Communication Area
(SQLCA)” on page 519.

parms A null-terminated string containing a semicolon-delimited list of parameter settings, each of the
form KEYWORD=value. For example:

"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

Description
The database is started on an existing server, if possible. Otherwise, a new server is started. The steps carried
out to start a database are described in “Locating a database server” [SQL Anywhere Server - Database
Administration].

If the database was already running or was successfully started, the return value is true (non-zero) and
SQLCODE is set to 0. Error information is returned in the SQLCA.

If a user ID and password are supplied in the parameters, they are ignored.

The permission required to start and stop a database is set on the server command line. For information, see
“-gd server option” [SQL Anywhere Server - Database Administration].

db_start_engine function

Prototype
unsigned int db_start_engine(SQLCA * sqlca, char * parms);

Arguments
sqlca A pointer to a SQLCA structure. For information, see “The SQL Communication Area
(SQLCA)” on page 519.

parms A null-terminated string containing a semicolon-delimited list of parameter settings, each of the
form KEYWORD=value. For example,

"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

SQL Anywhere Embedded SQL

570 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Description
Starts the database server if it is not running.

For a description of the steps carried out by this function, see “Locating a database server” [SQL Anywhere
Server - Database Administration].

If the database server was already running or was successfully started, the return value is TRUE (non-zero)
and SQLCODE is set to 0. Error information is returned in the SQLCA.

The following call to db_start_engine starts the database server and names it demo, but does not load the
database, despite the DBF connection parameter:

db_start_engine(&sqlca,
 "DBF=samples-dir\\demo.db;START=dbeng10");

If you want to start a database as well as the server, include the database file in the StartLine (START)
connection parameter:

db_start_engine(&sqlca,
 "ENG=eng_name;START=dbeng10 samples-dir\\demo.db");

This call starts the server, names it eng_name, and starts the SQL Anywhere sample database on that server.

The db_start_engine function attempts to connect to a server before starting one, to avoid attempting to start
a server that is already running.

The ForceStart (FORCE) connection parameter is used only by the db_start_engine function. When set to
YES, there is no attempt to connect to a server before trying to start one. This enables the following pair of
commands to work as expected:

1. Start a database server named server_1:

start dbeng10 -n server_1 demo.db
2. Force a new server to start and connect to it:

db_start_engine(&sqlda,
 "START=dbeng10 -n server_2 mydb.db;ForceStart=YES")

If ForceStart (FORCE) was not used, and without an EngineName (ENG) parameter, the second command
would have attempted to connect to server_1. The db_start_engine function does not pick up the server name
from the -n option of the StartLine (START) parameter.

db_stop_database function

Prototype
unsigned int db_stop_database(SQLCA * sqlca, char * parms);

Arguments
sqlca A pointer to a SQLCA structure. For information, see “The SQL Communication Area
(SQLCA)” on page 519.

Library function reference

Copyright © 2007, iAnywhere Solutions, Inc. 571

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

parms A null-terminated string containing a semicolon-delimited list of parameter settings, each of the
form KEYWORD=value. For example:

"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

Description
Stop the database identified by DatabaseName (DBN) on the server identified by EngineName (ENG). If
EngineName is not specified, the default server is used.

By default, this function does not stop a database that has existing connections. If Unconditional is yes, the
database is stopped regardless of existing connections.

A return value of TRUE indicates that there were no errors.

The permission required to start and stop a database is set on the server command line. For information, see
“-gd server option” [SQL Anywhere Server - Database Administration].

db_stop_engine function

Prototype
unsigned int db_stop_engine(SQLCA * sqlca, char * parms);

Arguments
sqlca A pointer to a SQLCA structure. For information, see “The SQL Communication Area
(SQLCA)” on page 519.

parms A null-terminated string containing a semicolon-delimited list of parameter settings, each of the
form KEYWORD=value. For example,

"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

Description
Terminates execution of the database server. The steps carried out by this function are:

♦ Look for a local database server that has a name that matches the EngineName (ENG) parameter. If no
EngineName is specified, look for the default local database server.

♦ If no matching server is found, this function returns with success.

♦ Send a request to the server to tell it to checkpoint and shut down all databases.

♦ Unload the database server.

By default, this function does not stop a database server that has existing connections. If Unconditional is
yes, the database server is stopped regardless of existing connections.

SQL Anywhere Embedded SQL

572 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

A C program can use this function instead of spawning dbstop. A return value of TRUE indicates that there
were no errors.

The use of db_stop_engine is subject to the permissions set with the -gk server option. See “-gk server
option” [SQL Anywhere Server - Database Administration].

db_string_connect function

Prototype
unsigned int db_string_connect(SQLCA * sqlca, char * parms);

Arguments
sqlca A pointer to a SQLCA structure. For information, see “The SQL Communication Area
(SQLCA)” on page 519.

parms A null-terminated string containing a semicolon-delimited list of parameter settings, each of the
form KEYWORD=value. For example:

"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

Description
Provides extra functionality beyond the embedded SQL CONNECT command.

For a description of the algorithm used by this function, see “Troubleshooting connections” [SQL Anywhere
Server - Database Administration].

The return value is TRUE (non-zero) if a connection was successfully established and FALSE (zero)
otherwise. Error information for starting the server, starting the database, or connecting is returned in the
SQLCA.

db_string_disconnect function

Prototype
unsigned int db_string_disconnect(
 SQLCA * sqlca,
 char * parms);

Arguments
sqlca A pointer to a SQLCA structure. For information, see “The SQL Communication Area
(SQLCA)” on page 519.

parms A null-terminated string containing a semicolon-delimited list of parameter settings, each of the
form KEYWORD=value. For example:

"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

Library function reference

Copyright © 2007, iAnywhere Solutions, Inc. 573

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

For a list of connection parameters, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

Description
This function disconnects the connection identified by the ConnectionName parameter. All other parameters
are ignored.

If no ConnectionName parameter is specified in the string, the unnamed connection is disconnected. This
is equivalent to the embedded SQL DISCONNECT command. The return value is TRUE if a connection
was successfully ended. Error information is returned in the SQLCA.

This function shuts down the database if it was started with the AutoStop=yes parameter and there are no
other connections to the database. It also stops the server if it was started with the AutoStop=yes parameter
and there are no other databases running.

db_string_ping_server function

Prototype
unsigned int db_string_ping_server(
SQLCA * sqlca,
char * connect_string,
unsigned int connect_to_db);

Description
connect_string The connect_string is a normal connect string that may or may not contain server and
database information.

connect_to_db If connect_to_db is non-zero (TRUE), then the function attempts to connect to a database
on a server. It returns TRUE only if the connect string is sufficient to connect to the named database on the
named server.
If connect_to_db is zero, then the function only attempts to locate a server. It returns TRUE only if the
connect string is sufficient to locate a server. It makes no attempt to connect to the database.

db_time_change function

Prototype
unsigned int db_time_change(
SQLCA * sqlca);

Description
sqlca A pointer to a SQLCA structure. For information, see “The SQL Communication Area
(SQLCA)” on page 519.
This function permits clients to notify the server that the time has changed on the client. This function
recalculates the time zone adjustment and sends it to the server. On Windows platforms, it is recommended
that applications call this function when they receive the WM_TIMECHANGE message. This will make
sure that UTC timestamps are consistent over time changes, time zone changes, or daylight savings time
changeovers.

SQL Anywhere Embedded SQL

574 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Returns TRUE if successful, and FALSE otherwise.

fill_s_sqlda function

Prototype
struct sqlda * fill_s_sqlda(
struct sqlda * sqlda,
unsigned int maxlen);

Description
The same as fill_sqlda, except that it changes all the data types in sqlda to type DT_STRING. Enough space
is allocated to hold the string representation of the type originally specified by the SQLDA, up to a maximum
of maxlen bytes. The length fields in the SQLDA (sqllen) are modified appropriately. Returns sqlda if
successful and returns the null pointer if there is not enough memory available.

The SQLDA should be freed using the free_filled_sqlda function.

fill_sqlda function

Prototype
struct sqlda * fill_sqlda(struct sqlda * sqlda);

Description
Allocates space for each variable described in each descriptor of sqlda, and assigns the address of this
memory to the sqldata field of the corresponding descriptor. Enough space is allocated for the database type
and length indicated in the descriptor. Returns sqlda if successful and returns the null pointer if there is not
enough memory available.

The SQLDA should be freed using the free_filled_sqlda function.

free_filled_sqlda function

Prototype
void free_filled_sqlda(struct sqlda * sqlda);

Description
Free the memory allocated to each sqldata pointer and the space allocated for the SQLDA itself. Any null
pointer is not freed.

This should only be called if fill_sqlda or fill_s_sqlda was used to allocate the sqldata fields of the SQLDA.

Calling this function causes free_sqlda to be called automatically, and so any descriptors allocated by
alloc_sqlda are freed.

Library function reference

Copyright © 2007, iAnywhere Solutions, Inc. 575

free_sqlda function

Prototype
void free_sqlda(struct sqlda * sqlda);

Description
Free space allocated to this sqlda and free the indicator variable space, as allocated in fill_sqlda. Do not free
the memory referenced by each sqldata pointer.

free_sqlda_noind function

Prototype
void free_sqlda_noind(struct sqlda * sqlda);

Description
Free space allocated to this sqlda. Do not free the memory referenced by each sqldata pointer. The indicator
variable pointers are ignored.

sql_needs_quotes function

Prototype
unsigned int sql_needs_quotes(SQLCA *sqlca, char * str);

Description
Returns a TRUE or FALSE value that indicates whether the string requires double quotes around it when it
is used as a SQL identifier. This function formulates a request to the database server to determine if quotes
are needed. Relevant information is stored in the sqlcode field.

There are three cases of return value/code combinations:

♦ return = FALSE, sqlcode = 0 The string does not need quotes.

♦ return = TRUE The sqlcode is always SQLE_WARNING, and the string requires quotes.

♦ return = FALSE If sqlcode is something other than SQLE_WARNING, the test is inconclusive.

sqlda_storage function

Prototype
unsigned int sqlda_storage(struct sqlda * sqlda, int varno);

Description
Returns an unsigned 32-bit integer value representing the amount of storage required to store any value for
the variable described in sqlda->sqlvar[varno].

SQL Anywhere Embedded SQL

576 Copyright © 2007, iAnywhere Solutions, Inc.

sqlda_string_length function

Prototype
unsigned int sqlda_string_length(struct sqlda * sqlda, int varno);

Description
Returns an unsigned 32-bit integer value representing the length of the C string (type DT_STRING) that
would be required to hold the variable sqlda->sqlvar[varno] (no matter what its type is).

sqlerror_message function

Prototype
char * sqlerror_message(SQLCA * sqlca, char * buffer, int max);

Description
Return a pointer to a string that contains an error message. The error message contains text for the error code
in the SQLCA. If no error was indicated, a null pointer is returned. The error message is placed in the buffer
supplied, truncated to length max if necessary.

Library function reference

Copyright © 2007, iAnywhere Solutions, Inc. 577

Embedded SQL command summary

EXEC SQL
ALL embedded SQL statements must be preceded with EXEC SQL and end with a semicolon (;).

There are two groups of embedded SQL commands. Standard SQL commands are used by simply placing
them in a C program enclosed with EXEC SQL and a semicolon (;). CONNECT, DELETE, SELECT, SET,
and UPDATE have additional formats only available in embedded SQL. The additional formats fall into the
second category of embedded SQL specific commands.

For descriptions of the standard SQL commands, see “SQL Statements” [SQL Anywhere Server - SQL
Reference].

Several SQL commands are specific to embedded SQL and can only be used in a C program. See “SQL
Language Elements” [SQL Anywhere Server - SQL Reference].

Standard data manipulation and data definition statements can be used from embedded SQL applications.
In addition the following statements are specifically for embedded SQL programming:

♦ ALLOCATE DESCRIPTOR allocate memory for a descriptor. See “ALLOCATE DESCRIPTOR
statement [ESQL]” [SQL Anywhere Server - SQL Reference].

♦ CLOSE close a cursor. See “CLOSE statement [ESQL] [SP]” [SQL Anywhere Server - SQL
Reference].

♦ CONNECT connect to the database. See “CONNECT statement [ESQL] [Interactive SQL]” [SQL
Anywhere Server - SQL Reference].

♦ DEALLOCATE DESCRIPTOR reclaim memory for a descriptor. See “DEALLOCATE
DESCRIPTOR statement [ESQL]” [SQL Anywhere Server - SQL Reference].

♦ Declaration section declare host variables for database communication. See “Declaration section
[ESQL]” [SQL Anywhere Server - SQL Reference].

♦ DECLARE CURSOR declare a cursor. See “DECLARE CURSOR statement [ESQL] [SP]” [SQL
Anywhere Server - SQL Reference].

♦ DELETE (positioned) delete the row at the current position in a cursor. See “DELETE (positioned)
statement [ESQL] [SP]” [SQL Anywhere Server - SQL Reference].

♦ DESCRIBE describe the host variables for a particular SQL statement. See “DESCRIBE statement
[ESQL]” [SQL Anywhere Server - SQL Reference].

♦ DISCONNECT disconnect from database server. See “DISCONNECT statement [ESQL] [Interactive
SQL]” [SQL Anywhere Server - SQL Reference].

♦ DROP STATEMENT free resources used by a prepared statement. See “DROP STATEMENT
statement [ESQL]” [SQL Anywhere Server - SQL Reference].

♦ EXECUTE execute a particular SQL statement. See “EXECUTE statement [ESQL]” [SQL Anywhere
Server - SQL Reference].

SQL Anywhere Embedded SQL

578 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

♦ EXPLAIN explain the optimization strategy for a particular cursor. See “EXPLAIN statement
[ESQL]” [SQL Anywhere Server - SQL Reference].

♦ FETCH fetch a row from a cursor. See “FETCH statement [ESQL] [SP]” [SQL Anywhere Server - SQL
Reference].

♦ GET DATA fetch long values from a cursor. See “GET DATA statement [ESQL]” [SQL Anywhere
Server - SQL Reference].

♦ GET DESCRIPTOR retrieve information about a variable in a SQLDA. See “GET DESCRIPTOR
statement [ESQL]” [SQL Anywhere Server - SQL Reference].

♦ GET OPTION get the setting for a particular database option. See “GET OPTION statement
[ESQL]” [SQL Anywhere Server - SQL Reference].

♦ INCLUDE include a file for SQL preprocessing. See “INCLUDE statement [ESQL]” [SQL Anywhere
Server - SQL Reference].

♦ OPEN open a cursor. See “OPEN statement [ESQL] [SP]” [SQL Anywhere Server - SQL Reference].

♦ PREPARE prepare a particular SQL statement. See “PREPARE statement [ESQL]” [SQL Anywhere
Server - SQL Reference].

♦ PUT insert a row into a cursor. See “PUT statement [ESQL]” [SQL Anywhere Server - SQL
Reference].

♦ SET CONNECTION change active connection. See “SET CONNECTION statement [Interactive
SQL] [ESQL]” [SQL Anywhere Server - SQL Reference].

♦ SET DESCRIPTOR describe the variables in a SQLDA and place data into the SQLDA. See “SET
DESCRIPTOR statement [ESQL]” [SQL Anywhere Server - SQL Reference].

♦ SET SQLCA use a SQLCA other than the default global one. See “SET SQLCA statement
[ESQL]” [SQL Anywhere Server - SQL Reference].

♦ UPDATE (positioned) update the row at the current location of a cursor. See “UPDATE (positioned)
statement [ESQL] [SP]” [SQL Anywhere Server - SQL Reference].

♦ WHENEVER specify actions to occur on errors in SQL statements. See “WHENEVER statement
[ESQL]” [SQL Anywhere Server - SQL Reference].

Embedded SQL command summary

Copyright © 2007, iAnywhere Solutions, Inc. 579

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

580

CHAPTER 14

SQL Anywhere Perl DBD::SQLAnywhere API

Contents
Introduction to DBD::SQLAnywhere .. 582
Installing DBD::SQLAnywhere on Windows .. 583
Installing DBD::SQLAnywhere on Unix ... 585
Writing Perl scripts that use DBD::SQLAnywhere ... 587

Copyright © 2007, iAnywhere Solutions, Inc. 581

Introduction to DBD::SQLAnywhere
The DBD::SQLAnywhere interface provides access to SQL Anywhere databases from scripts written in
Perl. DBD::SQLAnywhere is a driver for the Database Independent Interface for Perl (DBI) module written
by Tim Bunce. Once you have installed the DBI module and DBD::SQLAnywhere, you can access and
change the information in SQL Anywhere databases from Perl.

The DBD::SQLAnywhere driver is thread-safe when using Perl with ithreads.

Requirements
The DBD::SQLAnywhere interface requires the following components.

♦ Perl 5.6.0 or newer. On Windows, ActivePerl 5.6.0 build 616 or later is required.

♦ DBI 1.34 or newer.

♦ A C compiler. On Windows, only the Microsoft Visual C++ compiler is supported.

SQL Anywhere Perl DBD::SQLAnywhere API

582 Copyright © 2007, iAnywhere Solutions, Inc.

Installing DBD::SQLAnywhere on Windows

♦ To prepare your computer

1. Install ActivePerl 5.6.0 or later. You can use the ActivePerl installer to install Perl and configure your
computer. You do not need to recompile Perl.

2. Install Microsoft Visual C++ or Microsoft Visual Studio .NET and configure your environment.

If you did not choose to configure your environment at install time, you must set your PATH, LIB, and
INCLUDE environment variables correctly before proceeding. Microsoft provides a batch file for this
purpose. For example, a batch file called vcvars32.bat is included in the Vc7\bin subdirectory of the
Visual Studio .NET 2003 installation. Open a new system command prompt and run this batch file
before continuing.

♦ To install the DBI Perl module on Windows

1. At a command prompt, change to the bin subdirectory of your ActivePerl installation directory.

The system command prompt is strongly recommended as the following steps may not work from
alternative shells.

2. Start the Perl Module Manager by executing the following command.

ppm

If ppm fails to start, check that Perl is installed correctly.

3. Enter the following command at the ppm prompt.

query dbi

This command should generate two lines of text similar to those shown below. In this case, the
information indicates that ActivePerl version 5.8.1 build 807 is running and that DBI version 1.38 is
installed.

Querying target 1 (ActivePerl 5.8.1.807)
 1. DBI [1.38] Database independent interface for Perl

If DBI is not installed, you must install it. To do so, enter the following command at the ppm prompt.

install dbi
4. Exit from the Perl Module Manager by executing the following command.

exit

♦ To install DBD::SQLAnywhere on Windows

1. At a system command prompt, change to the src\perl subdirectory of your SQL Anywhere installation.

2. Enter the following commands to build and test DBD::SQLAnywhere.

perl Makefile.PL

Installing DBD::SQLAnywhere on Windows

Copyright © 2007, iAnywhere Solutions, Inc. 583

nmake

If for any reason you need to start over, you can run the command make clean to remove any partially
built targets.

3. To test DBD::SQLAnywhere, copy the sample database file to your src\perl directory and make the
tests.

copy "samples-dir\demo.db" .

For information about the default location of samples-dir, see “Samples directory” [SQL Anywhere
Server - Database Administration].

dbeng10 demo
nmake test

If the tests do not run, ensure that the win32 subdirectory of the SQL Anywhere installation is in your
path.

4. To complete the installation, execute the following command at the same prompt.

nmake install

The DBD::SQLAnywhere interface is now ready to use.

SQL Anywhere Perl DBD::SQLAnywhere API

584 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Installing DBD::SQLAnywhere on Unix
The following procedure documents how to install the DBD::SQLAnywhere interface on the supported Unix
platforms, including Mac OS X.

♦ To prepare your computer

1. Install ActivePerl 5.6.0 build 616 or later.

2. Install a C compiler.

♦ To install the DBI Perl module on Unix

1. Download the DBI module source from www.cpan.org.

2. Extract the contents of this file into a new directory.

3. At a command prompt, change to the new directory and execute the following commands to build the
DBI module.

perl Makefile.PL
make

If for any reason you need to start over, you can use the command make clean to remove any partially
built targets.

4. Use the following command to test the DBI module.

make test
5. To complete the installation, execute the following command at the same prompt.

make install
6. Optionally, you can now delete the DBI source tree. It is no longer required.

♦ To install DBD::SQLAnywhere on Unix

1. Make sure the environment is set up for SQL Anywhere.

Depending on which shell you're using, enter the appropriate command to source the SQL Anywhere
configuration script from the SQL Anywhere installation directory:

In this shell … … use this command

sh, ksh, or bash . /bin/sa_config.sh

csh or tcsh source /bin/sa_config.csh

2. At a shell prompt, change to the src/perl subdirectory of your SQL Anywhere installation.

3. At a system command prompt, enter the following commands to build DBD::SQLAnywhere.

perl Makefile.PL

Installing DBD::SQLAnywhere on Unix

Copyright © 2007, iAnywhere Solutions, Inc. 585

http://www.cpan.org/

make

If for any reason you need to start over, you can use the command make clean to remove any partially
built targets.

4. To test DBD::SQLAnywhere, copy the sample database file to your DBD::SQLAnywhere directory
and make the tests.

cp /opt/sqlanywhere10/demo.db .
dbeng10 demo
make test

If the tests do not run, ensure that the bin subdirectory of the SQL Anywhere installation is in your path.

5. To complete the installation, execute the following command at the same prompt.

make install

The DBD::SQLAnywhere interface is now ready to use.

SQL Anywhere Perl DBD::SQLAnywhere API

586 Copyright © 2007, iAnywhere Solutions, Inc.

Writing Perl scripts that use DBD::SQLAnywhere
This section provides an overview of how to write Perl scripts that use the DBD::SQLAnywhere interface.
DBD::SQLAnywhere is a driver for the DBI module. Complete documentation for the DBI module is
available online at dbi.perl.org.

Loading the DBI module
To use the DBD::SQLAnywhere interface from a Perl script, you must first tell Perl that you plan to use the
DBI module. To do so, include the following line at the top of the file.

use DBI;

In addition, it is highly recommended that you run Perl in strict mode. This statement, which for example
makes explicit variable definitions mandatory, is likely to greatly reduce the chance that you will run into
mysterious errors due to such common mistakes as typographical errors.

#!/usr/local/bin/perl -w
#
use DBI;
use strict;

The DBI module automatically loads the DBD drivers, including DBD::SQLAnywhere, as required.

Opening and closing a connection
Generally, you open a single connection to a database and then perform all the required operations through
it by executing a sequence of SQL statements. To open a connection, you use the connect method. The return
value is a handle to the database connection that you use to perform subsequent operations on that connection.

The parameters to the connect method are as follows:

1. "DBI:SQLAnywhere:" and additional connection parameters separated by semicolons.

2. A user name. Unless this string is blank, ";UID=value" is appended to the connection string.

3. A password value. Unless this string is blank, ";PWD=value" is appended to the connection string.

4. A pointer to a hash of default values. Settings such as AutoCommit, RaiseError, and PrintError may be
set in this manner.

The following code sample opens and closes a connection to the SQL Anywhere sample database. You must
start the database server and sample database before running this script.

#!/usr/local/bin/perl -w
#
use DBI;
use strict;
my $database = "demo";
my $data_src = "DBI:SQLAnywhere:ENG=$database;DBN=$database";
my $uid = "DBA";
my $pwd = "sql";

Writing Perl scripts that use DBD::SQLAnywhere

Copyright © 2007, iAnywhere Solutions, Inc. 587

http://dbi.perl.org/

my %defaults = (
 AutoCommit => 1, # Autocommit enabled.
 PrintError => 0 # Errors not automatically printed.
);
my $dbh = DBI->connect($data_src, $uid, $pwd, \%defaults)
 or die "Cannot connect to $data_src: $DBI::errstr\n";
$dbh->disconnect;
exit(0);
__END__

Optionally, you can append the user name or password value to the data-source string instead of supplying
them as separate parameters. If you do so, supply a blank string for the corresponding argument. For example,
in the above script may be altered by replacing the statement that opens the connections with these statements:

$data_src .= ";UID=$uid";
$data_src .= ";PWD=$pwd";
my $dbh = DBI->connect($data_src, '', '', \%defaults)
 or die "Can't connect to $data_source: $DBI::errstr\n";

Selecting data
Once you have obtained a handle to an open connection, you can access and modify data stored in the
database. Perhaps the simplest operation is to retrieve some rows and print them out.

SQL statements that return row sets must be prepared before being executed. The prepare method returns a
handle to the statement. You use the handle to execute the statement, then retrieve meta information about
the result set and the rows of the result set.

#!/usr/local/bin/perl -w
#
use DBI;
use strict;
my $database = "demo";
my $data_src = "DBI:SQLAnywhere:ENG=$database;DBN=$database";
my $uid = "DBA";
my $pwd = "sql";
my $sel_stmt = "SELECT ID, GivenName, Surname
 FROM Customers
 ORDER BY GivenName, Surname";
my %defaults = (
 AutoCommit => 0, # Require explicit commit or rollback.
 PrintError => 0
);
my $dbh = DBI->connect($data_src, $uid, $pwd, \%defaults)
 or die "Can't connect to $data_src: $DBI::errstr\n";
&db_query($sel_stmt, $dbh);
$dbh->rollback;
$dbh->disconnect;
exit(0);
sub db_query {
 my($sel, $dbh) = @_;
 my($row, $sth) = undef;
 $sth = $dbh->prepare($sel);
 $sth->execute;
 print "Fields: $sth->{NUM_OF_FIELDS}\n";
 print "Params: $sth->{NUM_OF_PARAMS}\n\n";
 print join("\t\t", @{$sth->{NAME}}), "\n\n";
 while($row = $sth->fetchrow_arrayref) {

SQL Anywhere Perl DBD::SQLAnywhere API

588 Copyright © 2007, iAnywhere Solutions, Inc.

 print join("\t\t", @$row), "\n";
 }
 $sth = undef;
}
__END__

Prepared statements are not dropped from the database server until the Perl statement handle is destroyed.
To destroy a statement handle, reuse the variable or set it to undef. Calling the finish method does not drop
the handle. In fact, the finish method should not be called, except when you have decided not to finish reading
a result set.

To detect handle leaks, the SQL Anywhere database server limits the number of cursors and prepared
statements permitted to a maximum of 50 per connection by default. The resource governor automatically
generates an error if these limits are exceeded. If you get this error, check for undestroyed statement handles.
Use prepare_cached sparingly, as the statement handles are not destroyed.

If necessary, you can alter these limits by setting the max_cursor_count and max_statement_count options.
See “max_cursor_count option [database]” [SQL Anywhere Server - Database Administration], and
“max_statement_count option [database]” [SQL Anywhere Server - Database Administration]

Inserting rows
Inserting rows requires a handle to an open connection. The simplest method is to use a parameterized
SELECT statement, meaning that question marks are used as place holders for values. The statement is first
prepared, and then executed once per new row. The new row values are supplied as parameters to the execute
method.

The following sample program inserts two new customers. Although the row values appear as literal strings,
you may want to read the values from a file.

#!/usr/local/bin/perl -w
#
use DBI;
use strict;
my $database = "demo";
my $data_src = "DBI:SQLAnywhere:ENG=$database;DBN=$database";
my $uid = "DBA";
my $pwd = "sql";
my $ins_stmt = "INSERT INTO Customers (ID, GivenName, Surname,
 Street, City, State, Country, PostalCode,
 Phone, CompanyName)
 VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)";
my %defaults = (
 AutoCommit => 0, # Require explicit commit or rollback.
 PrintError => 0
);
my $dbh = DBI->connect($data_src, $uid, $pwd, \%defaults)
 or die "Can't connect to $data_src: $DBI::errstr\n";
&db_insert($ins_stmt, $dbh);
$dbh->commit;
$dbh->disconnect;
exit(0);
sub db_insert {
 my($ins, $dbh) = @_;
 my($sth) = undef;
 my @rows = (

Writing Perl scripts that use DBD::SQLAnywhere

Copyright © 2007, iAnywhere Solutions, Inc. 589

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

 "801,Alex,Alt,5 Blue Ave,New York,NY,USA,10012,5185553434,BXM",
 "802,Zach,Zed,82 Fair St,New York,NY,USA,10033,5185552234,Zap"
);
 $sth = $dbh->prepare($ins);
 my $row = undef;
 foreach $row (@rows) {
 my @values = split(/,/, $row);
 $sth->execute(@values);
 }
}
__END__

SQL Anywhere Perl DBD::SQLAnywhere API

590 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 15

SQL Anywhere PHP API

Contents
Introduction to the SQL Anywhere PHP module ... 592
Installing and configuring SQL Anywhere PHP ... 593
Running PHP test scripts in your web pages .. 598
Writing PHP scripts .. 600
SQL Anywhere PHP API reference ... 606

Copyright © 2007, iAnywhere Solutions, Inc. 591

Introduction to the SQL Anywhere PHP module
PHP, which stands for Hypertext Preprocessor, is an open source scripting language. Although it can be used
as a general-purpose scripting language, it was designed to be a convenient language in which to write scripts
that could be embedded with HTML documents. Unlike scripts written in JavaScript, which are frequently
executed by the client, PHP scripts are processed by the web server, and the resulting HTML output sent to
the clients. The syntax of PHP is derived from that of other popular languages, such as Java and Perl.

To make it a convenient language in which to develop dynamic web pages, PHP provides the ability to
retrieve information from many popular databases, such as SQL Anywhere. Included with SQL Anywhere
are two modules that provide access to SQL Anywhere databases from PHP. You can use these modules
and the PHP language to write stand-alone scripts and create dynamic web pages that rely on information
stored in SQL Anywhere databases.

The PHP functionality is provided by a DLL on 32-bit Windows versions of SQL Anywhere, and by a shared
object on Linux for x86. Source code for the SQLAnywhere PHP module is installed in the src\php
subdirectory of your SQL Anywhere installation. Prebuilt versions are installed in the operating-system-
specific binaries subdirectory of your SQL Anywhere installation.

Requirements
Before you can use the SQL Anywhere PHP module, you must install the following components:

♦ The PHP binaries for your platform, which can be downloaded from http://www.php.net.

♦ A web server, if you want to run PHP scripts within a web server. SQL Anywhere can be run on the
same computer as the web server, or on a different computer.

♦ The SQL Anywhere client software dblib10.dll (Windows), libdblib10.so (Linux/Unix), or
libdblib10.dylib (Mac OS X).

SQL Anywhere PHP API

592 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.php.net/

Installing and configuring SQL Anywhere PHP
The following sections describe how to install and configure the SQL Anywhere PHP module.

Choosing which PHP module to use

On Windows, SQL Anywhere includes modules for PHP version 4 and PHP version 5.

On Linux, SQL Anywhere includes both threaded and non-threaded modules for PHP version 4 and PHP
version 5. If you are using the CGI version of PHP or if you are using Apache 1.x, use the non-threaded
module. If you are using Apache 2.x, use the threaded module.

The file names are as follows:

File name Description

php-4.3.8_sqlanywhere10.dll PHP version 4.3.8 library for Windows

php-4.3.11_sqlanywhere10.dll PHP version 4.3.11 library for Windows

php-4.4.0_sqlanywhere10.dll PHP version 4.4.0 library for Windows

php-5.0.2_sqlanywhere10.dll PHP version 5.0.2 library for Windows

php-5.0.4_sqlanywhere10.dll PHP version 5.0.4 library for Windows

php-5.1.1_sqlanywhere10.dll PHP version 5.1.1 library for Windows

php-5.1.2_sqlanywhere10.dll PHP version 5.1.2 library for Windows

php-4.3.8_sqlanywhere10.so Non-threaded PHP version 4.3.8 library for Linux

php-4.3.11_sqlanywhere10.so Non-threaded PHP version 4.3.11 library for Linux

php-4.4.0_sqlanywhere10.so Non-threaded PHP version 4.4.0 library for Linux

php-5.0.2_sqlanywhere10.so Non-threaded PHP version 5.0.2 library for Linux

php-5.0.4_sqlanywhere10.so Non-threaded PHP version 5.0.4 library for Linux

php-5.1.1_sqlanywhere10.so Non-threaded PHP version 5.1.1 library for Linux

php-5.1.2_sqlanywhere10.so Non-threaded PHP version 5.1.2 library for Linux

php-4.3.8_sqlanywhere10_r.so Threaded PHP version 4.3.8 library for Linux

php-4.3.11_sqlanywhere10_r.so Threaded PHP version 4.3.11 library for Linux

php-4.4.0_sqlanywhere10_r.so Threaded PHP version 4.4.0 library for Linux

php-5.0.2_sqlanywhere10_r.so Threaded PHP version 5.0.2 library for Linux

Installing and configuring SQL Anywhere PHP

Copyright © 2007, iAnywhere Solutions, Inc. 593

File name Description

php-5.0.4_sqlanywhere10_r.so Threaded PHP version 5.0.4 library for Linux

php-5.1.1_sqlanywhere10_r.so Threaded PHP version 5.1.1 library for Linux

php-5.1.2_sqlanywhere10_r.so Threaded PHP version 5.1.2 library for Linux

Installing the PHP module on Windows
To use the SQL Anywhere PHP module on Windows, you must copy the DLL from the SQL Anywhere
installation directory and add it to your PHP installation. Optionally, you can add an entry to your PHP
initialization file to load the module, so you do not need to load it manually in each script.

♦ To install the PHP module on Windows

1. Locate the php.ini file for your PHP installation, and open it in a text editor. Locate the line that specifies
the location of the extension_dir directory.

2. Copy the file phpX_sqlanywhere10.dll, where X is the PHP version number from the win32 subdirectory
of your SQL Anywhere installation, to the directory specified by the extension_dir entry in the
php.ini file.

Note
If your version of PHP is more recent than the SQL Anywhere PHP modules provided by SQL
Anywhere, try using the most recent module provided. For example, if you installed PHP 5.1.6, and
the most recent SQL Anywhere PHP module is php-5.1.2_sqlanywhere10.dll, use
php-5.1.2_sqlanywhere10.dll.

3. Add the following line to the Dynamic Extensions section of the php.ini file to load the SQL Anywhere
PHP driver automatically.

extension=php-X_sqlanywhere10.dll

where X reflects the version number of the SQL Anywhere PHP module copied in the previous step.

An alternative to automatically loading the PHP driver is to load it manually in each script that requires
it. See “Configuring the SQL Anywhere PHP module” on page 596.

4. At a command prompt, enter the following command to start the SQL Anywhere sample database.

dbeng10 demo.db

You may have to specify the location of the SQL Anywhere sample database on the command line. For
example:

dbeng10 "C:\Documents and Settings\All Users\Documents\SQL Anywhere 10
\Samples\demo.db"

SQL Anywhere PHP API

594 Copyright © 2007, iAnywhere Solutions, Inc.

The command starts a database server with a server name of demo. If you start the server from the
Windows Start menu, it has a server name of demo10, which is not compatible with the PHP samples
in the SQL Anywhere documentation.

5. At a command prompt, change to the src\php\examples subdirectory of your SQL Anywhere
installation, and enter the following command:

php connect.php

The message Connected successfully should appear. If the PHP command is not recognized,
verify that PHP is in your path.

6. When you are done, stop the SQL Anywhere database server by clicking Shutdown in the Server
Messages window.

For more information, see “Creating PHP test pages” on page 598.

Installing the PHP module on Linux
To use the SQL Anywhere PHP module on Linux, you must copy the shared object from the SQL Anywhere
installation directory and add it to your PHP installation. Optionally, you can add an entry to your PHP
initialization file, php.ini, to load the module, so you do not need to load it manually in each script.

♦ To install the PHP module on Linux

1. Locate the php.ini file of your PHP installation, and open it in a text editor. Locate the line that specifies
the location of the extension_dir directory.

2. Copy the shared object from the lib subdirectory of your SQL Anywhere installation to the directory
specified by the extension_dir entry in the php.ini file.

Note
If your version of PHP is more recent than the shared object provided by SQL Anywhere, try using the
most recent shared object provided. For example, if you installed PHP 5.1.6, and the most recent shared
object is php-5.1.2_sqlanywhere10_r.so, use php-5.1.2_sqlanywhere10_r.so.

For information on which version of the shared object to use, see “Choosing which PHP module to
use” on page 593.

3. Optionally, add the following line to the php.ini file to load the SQL Anywhere PHP driver
automatically. Alternatively, you can load it manually with a few extra lines of code at the start of each
script that requires it. The entry must identify the shared object you copied, which is either

extension=phpX_sqlanywhere10.so

or, for the thread-safe shared object,

extension=phpX_sqlanywhere10_r.so

where X is the version number of the PHP shared object copied in the previous step.

Installing and configuring SQL Anywhere PHP

Copyright © 2007, iAnywhere Solutions, Inc. 595

4. Before attempting to use the PHP module, verify that your environment is set up for SQL Anywhere.
Depending on which shell you are using, enter the appropriate command to source the SQL Anywhere
configuration script from the SQL Anywhere installation directory:

In this shell … … use this command

sh, ksh, or bash . /bin32/sa_config.sh

csh or tcsh source /bin32/sa_config.csh

5. At a command prompt, enter the following command to start the SQL Anywhere sample database:

dbeng10 demo.db

You may have to specify the location of the SQL Anywhere sample database on the command line.

6. At a command prompt, change to the src/php/examples subdirectory of your SQL Anywhere
installation. Enter the following command:

php connect.php

The message Connected successfully should appear. If the php command is not recognized,
verify that it is in your path.

7. When you are done, stop the database server by pressing Q in the console window where it is running.

For more information, see “Creating PHP test pages” on page 598.

Building the PHP module on Unix and Mac OS X
To use the SQL Anywhere PHP module on other versions of Unix or Mac OS X, you must build the PHP
module from the source code which is installed in the src\php subdirectory of your SQL Anywhere
installation. For more information, see Serving Content from SQL Anywhere Databases Using Apache and
PHP.

Configuring the SQL Anywhere PHP module

The behavior of the SQL Anywhere PHP driver can be controlled by setting values in the PHP initialization
file, php.ini. The following entries are supported:

♦ extension Causes PHP to load the SQL Anywhere PHP module automatically each time PHP starts.
Adding this entry to your PHP initialization file is optional, but if you don't add it, each script you write
must start with a few lines of code that ensure that this module is loaded. The following entry is used for
Windows platforms.

extension=phpX_sqlanywhere10.dll

On Linux platforms, use one of the following entries. The second entry uses threads.

extension=phpX_sqlanywhere10.so

SQL Anywhere PHP API

596 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/whitepapers/apache_php.html
http://www.ianywhere.com/whitepapers/apache_php.html

extension=phpX_sqlanywhere10_r.so

In these entries, X identifies the PHP version. You can use version 4 or version 5.

If the SQL Anywhere module is not always automatically loaded when PHP starts, you must prefix each
script you write with the following lines of code. This code ensures that the SQL Anywhere PHP module
is loaded.

Ensure that the SQL Anywhere PHP module is loaded
if(!extension_loaded('sqlanywhere')) {
 # Find out which version of PHP is running
 $version=phpversion;
 if(strtoupper(substr(PHP_OS, 0, 3) == 'WIN')) {
 dl($module_name.'.dll');
 } else {
 dl($module_name.'.so');
 }
}

♦ allow_persistent Allows persistent connections when set to 1. It does not allow them when set to 0.
The default value is 1.

sqlanywhere.allow_persistent=1
♦ max_persistent Sets the maximum number of persistent connections. The default value is -1, which

means no limit.

sqlanywhere.max_persistent=-1
♦ max_connections Sets the maximum number of connections that can be opened at once through the

SQL Anywhere PHP module. The default value is -1, which means no limit.

sqlanywhere.max_connections=-1
♦ auto_commit Specifies whether the database server performs a commit operation automatically. The

commit is performed immediately following the execution of each statement when set to 1. When set to
0, transactions should be ended manually with either the sqlanywhere_commit or sqlanywhere_rollback
functions, as appropriate. The default value is 1.

sqlanywhere.auto_commit=1
♦ row_counts Returns the exact number of rows affected by an operation when set to 1 or an estimate

when set to 0. The default value is 0.

sqlanywhere.row_counts=0
♦ verbose_errors Returns verbose errors when set to 1. Otherwise, you must call the sqlanywhere_error

or sqlanywhere_errorcode functions to get further error information. The default value is 1.

sqlanywhere.verbose_errors=1

For more information, see “sqlanywhere_set_option” on page 619.

Installing and configuring SQL Anywhere PHP

Copyright © 2007, iAnywhere Solutions, Inc. 597

Running PHP test scripts in your web pages
This section describes how to write PHP test scripts that query the sample database and display information
about PHP.

Creating PHP test pages

The following instructions apply to all configurations.

To test whether PHP is set up properly, the following procedure describes how to create and run a web page
that calls phpinfo. phpinfo is a PHP function that generates a page of system setup information. The output
tells you whether PHP is working properly.

For information on installing PHP, see http://us2.php.net/install.

♦ To create a PHP information test page

1. Create a file in your root web content directory named info.php.

If you are not sure which directory to use, check your web server's configuration file. In Apache
installations, the content directory is often called htdocs. If you are using Mac OS X, the web content
directory name may depend on which account you are using:

♦ If you are the System Administrator on a Mac OS X system, use /Library/WebServer/Documents.

♦ If you are a Mac OS X user, place the file in /Users/your-user-name/Sites/.

2. Insert the following code into this file:

<? phpinfo() ?>

Alternatively, once PHP is properly installed and configured, you can also create a test web page by
issuing the following command at a command prompt.

php -I > info.html

This confirms that your installation of PHP and your web server are working together properly.

3. To test that PHP and your web server are working correctly with SQL Anywhere:

a. Copy the file connect.php from your PHP examples directory to your root web content directory.

b. From a web browser, access the connect.php page.

The message Connected successfully should appear.

♦ To create the query page that uses the SQL Anywhere PHP module

1. Create a file containing the following PHP code in your root web content directory named
sa_test.php.

2. Insert the following PHP code into this file:

SQL Anywhere PHP API

598 Copyright © 2007, iAnywhere Solutions, Inc.

http://us2.php.net/install

<?
 $conn = sqlanywhere_connect("UID=DBA;PWD=sql");
 $result = sqlanywhere_query($conn, "SELECT * FROM Employees");
 sqlanywhere_result_all($result);
 sqlanywhere_free_result($result);
 sqlanywhere_disconnect($conn);
?>

Accessing your test web pages

The following procedure describes how to view your test pages from a web browser, after installing and
configuring PHP and the SQL Anywhere PHP module.

♦ To view your web pages

1. Restart your web server.

For example, to start the Apache web server, run the following command from the bin subdirectory of
your Apache installation:

apachectl start
2. On Linux or Mac OS X, set the SQL Anywhere environment variables using one of the supplied scripts.

Depending on which shell you are using, enter the appropriate command to source the SQL Anywhere
configuration script from your SQL Anywhere installation directory:

In this shell … … use this command

sh, ksh, or bash . /bin32/sa_config.sh

csh or tcsh source /bin32/sa_config.csh

3. Start the SQL Anywhere database server.

For example, to access the test web pages described above, use the following command to start the SQL
Anywhere sample database.

dbeng10 demo.db

You may have to specify the location of the SQL Anywhere sample database on the command line.

4. To access the test pages from a browser that is running on the same computer as the server, enter the
following URLs:

For this test page … … use this URL

info.php http://localhost/info.php

sa_test.php http://localhost/sa_test.php

If everything is configured correctly, the sa_test page displays the contents of the Employees table.

Running PHP test scripts in your web pages

Copyright © 2007, iAnywhere Solutions, Inc. 599

Writing PHP scripts
This section describes how to write PHP scripts that use the SQL Anywhere PHP module to access SQL
Anywhere databases.

The source code for these examples, as well as others, is located in the src/php/examples subdirectory of
your SQL Anywhere installation.

Connecting to a database
To make a connection to a database, pass a standard SQL Anywhere connection string to the database server
as a parameter to the sqlanywhere_connect function. The <? and ?> tags tell the web server that it should let
PHP execute the code that lies between them and replace it with the PHP output.

The source code for this example is contained in your SQL Anywhere installation in a file called
connect.php.

<?
 # Ensure that the SQL Anywhere PHP module is loaded
 if(!extension_loaded('sqlanywhere')) {
 # Find out which version of PHP is running
 list($version, $rest) = explode('.', phpversion(), 2);
 $module_name = 'php'.$version.'_sqlanywhere10';
 if(strtoupper(substr(PHP_OS, 0, 3) == 'WIN')) {
 dl($module_name.'.dll');
 } else {
 dl($module_name.'.so');
 }
 }
 # Connect using the default user ID and password
 $conn = sqlanywhere_connect("UID=DBA;PWD=sql");
 if(! $conn) {
 die ("Connection failed");
 } else {
 echo "Connected successfully\n";
 sqlanywhere_disconnect($conn);
 }
?>

The first block of code verifies that the PHP module is loaded. If you added the line to your PHP initialization
file to load it automatically, this block of code is unnecessary. If you did not configure PHP to automatically
load the SQL Anywhere PHP module at start time, you must add this code to the other sample scripts.

The second block attempts to make a connection. For this code to succeed, the SQL Anywhere sample
database must be running.

Retrieving data from a database
One use of PHP scripts in web pages is to retrieve and display information contained in a database. The
following examples demonstrate some useful techniques.

SQL Anywhere PHP API

600 Copyright © 2007, iAnywhere Solutions, Inc.

Simple select query
The following PHP code demonstrates a convenient way to include the result set of a SELECT statement in
a web page. This sample is designed to connect to the SQL Anywhere sample database and return a list of
customers.

This code can be embedded in a web page, provided your web server is configured to execute PHP scripts.

The source code for this sample is contained in your SQL Anywhere installation in a file called query.php.

<?
 # Connect using the default user ID and password
 $conn = sqlanywhere_connect("UID=DBA;PWD=sql");
 if(! $conn) {
 die ("Connection failed");
 } else {
 # Connected successfully.
 }
 # Execute a SELECT statement
 $result = sqlanywhere_query($conn, "SELECT * FROM Customers");
 if(! $result) {
 echo "sqlanywhere_query failed!";
 return 0;
 } else {
 echo "query completed successfully\n";
 }
 # Generate HTML from the result set
 sqlanywhere_result_all($result);
 sqlanywhere_free_result($result);
 # Disconnect
 sqlanywhere_disconnect($conn);
?>

The sqlanywhere_result_all function fetches all the rows of the result set and generates an HTML output
table to display them. The sqlanywhere_free_result function releases the resources used to store the result
set.

Fetching by column name
In certain cases, you may not want to display all the data from a result set, or you may want to display the
data in a different manner. The following sample illustrates how you can exercise greater control over the
output format of the result set. PHP allows you to display as much information as you want in whatever
manner you choose.

The source code for this sample is contained in your SQL Anywhere installation in a file called fetch.php.

<?
 # Connect using the default user ID and password
 $conn = sqlanywhere_connect("UID=DBA;PWD=sql");
 if(! $conn) {
 die ("Connection failed");
 } else {
 # Connected successfully.
 }
 # Execute a SELECT statement
 $result = sqlanywhere_query($conn, "SELECT * FROM Customers");
 if(! $result) {

Writing PHP scripts

Copyright © 2007, iAnywhere Solutions, Inc. 601

 echo "sqlanywhere_query failed!";
 return 0;
 } else {
 echo "query completed successfully\n";
 }

 # Retrieve meta information about the results
 $num_cols = sqlanywhere_num_fields($result);
 $num_rows = sqlanywhere_num_rows($result);
 echo "Num of rows = $num_rows\n";
 echo "Num of cols = $num_cols\n";

 while(($field = sqlanywhere_fetch_field($result))) {
 echo "Field # : $field->ID \n";
 echo "\tname : $field->name \n";
 echo "\tlength : $field->length \n";
 echo "\ttype : $field->type \n";
 }

 # Fetch all the rows
 $curr_row = 0;
 while(($row = sqlanywhere_fetch_row($result))) {
 $curr_row++;
 $curr_col = 0;
 while($curr_col < $num_cols) {
 echo "$row[$curr_col]\t|";
 $curr_col++;
 }
 echo "\n";
 }

 # Clean up.
 sqlanywhere_free_result($result);
 sqlanywhere_disconnect($conn);
?>

The sqlanywhere_fetch_array function returns a single row from the table. The data can be retrieved by
column names and column indexes. Two other similar methods are provided in the PHP interface:
sqlanywhere_fetch_row returns a row that can be searched by column indexes only, while
sqlanywhere_fetch_object returns a row that can be searched by column names only.

For an example of the sqlanywhere_fetch_object function, see the fetch_object.php example script.

Nested result sets
When a SELECT statement is sent to the database, a result set is returned. The sqlanywhere_fetch_row and
sqlanywhere_fetch_array functions retrieve data from the individual rows of a result set, returning each row
as an array of columns that can be queried further.

The source code for this sample is contained in your SQL Anywhere installation in a file called
nested.php.

<?
 # Connect using the default user ID and password
 $conn = sqlanywhere_connect("UID=DBA;PWD=sql");
 if(! $conn) {
 die ("Connection failed");
 } else {
 # Connected successfully.
 }

SQL Anywhere PHP API

602 Copyright © 2007, iAnywhere Solutions, Inc.

 # Retrieve the data and output HTML
 echo "
\n";
 $query1 = "SELECT table_id, table_name FROM SYSTAB";
 $result = sqlanywhere_query($conn, $query1);
 if($result) {
 $num_rows = sqlanywhere_num_rows($result);
 echo "Returned : $num_rows
\n";
 $I = 1;
 while(($row = sqlanywhere_fetch_array($result))) {
 echo "$I: table_id:$row[table_id]" .
 " --- table_name:$row[table_name]
\n";
 $query2 = "SELECT table_id, column_name " .
 "FROM SYSTABCOL" .
 "WHERE table_id = '$row[table_id]'";
 echo " $query2
\n";
 echo " Columns: ";
 $result2 = sqlanywhere_query($conn, $query2);
 if($result2) {
 while(($detailed = sqlanywhere_fetch_array($result2))) {
 echo " $detailed[column_name]";
 }
 sqlanywhere_free_result($result2);
 } else {
 echo "******FAILED********";
 }
 echo "
\n";
 $I++;
 }
 }
 echo "
\n";
 sqlanywhere_disconnect($conn);
?>

In the above sample, the SQL statement selects the table ID and name for each table from SYSTAB. The
sqlanywhere_query function returns an array of rows. The script iterates through the rows using the
sqlanywhere_fetch_array function to retrieve the rows from an array. An inner iteration goes through the
columns of each row and prints their values.

Web forms
PHP can take user input from a web form, pass it to the database server as a SQL query, and display the
result that is returned. The following example demonstrates a simple web form that gives the user the ability
to query the sample database using SQL statements and display the results in an HTML table.

The source code for this sample is contained in your SQL Anywhere installation in a file called
webisql.php.

<?
 echo "<HTML>\n";
 $qname = $_POST["qname"];
 $qname = str_replace("\\", "", $qname);
 echo "<form method=post action=webisql.php>\n";
 echo "
Query: <input type=text Size=80 name=qname value=\"$qname\">\n";
 echo "<input type=submit>\n";
 echo "</form>\n";
 echo "<HR>
\n";

Writing PHP scripts

Copyright © 2007, iAnywhere Solutions, Inc. 603

 if(! $qname) {
 echo "No Current Query\n";
 return;
 }

 # Connect to the database
 $con_str = "UID=DBA;PWD=sql;ENG=demo;LINKS=tcpip";
 $conn = sqlanywhere_connect($con_str);
 if(! $conn) {
 echo "sqlanywhere_connect failed\n";
 echo "</html>\n";
 return 0;
 }

 $qname = str_replace("\\", "", $qname);
 $result = sqlanywhere_query($conn, $qname);

 if(! $result) {
 echo "sqlanywhere_query failed!";
 } else {
 // echo "query completed successfully\n";
 sqlanywhere_result_all($result, "border=1");
 sqlanywhere_free_result($result);
 }

 sqlanywhere_disconnect($conn);
 echo "</html>\n";
?>

This design could be extended to handle complex web forms by formulating customized SQL queries based
on the values entered by the user.

Working with BLOBs
SQL Anywhere databases can store any type of data as a binary large object (BLOB). If that data is of a type
readable by a web browser, a PHP script can easily retrieve it from the database and display it on a
dynamically generated page.

BLOB fields are often used for storing non-text data, such as images in GIF or JPG format. Numerous types
of data can be passed to a web browser without any need for third-party software or data type conversion.
The following sample illustrates the process of adding an image to the database and then retrieving it again
to be displayed in a web browser.

This sample is similar to the sample code in the files image_insert.php and image_retrieve.php of your SQL
Anywhere installation. These samples also illustrate the use of a BLOB column for storing images.

<?
 $conn = sqlanywhere_connect("UID=DBA;PWD=sql")
 or die("Can not connect to database");

 $create_table = "CREATE TABLE images (ID INTEGER PRIMARY KEY, img IMAGE)";
 sqlanywhere_query($conn, $create_table);

 $insert = "INSERT INTO images VALUES (99, xp_read_file
('ianywhere_logo.gif'))";
 sqlanywhere_query($conn, $insert);

SQL Anywhere PHP API

604 Copyright © 2007, iAnywhere Solutions, Inc.

 $query = "SELECT img FROM images WHERE ID = 99";
 $result = sqlanywhere_query($conn, $query);
 $data = sqlanywhere_fetch_row($result);
 $img = $data[0];
 header("Content-type: image/gif");
 echo $img;
 sqlanywhere_disconnect($conn);
?>

To be able to send the binary data from the database directly to a web browser, the script must set the data's
MIME type using the header function. In this case, the browser is told to expect a GIF image so it can display
it correctly.

Writing PHP scripts

Copyright © 2007, iAnywhere Solutions, Inc. 605

SQL Anywhere PHP API reference
The PHP API supports the following functions:

Connections
♦ “sqlanywhere_connect” on page 607
♦ “sqlanywhere_disconnect” on page 608
♦ “sqlanywhere_identity” on page 614
♦ “sqlanywhere_pconnect” on page 616
♦ “sqlanywhere_set_option” on page 619

Queries
♦ “sqlanywhere_execute” on page 610
♦ “sqlanywhere_query” on page 616

Result sets
♦ “sqlanywhere_data_seek” on page 607
♦ “sqlanywhere_fetch_array” on page 611
♦ “sqlanywhere_fetch_field” on page 611
♦ “sqlanywhere_fetch_object” on page 612
♦ “sqlanywhere_fetch_row” on page 613
♦ “sqlanywhere_free_result” on page 613
♦ “sqlanywhere_num_rows” on page 615
♦ “sqlanywhere_num_fields” on page 615
♦ “sqlanywhere_result_all” on page 617

Transactions
♦ “sqlanywhere_commit” on page 606
♦ “sqlanywhere_rollback” on page 618

sqlanywhere_commit

Prototype
bool sqlanywhere_commit(resource link_identifier)

Description
Ends a transaction on the SQL Anywhere database and makes any changes made during the transaction
permanent. Useful only when the auto_commit option is Off.

Parameters
link_identifier The link identifier returned by a sqlanywhere_connect function.

Returns
True on success or false on failure.

SQL Anywhere PHP API

606 Copyright © 2007, iAnywhere Solutions, Inc.

Example
This example shows how sqlanywhere_commit can be used to cause a commit on a specific connection.

$result = sqlanywhere_commit($conn);

Related functions
♦ “sqlanywhere_rollback” on page 618
♦ “sqlanywhere_set_option” on page 619

sqlanywhere_connect

Prototype
resource sqlanywhere_connect(string con_str)

Description
Establishes a connection to a SQL Anywhere database.

Parameters
con_str A connection string as recognized by SQL Anywhere.

Returns
A positive SQL Anywhere link identifier on success, or an error and 0 on failure.

Example
This example passes the user ID and password for a SQL Anywhere database in the connection string.

$conn = sqlanywhere_connect("UID=DBA;PWD=sql");

Related functions
♦ “sqlanywhere_pconnect” on page 616
♦ “sqlanywhere_disconnect” on page 608

sqlanywhere_data_seek

Prototype
bool sqlanywhere_data_seek(resource result_identifier, resource row_num)

Description
Positions the cursor on row row_num on the result_identifier that was opened using sqlanywhere_query.

Parameters
result_identifier The result identifier returned by a sqlanywhere_query function.

row_num An integer that represents the new position of the cursor within the result_identifier. For
example, specify 0 to move the cursor to the first row of the result set or 5 to move it to the sixth row.

SQL Anywhere PHP API reference

Copyright © 2007, iAnywhere Solutions, Inc. 607

Negative numbers represent rows relative to the end of the result set. For example, -1 moves the cursor to
the last row in the result set and -2 moves it to the second-last row.

Returns
True on success or false on error.

Example
This example shows how to seek to the sixth record in the result set.

sqlanywhere_data_seek($result, 5);

Related functions
♦ “sqlanywhere_fetch_field” on page 611
♦ “sqlanywhere_fetch_array” on page 611
♦ “sqlanywhere_fetch_row” on page 613
♦ “sqlanywhere_fetch_object” on page 612
♦ “sqlanywhere_query” on page 616

sqlanywhere_disconnect

Prototype
bool sqlanywhere_disconnect(resource link_identifier)

Description
Closes a connection that has already been opened with sqlanywhere_connect.

Parameters
link_identifier The link identifier returned by a sqlanywhere_connect function.

Returns
True on success or false on error.

Example
This example closes the connection to a database.

sqlanywhere_disconnect($conn);

Related functions
♦ “sqlanywhere_connect” on page 607
♦ “sqlanywhere_pconnect” on page 616

sqlanywhere_error

Prototype
bool sqlanywhere_error([resource link_identifier])

SQL Anywhere PHP API

608 Copyright © 2007, iAnywhere Solutions, Inc.

Description
Returns the error text of the most recently executed SQL Anywhere PHP function. Error messages are stored
per connection. If no link_identifier is specified, then sqlanywhere_error returns the last error message where
no connection was available. For example, if you call sqlanywhere_connect and the connection fails, then
call sqlanywhere_error with no parameter for link_identifier to get the error message. If you want to obtain
the corresponding SQL Anywhere error code value, use the sqlanywhere_errorcode function.

Parameters
link_identifier A link identifier that was returned by sqlanywhere_connect or sqlanywhere_pconnect.

Returns
A string describing the error.

Example
This example attempts to select from a table that does not exist. The sqlanywhere_query function returns
false and the sqlanywhere_error function returns the error message.

$result = sqlanywhere_query($conn, "SELECT * FROM
table_that_does_not_exist");
if(! $result) {
 $error_msg = sqlanywhere_error($conn);
 echo "Query failed. Reason: $error_msg";
}

Related functions
♦ “sqlanywhere_errorcode” on page 609
♦ “sqlanywhere_set_option” on page 619

sqlanywhere_errorcode

Prototype
bool sqlanywhere_errorcode([resource link_identifier])

Description
Returns the error code of the most-recently executed SQL Anywhere PHP function. Error codes are stored
per connection. If no link_identifier is specified, then sqlanywhere_errorcode returns the last error code where
no connection was available. For example, if you are calling sqlanywhere_connect and the connection fails,
then call sqlanywhere_errorcode with no parameter for the link_identifier to get the error code. If you want
to get the corresponding error message use the sqlanywhere_error function.

Parameters
link_identifier A link identifier that was returned by sqlanywhere_connect or sqlanywhere_pconnect.

Returns
An integer representing a SQL Anywhere error code. An error code of 0 means success. A positive error
code indicates success with warnings. A negative error code indicates failure.

SQL Anywhere PHP API reference

Copyright © 2007, iAnywhere Solutions, Inc. 609

Example
This example shows how you can retrieve the last error code from a failed SQL Anywhere PHP call.

$result = sqlanywhere_query($conn, "SELECT * from
table_that_does_not_exist");
 if(! $result) {
 $error_code = sqlanywhere_errorcode($conn);
 echo "Query failed: Error code: $error_code";
 }

Related functions
♦ “sqlanywhere_error” on page 608
♦ “sqlanywhere_set_option” on page 619

sqlanywhere_execute

Prototype
bool sqlanywhere_execute(resource link_identifier, string sql_str)

Description
Prepares and executes the SQL query sql_str on the connection identified by the link_identifier that has already
been opened using sqlanywhere_connect or sqlanywhere_pconnect. This function returns true or false
depending on the outcome of the query execution. This function is suitable for queries that do not return
result sets. If you are expecting a result set, use the sqlanywhere_query function instead.

Parameters
link_identifier A link identifier returned by sqlanywhere_connect or sqlanywhere_pconnect.

sql_str A SQL query.

Returns
True if the query executed successfully, otherwise, false and an error message.

Example
This example shows how to execute a DDL statement using the sqlanywhere_execute function.

if(sqlanywhere_execute($conn, "CREATE TABLE my_test_table(INT id)")) {
 // handle success
} else {
 // handle failure
}

Related functions
♦ “sqlanywhere_query” on page 616

SQL Anywhere PHP API

610 Copyright © 2007, iAnywhere Solutions, Inc.

sqlanywhere_fetch_array

Prototype
array sqlanywhere_fetch_array(resource result_identifier)

Description
Fetches one row from the result set. This row is returned as an array that can be indexed by the column names
or by the column indexes.

Parameters
result_identifier The result identifier returned by a sqlanywhere_query function.

Returns
An array that represents a row from the result set, or false when no rows are available.

Example
This example shows how to retrieve all the rows in a result set. Each row is returned as an array.

$result = sqlanywhere_query($conn, "SELECT GivenName, Surname FROM
Employees");
 While(($row = sqlanywhere_fetch_array($result))) {
 echo " GivenName = $row["GivenName"] \n" ;
 echo " Surname = $row[1] \n";
 }

Related functions
♦ “sqlanywhere_data_seek” on page 607
♦ “sqlanywhere_fetch_field” on page 611
♦ “sqlanywhere_fetch_row” on page 613
♦ “sqlanywhere_fetch_object” on page 612

sqlanywhere_fetch_field

Prototype
object sqlanywhere_fetch_field(resource result_identifier [, field_offset])

Description
Returns an object that contains information about a specific column.

Parameters
result_identifier The result identifier returned by a sqlanywhere_query function.

field_offset An integer representing the column/field on which you want to retrieve information. Columns
are zero based; to get the first column, specify the value 0. If this parameter is omitted, then the next field
object is returned.

SQL Anywhere PHP API reference

Copyright © 2007, iAnywhere Solutions, Inc. 611

Returns
An object that has the following properties:

♦ ID contains the field/column number

♦ name contains the field/column name

♦ numeric indicates whether or not the field is a numeric value

♦ length returns field length

♦ type returns field type

Example
This example shows how to use sqlanywhere_fetch_field to retrieve all the column information for a result
set.

$result = sqlanywhere_query($conn, "SELECT GivenName, Surname FROM
Employees");
while(($field = sqlanywhere_fetch_field($result))) {
 echo " Field ID = $field->ID \n";
 echo " Field name = $field->name \n";
 }

Related functions
♦ “sqlanywhere_data_seek” on page 607
♦ “sqlanywhere_fetch_array” on page 611
♦ “sqlanywhere_fetch_row” on page 613
♦ “sqlanywhere_fetch_object” on page 612

sqlanywhere_fetch_object

Prototype
array sqlanywhere_fetch_object(resource result_identifier)

Description
Fetches one row from the result set. This row is returned as an array that can be indexed by the column name
only.

Parameters
result_identifier The result identifier returned by a sqlanywhere_query function.

Returns
An array that represents a row from the result set, or false when no rows are available.

Example
This example shows how to retrieve one row at a time from a result set as an object. Column names can be
used as object members to access the column value.

SQL Anywhere PHP API

612 Copyright © 2007, iAnywhere Solutions, Inc.

$result = sqlanywhere_query($conn, "SELECT GivenName, Surname FROM
Employees");
 While(($row = sqlanywhere_fetch_object($result))) {
 echo "$row->GivenName \n"; # output the data in the first column
only.
 }

Related functions
♦ “sqlanywhere_data_seek” on page 607
♦ “sqlanywhere_fetch_field” on page 611
♦ “sqlanywhere_fetch_array” on page 611
♦ “sqlanywhere_fetch_row” on page 613

sqlanywhere_fetch_row

Prototype
array sqlanywhere_fetch_row(resource result_identifier)

Description
Fetches one row from the result set. This row is returned as an array that can be indexed by the column
indexes only.

Parameters
result_identifier The result identifier returned by a sqlanywhere_query function.

Returns
An array that represents a row from the result set, or false when no rows are available.

Example
This example shows how to retrieve one row at a time from a result set.

while(($row = sqlanywhere_fetch_row($result))) {
 echo "$row[0] \n"; # output the data in the first column only.
 }

Related functions
♦ “sqlanywhere_data_seek” on page 607
♦ “sqlanywhere_fetch_field” on page 611
♦ “sqlanywhere_fetch_array” on page 611
♦ “sqlanywhere_fetch_object” on page 612

sqlanywhere_free_result

Prototype
bool sqlanywhere_free_result(resource result_identifier)

SQL Anywhere PHP API reference

Copyright © 2007, iAnywhere Solutions, Inc. 613

Description
Frees database resources associated with a result identifier returned from sqlanywhere_query.

Parameters
result_identifier The result identifier returned by a sqlanywhere_query function.

Returns
True on success or false on error.

Example
This example shows how to free a result identifier's resources.

sqlanywhere_free_result($result);

Related functions
♦ “sqlanywhere_query” on page 616

sqlanywhere_identity

Prototype
bool sqlanywhere_identity(resource link_identifier)

bool sqlanywhere_insert_id(resource link_identifier)

Description
Returns the last value inserted into an IDENTITY column or a DEFAULT AUTOINCREMENT column,
or zero if the most recent insert was into a table that did not contain an IDENTITY or DEFAULT
AUTOINCREMENT column.

The sqlanywhere_insert_id function is provided for compatibility with MySQL databases.

Parameters
link_identifier A link identifier returned by sqlanywhere_connect or sqlanywhere_pconnect.

Returns
The ID generated for an AUTOINCREMENT column by a previous INSERT statement or zero if last insert
did not affect an AUTOINCREMENT column. The function can return false if the link_identifier is not valid.

Example
This example shows how the sqlanywhere_identity function can be used to retrieve the autoincrement value
most recently inserted into a table by the specified connection.

if(sqlanywhere_execute($conn, "INSERT INTO my_auto_increment_table VALUES
(1) ")) {
 $insert_id = sqlanywhere_insert_id($conn);
 echo "Last insert id = $insert_id";
}

SQL Anywhere PHP API

614 Copyright © 2007, iAnywhere Solutions, Inc.

Related functions
♦ “sqlanywhere_execute” on page 610

sqlanywhere_num_fields

Prototype
resource sqlanywhere_num_fields(resource result_identifier)

Description
Returns the number of columns (fields) the result_identifier contains.

Parameters
result_identifier The result identifier returned by a sqlanywhere_query function.

Returns
A positive number of columns, or an error if result_identifier is not valid.

Example
This example returns a value indicating how many columns are in the result set.

$num_columns = sqlanywhere_num_fields($result);

sqlanywhere_num_rows

Prototype
resource sqlanywhere_num_rows(resource result_identifier)

Description
Returns the number of rows that the result_identifier contains.

Parameters
result_identifier The result identifier returned by a sqlanywhere_query function.

Returns
A positive number if the number of rows is exact, or a negative number if it is an estimate. To get the exact
number of rows, the database option row_counts must be set permanently on the database, or temporarily
on the connection. See “sqlanywhere_set_option” on page 619.

Example
This example shows how to retrieve the estimated number of rows returned in a result set:

$num_rows = sqlanywhere_num_rows($result);
 if($num_rows < 0) {
 $num_rows = abs($num_rows); # take the absolute value as an
estimate
 }

SQL Anywhere PHP API reference

Copyright © 2007, iAnywhere Solutions, Inc. 615

Related functions
♦ “sqlanywhere_query” on page 616

sqlanywhere_pconnect

Prototype
resource sqlanywhere_pconnect(string con_str)

Description
Establishes a persistent connection to a SQL Anywhere database. Because of the way Apache creates child
processes, you may observe a performance gain when using sqlanywhere_pconnect instead of
sqlanywhere_connect. Persistent connections may provide improved performance in a similar fashion to
connection pooling. If your database server has a limited number of connections (for example, the personal
database server is limited to 10 concurrent connections), caution should be exercised when using persistent
connections. Persistent connections could be attached to each of the child processes, and if you have more
child processes in Apache than there are available connections, you will receive connection errors.

Parameters
con_str A connection string as recognized by SQL Anywhere.

Returns
A positive SQL Anywhere persistent link identifier on success, or an error and 0 on failure.

Example
This example shows how to retrieve all the rows in a result set. Each row is returned as an array.

$conn = sqlanywhere_pconnect("UID=DBA;PWD=sql");

Related functions
♦ “sqlanywhere_connect” on page 607
♦ “sqlanywhere_disconnect” on page 608

sqlanywhere_query

Prototype
resource sqlanywhere_query(resource link_identifier, string sql_str)

Description
Prepares and executes the SQL query sql_str on the connection identified by link_identifier that has already
been opened using sqlanywhere_connect or sqlanywhere_pconnect. For queries that do not return result sets,
you can use the sqlanywhere_execute function.

Parameters
link_identifier The link identifier returned by a sqlanywhere_connect function.

SQL Anywhere PHP API

616 Copyright © 2007, iAnywhere Solutions, Inc.

sql_str A SQL statement supported by SQL Anywhere.

For more information about SQL statements, see “SQL Statements” [SQL Anywhere Server - SQL
Reference].

Returns
A positive value representing the result ID on success, or 0 and an error message on failure.

Example
This example executes the query SELECT * FROM SYSTAB on the SQL Anywhere database.

$result = sqlanywhere_query($conn, "SELECT * FROM SYSTAB");

Related functions
♦ “sqlanywhere_execute” on page 610
♦ “sqlanywhere_free_result” on page 613
♦ “sqlanywhere_fetch_array” on page 611
♦ “sqlanywhere_fetch_field” on page 611
♦ “sqlanywhere_fetch_object” on page 612
♦ “sqlanywhere_fetch_row” on page 613

sqlanywhere_result_all

Prototype
bool sqlanywhere_result_all(resource result_identifier [, html_table_format_string [,
html_table_header_format_string [, html_table_row_format_string [, html_table_cell_format_string]]]])

Description
Fetches all results of the result_identifier and generates an HTML output table with an optional formatting
string.

Parameters
result_identifier The result identifier returned by a sqlanywhere_query function.

html_table_format_string A format string that applies to HTML tables. For example, "Border=1;
Cellpadding=5". The special value none does not create an HTML table. This is useful if you want to
customize your column names or scripts. If you do not want to specify an explicit value for this parameter,
use NULL for the parameter value.

html_table_header_format_string A format string that applies to column headings for HTML tables.
For example, "bgcolor=#FF9533". The special value none does not create an HTML table. This is useful if
you want to customize your column names or scripts. If you do not want to specify an explicit value for this
parameter, use NULL for the parameter value.

html_table_row_format_string A format string that applies to rows within HTML tables. For example,
"onclick='alert('this')'". If you would like different formats that alternate, use the special token ><. The left
side of the token indicates which format to use on odd rows and the right side of the token is used to format

SQL Anywhere PHP API reference

Copyright © 2007, iAnywhere Solutions, Inc. 617

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

even rows. If you do not place this token in your format string, all rows have the same format. If you do not
want to specify an explicit value for this parameter, use NULL for the parameter value.

html_table_cell_format_string A format string that applies to cells within HTML table rows. For
example, "onclick='alert('this')'". If you do not want to specify an explicit value for this parameter, use
NULL for the parameter value.

Returns
True on success or false on failure.

Example
This example shows how to use sqlanywhere_result_all to generate an HTML table with all the rows from
a result set.

$result = sqlanywhere_query($conn, "SELECT GivenName, Surname FROM
Employees");
 sqlanywhere_result_all($result);

This example shows how to use different formatting on alternate rows using a style sheet.

$result = sqlanywhere_query($conn, "SELECT GivenName, Surname FROM
Employees");
sqlanywhere_result_all($result, "border=2", "bordercolor=#3F3986",
"bgcolor=#3F3986 style=\"color=#FF9533\"", 'class="even"><class="odd"');

Related functions
♦ “sqlanywhere_query” on page 616

sqlanywhere_rollback

Prototype
bool sqlanywhere_rollback(resource link_identifier)

Description
Ends a transaction on the SQL Anywhere database and discards any changes made during the transaction.
This function is only useful when the auto_commit option is Off.

Parameters
link_identifier The link identifier returned by a sqlanywhere_connect function.

Returns
True on success or false on failure.

Example
This example uses sqlanywhere_rollback to roll back a connection.

$result = sqlanywhere_rollback($conn);

SQL Anywhere PHP API

618 Copyright © 2007, iAnywhere Solutions, Inc.

Related functions
♦ “sqlanywhere_commit” on page 606
♦ “sqlanywhere_set_option” on page 619

sqlanywhere_set_option

Prototype
bool sqlanywhere_set_option(resource link_identifier, string option, string value)

Description
Sets the value of the specified option on the specified connection. You can set the value for the following
options:

Name Description Default

auto_commit When this option is set to on, the database server commits after executing
each statement.

on

row_counts When this option is set to false, the sqlanywhere_num_rows function
returns an estimate of the number of rows affected. If you want to obtain
an exact count, set this option to true.

false

verbose_errors When this option is set to true, the PHP driver returns verbose errors.
When this option is set to false, you must call the sqlanywhere_error or
sqlanywhere_errorcode functions to get further error information.

true

You can change the default value for an option by including the following line in the php.ini file. In this
example, the default value is set for the auto_commit option.

sqlanywhere.auto_commit=0

Parameters
link_identifier The link identifier returned by a sqlanywhere_connect function.

option The name of the option you want to set.

value The new option value.

Returns
True on success or false on failure.

Example
The following examples show the different ways you can set the value of the auto_commit option.

$result = sqlanywhere_set_option($conn, "auto_commit", "Off");
$result = sqlanywhere_set_option($conn, "auto_commit", 0);
$result = sqlanywhere_set_option($conn, "auto_commit", False);

SQL Anywhere PHP API reference

Copyright © 2007, iAnywhere Solutions, Inc. 619

Related functions
♦ “sqlanywhere_commit” on page 606
♦ “sqlanywhere_error” on page 608
♦ “sqlanywhere_errorcode” on page 609
♦ “sqlanywhere_num_rows” on page 615
♦ “sqlanywhere_rollback” on page 618

SQL Anywhere PHP API

620 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 16

Sybase Open Client API

Contents
Open Client architecture .. 622
What you need to build Open Client applications .. 623
Data type mappings ... 624
Using SQL in Open Client applications ... 626
Known Open Client limitations of SQL Anywhere ... 629

Copyright © 2007, iAnywhere Solutions, Inc. 621

Open Client architecture

Note
This chapter describes the Sybase Open Client programming interface for SQL Anywhere. The primary
documentation for Sybase Open Client application development is the Open Client documentation, available
from Sybase. This chapter describes features specific to SQL Anywhere, but it is not an exhaustive guide to
Sybase Open Client application programming.

Sybase Open Client has two components: programming interfaces and network services.

DB-Library and Client Library
Sybase Open Client provides two core programming interfaces for writing client applications: DB-Library
and Client-Library.

Open Client DB-Library provides support for older Open Client applications, and is a completely separate
programming interface from Client-Library. DB-Library is documented in the Open Client DB-Library/C
Reference Manual, provided with the Sybase Open Client product.

Client-Library programs also depend on CS-Library, which provides routines that are used in both Client-
Library and Server-Library applications. Client-Library applications can also use routines from Bulk-Library
to facilitate high-speed data transfer.

Both CS-Library and Bulk-Library are included in the Sybase Open Client, which is available separately.

Network services
Open Client network services include Sybase Net-Library, which provides support for specific network
protocols such as TCP/IP and DECnet. The Net-Library interface is invisible to application programmers.
However, on some platforms, an application may need a different Net-Library driver for different system
network configurations. Depending on your host platform, the Net-Library driver is specified either by the
system's Sybase configuration or when you compile and link your programs.

Instructions for driver configuration can be found in the Open Client/Server Configuration Guide.

Instructions for building Client-Library programs can be found in the Open Client/Server Programmer's
Supplement.

Sybase Open Client API

622 Copyright © 2007, iAnywhere Solutions, Inc.

What you need to build Open Client applications
To run Open Client applications, you must install and configure Sybase Open Client components on the
computer where the application is running. You may have these components present as part of your
installation of other Sybase products or you can optionally install these libraries with SQL Anywhere, subject
to the terms of your license agreement.

Open Client applications do not need any Open Client components on the computer where the database
server is running.

To build Open Client applications, you need the development version of Open Client, available from Sybase.

By default, SQL Anywhere databases are created as case-insensitive, while Adaptive Server Enterprise
databases are case sensitive.

For more information on running Open Client applications with SQL Anywhere, see “SQL Anywhere as an
Open Server” [SQL Anywhere Server - Database Administration].

What you need to build Open Client applications

Copyright © 2007, iAnywhere Solutions, Inc. 623

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Data type mappings
Sybase Open Client has its own internal data types, which differ in some details from those available in SQL
Anywhere. For this reason, SQL Anywhere internally maps some data types between those used by Open
Client applications and those available in SQL Anywhere.

To build Open Client applications, you need the development version of Open Client. To use Open Client
applications, the Open Client runtimes must be installed and configured on the computer where the
application runs.

The SQL Anywhere server does not require any external communications runtime to support Open Client
applications.

Each Open Client data type is mapped onto the equivalent SQL Anywhere data type. All Open Client data
types are supported

SQL Anywhere data types with no direct counterpart in Open Client
The following table lists the mappings of data types supported in SQL Anywhere that have no direct
counterpart in Open Client.

SQL Anywhere data type Open Client data type

unsigned short int

unsigned int bigint

unsigned bigint numeric(20,0)

date smalldatetime

time smalldatetime

string varchar

timestamp datetime

Range limitations in data type mapping

Some data types have different ranges in SQL Anywhere than in Open Client. In such cases, overflow errors
can occur during retrieval or insertion of data.

The following table lists Open Client application data types that can be mapped to SQL Anywhere data
types, but with some restriction in the range of possible values.

In most cases, the Open Client data type is mapped to a SQL Anywhere data type that has a greater range
of possible values. As a result, it is possible to pass a value to SQL Anywhere that will be accepted and
stored in a database, but that is too large to be fetched by an Open Client application.

Sybase Open Client API

624 Copyright © 2007, iAnywhere Solutions, Inc.

Data type Open Client low-
er range

Open Client up-
per range

SQL Anywhere
lower range

SQL Any-
where upper
range

MONEY –922 377 203 685
477.5808

922 377 203 685
477.5807

–1e15 + 0.0001 1e15 – 0.0001

SMALLMONEY –214 748.3648 214 748.3647 –214 748.3648 214 748.3647

DATETIME Jan 1, 1753 Dec 31, 9999 Jan 1, 0001 Dec 31, 9999

SMALLDATETIME Jan 1, 1900 June 6, 2079 March 1, 1600 Dec 31, 7910

Example
For example, the Open Client MONEY and SMALLMONEY data types do not span the entire numeric
range of their underlying SQL Anywhere implementations. Therefore, it is possible to have a value in a SQL
Anywhere column which exceeds the boundaries of the Open Client data type MONEY. When the client
fetches any such offending values via SQL Anywhere, an error is generated.

Timestamps
The SQL Anywhere implementation of the Open Client TIMESTAMP data type, when such a value is passed
in SQL Anywhere, is different from that of Adaptive Server Enterprise. In SQL Anywhere, the value is
mapped to the SQL Anywhere DATETIME data type. The default value is NULL in SQL Anywhere and
no guarantee is made of its uniqueness. By contrast, Adaptive Server Enterprise ensures that the value is
monotonically increasing in value, and so, is unique.

By contrast, the SQL Anywhere TIMESTAMP data type contains year, month, day, hour, minute, second,
and fraction of second information. In addition, the DATETIME data type has a greater range of possible
values than the Open Client data types that are mapped to it by SQL Anywhere.

Data type mappings

Copyright © 2007, iAnywhere Solutions, Inc. 625

Using SQL in Open Client applications
This section provides a very brief introduction to using SQL in Open Client applications, with a particular
focus on SQL Anywhere-specific issues.

For an introduction to the concepts, see “Using SQL in Applications” on page 19. For a complete description,
see your Open Client documentation.

Executing SQL statements

You send SQL statements to a database by including them in Client Library function calls. For example, the
following pair of calls executes a DELETE statement:

ret = ct_command(cmd, CS_LANG_CMD,
 "DELETE FROM Employees
 WHERE EmployeeID=105"
 CS_NULLTERM,
 CS_UNUSED);
ret = ct_send(cmd);

The ct_command function is used for a wide range of purposes.

Using prepared statements

The ct_dynamic function is used to manage prepared statements. This function takes a type parameter that
describes the action you are taking.

♦ To use a prepared statement in Open Client

1. Prepare the statement using the ct_dynamic function, with a CS_PREPARE type parameter.

2. Set statement parameters using ct_param.

3. Execute the statement using ct_dynamic with a CS_EXECUTE type parameter.

4. Free the resources associated with the statement using ct_dynamic with a CS_DEALLOC type
parameter.

For more information on using prepared statements in Open Client, see your Open Client documentation

Using cursors

The ct_cursor function is used to manage cursors. This function takes a type parameter that describes the
action you are taking.

Supported cursor types
Not all the types of cursor that SQL Anywhere supports are available through the Open Client interface.
You cannot use scroll cursors, dynamic scroll cursors, or insensitive cursors through Open Client.

Sybase Open Client API

626 Copyright © 2007, iAnywhere Solutions, Inc.

Uniqueness and updatability are two properties of cursors. Cursors can be unique (each row carries primary
key or uniqueness information, regardless of whether it is used by the application) or not. Cursors can be
read only or updatable. If a cursor is updatable and not unique, performance may suffer, as no prefetching
of rows is done in this case, regardless of the CS_CURSOR_ROWS setting.

The steps in using cursors
In contrast to some other interfaces, such as embedded SQL, Open Client associates a cursor with a SQL
statement expressed as a string. Embedded SQL first prepares a statement and then the cursor is declared
using the statement handle.

♦ To use cursors in Open Client

1. To declare a cursor in Open Client, use ct_cursor with CS_CURSOR_DECLARE as the type parameter.

2. After declaring a cursor, you can control how many rows are prefetched to the client side each time a
row is fetched from the server by using ct_cursor with CS_CURSOR_ROWS as the type parameter.

Storing prefetched rows at the client side reduces the number of calls to the server and this improves
overall throughput, as well as turnaround time. Prefetched rows are not immediately passed on to the
application; they are stored in a buffer at the client side ready for use.

The setting of the prefetch database option controls prefetching of rows for other interfaces. It is ignored
by Open Client connections. The CS_CURSOR_ROWS setting is ignored for non-unique, updatable
cursors.

3. To open a cursor in Open Client, use ct_cursor with CS_CURSOR_OPEN as the type parameter.

4. To fetch each row in to the application, use ct_fetch.

5. To close a cursor, you use ct_cursor with CS_CURSOR_CLOSE.

6. In Open Client, you also need to deallocate the resources associated with a cursor. You do this by using
ct_cursor with CS_CURSOR_DEALLOC. You can also use CS_CURSOR_CLOSE with the additional
parameter CS_DEALLOC to perform these operations in a single step.

Modifying rows through a cursor

With Open Client, you can delete or update rows in a cursor, as long as the cursor is for a single table. The
user must have permissions to update the table and the cursor must be marked for update.

♦ To modify rows through a cursor

• Instead of carrying out a fetch, you can delete or update the current row of the cursor using ct_cursor
with CS_CURSOR_DELETE or CS_CURSOR_UPDATE, respectively.

You cannot insert rows through a cursor in Open Client applications.

Using SQL in Open Client applications

Copyright © 2007, iAnywhere Solutions, Inc. 627

Describing query results in Open Client

Open Client handles result sets in a different way than some other SQL Anywhere interfaces.

In embedded SQL and ODBC, you describe a query or stored procedure to set up the proper number and
types of variables to receive the results. The description is done on the statement itself.

In Open Client, you do not need to describe a statement. Instead, each row returned from the server can carry
a description of its contents. If you use ct_command and ct_send to execute statements, you can use the
ct_results function to handle all aspects of rows returned in queries.

If you do not want to use this row-by-row method of handling result sets, you can use ct_dynamic to prepare
a SQL statement and use ct_describe to describe its result set. This corresponds more closely to the describing
of SQL statements in other interfaces.

Sybase Open Client API

628 Copyright © 2007, iAnywhere Solutions, Inc.

Known Open Client limitations of SQL Anywhere
Using the Open Client interface, you can use a SQL Anywhere database in much the same way as you would
an Adaptive Server Enterprise database. There are some limitations, including the following:

♦ Commit Service SQL Anywhere does not support the Adaptive Server Enterprise Commit Service.

♦ Capabilities A client/server connection's capabilities determine the types of client requests and server
responses permitted for that connection. The following capabilities are not supported:

♦ CS_CSR_ABS
♦ CS_CSR_FIRST
♦ CS_CSR_LAST
♦ CS_CSR_PREV
♦ CS_CSR_REL
♦ CS_DATA_BOUNDARY
♦ CS_DATA_SENSITIVITY
♦ CS_OPT_FORMATONLY
♦ CS_PROTO_DYNPROC
♦ CS_REG_NOTIF
♦ CS_REQ_BCP

♦ Security options, such as SSL and encrypted passwords, are not supported.

♦ Open Client applications can connect to SQL Anywhere using TCP/IP.

For more information on capabilities, see the Open Server Server-Library C Reference Manual.

♦ When the CS_DATAFMT is used with the CS_DESCRIBE_INPUT, it does not return the data type of
a column when a parameterized variable is sent to SQL Anywhere as input.

Known Open Client limitations of SQL Anywhere

Copyright © 2007, iAnywhere Solutions, Inc. 629

630

CHAPTER 17

SQL Anywhere Web Services

Contents
Introduction to web services .. 632
Quick start to web services .. 633
Creating web services ... 636
Starting a database server that listens for web requests ... 639
Understanding how URLs are interpreted ... 642
Creating SOAP and DISH web services .. 646
Tutorial: Accessing web services from Microsoft .NET ... 649
Tutorial: Accessing web services from Java JAX-RPC ... 652
Using procedures that provide HTML documents ... 657
Working with data types .. 660
Tutorial: Using data types with Microsoft .NET .. 665
Creating web service client functions and procedures .. 670
Working with return values and result sets .. 675
Selecting from result sets .. 677
Using parameters .. 678
Working with structured data types ... 681
Working with variables ... 686
Working with HTTP headers .. 688
Using SOAP services .. 690
Working with SOAP headers ... 693
Working with MIME types .. 700
Using HTTP sessions .. 703
Using automatic character set conversion ... 709
Handling errors .. 710

Copyright © 2007, iAnywhere Solutions, Inc. 631

Introduction to web services
SQL Anywhere contains a built-in HTTP server that allows you to provide web services, as well as to access
web services in other SQL Anywhere databases and standard web services available over the Internet. SOAP
is the standard used for this purpose, but the built-in HTTP server in SQL Anywhere also lets you handle
standard HTTP and HTTPS requests from client applications.

The term web service has been used to mean a variety of things. Commonly, it refers to software that
facilitates inter-computer data transfer and interoperability. Essentially, web services make segments of
business logic available over the Internet. Simple Object Access Protocol (SOAP) is a simple XML-based
protocol to let applications exchange information over HTTP.

SOAP provides a method for communication between applications such as those written in Java or Visual
Studio .NET using the Internet. SOAP messages define the services that a server provides. Actual data
transfer generally takes place using HTTP to exchange XML documents structured so as to efficiently encode
relevant information. Any application, such as a client or server, that participates in SOAP communication
is called a SOAP node or SOAP endpoint. Such applications can transmit, receive, or process SOAP
messages. You can create SOAP nodes with SQL Anywhere.

For more information about the SOAP standards, see www.w3.org/TR/soap.

Web services and SQL Anywhere
In the context of SQL Anywhere, the term web services means that SQL Anywhere has the ability to listen
for and handle standard SOAP requests. Web services in SQL Anywhere provide client applications an
alternative to such traditional interfaces as JDBC and ODBC. Web services can be accessed from client
applications written in a variety of languages and running on a variety of platforms. Even common scripting
languages such as Perl and Python provide access to web services. You create web services in a database
using the CREATE SERVICE statement.

SQL Anywhere can also function as a SOAP or HTTP client, permitting applications running within the
database to access standard web services available over the Internet, or provided by other SQL Anywhere
databases. This client functionality is accessed through stored functions and procedures.

In addition, the term web services also refers to applications that use the built-in web server to handle HTTP
requests from clients. These applications generally function like traditional database-backed web
applications, but can be more compact and are easier to write as the data and the entire application can reside
within a database. In this type of application, the web service typically returns documents in HTML format.
The GET, HEAD, and POST methods are supported.

The collection of web services within your database together define the available URLs. Each service
provides a set of web pages. Typically, the content of these pages is generated by procedures that you write
and store in your database, although they can be a single statement or, optionally, allow users to execute
statements of their own. These web services become available when you start the database server with options
that enable it to listen for HTTP requests.

Since the HTTP server that handles web service requests is embedded in the database, performance is good.
Applications that use web services are easily deployed, since no additional components are needed, beyond
the database and database server.

SQL Anywhere Web Services

632 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.w3.org/TR/soap

Quick start to web services
The following procedure describes how to create a new database, start a SQL Anywhere database with the
HTTP server enabled, and access this database using any popular web browser.

♦ To create and access a simple XML web service

1. Copy the SQL Anywhere sample database from samples-dir to another location, such as c:\webserver
\demo.db.

2. Execute the following statement to start a personal web server. The -xs http(port=80) option
tells the database server to listen for HTTP requests. If you already have a web server running on port
80, use another port number such as 8080 for this demonstration.

dbeng10 -xs http(port=80) c:\webserver\demo.db

Many properties of the HTTP communication link are controlled by parameters to the -xs option.

For more information, see “-xs server option” [SQL Anywhere Server - Database Administration].

3. As well as starting the database server with the appropriate -xs option parameters, you must create web
services to respond to incoming requests. These are defined using the CREATE SERVICE statement.

Start Interactive SQL. Connect to the SQL Anywhere sample database as the DBA. Execute the
following statement:

CREATE SERVICE XMLtables
TYPE 'XML'
AUTHORIZATION OFF
USER DBA
AS SELECT * FROM Customers

This statement creates a web service named XMLtables. This simple web service returns the results of
the statement SELECT * FROM Customers, automatically converting the output into XML format.
Because authorization is off, no permissions are required to access the table from a web browser.

For more information, see “Creating web services” on page 636 and “CREATE SERVICE
statement” [SQL Anywhere Server - SQL Reference].

4. Start a web browser.

5. Browse to the URL http://localhost:80/demo/XMLtables. Use the port number you specified when
starting the database server.

♦ localhost:80 Defines the web host name and port number to use.

♦ demo Defines the database name to use. You are using c:\webserver\demo.db.

♦ XMLtables Defines the service name to use.

Your web browser shows you the body of the XML document returned by the database server. As no
formatting information has been included, you see the raw XML, including tags and attributes.

Quick start to web services

Copyright © 2007, iAnywhere Solutions, Inc. 633

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://localhost/demo/XMLtables

6. You can also access the XMLtables routine from common programming languages. For example, the
following short C# program uses the XMLtables web service:

using System.Xml;
static void Main(string[] args)
{
 XmlTextReader reader =
 new XmlTextReader("http://localhost:80/demo/XMLtables");
 while(reader.Read())
 {
 switch(reader.NodeType)
 {
 case XmlNodeType.Element:
 if(reader.Name == "row")
 {
 Console.Write(reader.GetAttribute("ID")+" ");
 Console.WriteLine(reader.GetAttribute("Surname"));
 }
 break;
 }
 }
}

7. In addition, you can access the same web service from Python, as in the following example:

import xml.sax
class DocHandler(xml.sax.ContentHandler):
 def startElement(self, name, attrs):
 if name == 'row':
 table_id = attrs.getValue('ID')
 table_name = attrs.getValue('Surname')
 print '%s %s' % (table_id, table_name)
parser = xml.sax.make_parser()
parser.setContentHandler(DocHandler())
parser.parse('http://localhost:80/demo/XMLtables')

Save this code in a file called DocHandler.py. To run the application, enter a command like the
following:

python DocHandler.py

♦ To create and access a simple HTML web service

1. Execute the following statement to start a personal web server. The -xs http(port=80) option
tells the database server to listen for HTTP requests. If you already have a web server running on port
80, use another port number such as 8080 for this demonstration.

dbeng10 -xs http(port=80) c:\webserver\demo.db

Many properties of the HTTP communication link are controlled by parameters to the -xs option.

For more information, see “-xs server option” [SQL Anywhere Server - Database Administration].

2. As well as starting the database server with the appropriate -xs option parameters, you must create web
services to respond to incoming requests. These are defined using the CREATE SERVICE statement.

SQL Anywhere Web Services

634 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Start Interactive SQL. Connect to the SQL Anywhere sample database as the DBA. Execute the
following statement.

CREATE SERVICE HTMLtables
TYPE 'HTML'
AUTHORIZATION OFF
USER DBA
AS SELECT * FROM Customers

This statement creates a web service named HTMLtables. This simple web service returns the results
of the statement SELECT * FROM Customers, automatically converting the output into HTML format.
Because authorization is off, no permissions are required to access the table from a web browser.

For more information, see “Creating web services” on page 636 and “CREATE SERVICE
statement” [SQL Anywhere Server - SQL Reference].

3. Start a web browser.

4. Browse to the URL http://localhost:80/demo/HTMLtables. Use the port number you specified when
starting the database server.

Your web browser shows you the body of the HTML document returned by the database server. By
default, the result set is formatted into an HTML table.

Other resources for getting started
Samples are included in the samples-dir\SQLAnywhere\HTTP directory.

Other examples might be available on CodeXchange at http://ianywhere.codexchange.sybase.com/.

Quick start to web services

Copyright © 2007, iAnywhere Solutions, Inc. 635

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://localhost/demo/HTMLtables
http://ianywhere.codexchange.sybase.com/

Creating web services
Web services, created and stored in databases, define which URLs are valid and what they do. A single
database can define multiple web services. It is possible to define web services in different databases so that
they appear to be part of a single web site.

The following statements permit you to create, alter, and delete web services:

♦ CREATE SERVICE

♦ ALTER SERVICE

♦ DROP SERVICE

♦ COMMENT ON SERVICE

The general syntax of the CREATE SERVICE statement is as follows:

CREATE SERVICE service-name TYPE 'service-type' [attributes] [AS statement]

Service names
Since service names form part of the URL used to access them, they are flexible in terms of what characters
they can contain. In addition to the standard alpha-numeric characters, the following characters are permitted:
- _ . ! * '()
In addition, service names other than those used in naming DISH services can contain a slash, "/", but some
restrictions apply because this character is a standard URL delimiter and affects how SQL Anywhere
interprets your URLs. It cannot be the first character of a service name. In addition, service names cannot
contain two consecutive slashes.

The characters permitted in service names are also permitted in GROUP names, which apply to DISH
services only.

Service types
The following service types are supported:

♦ SOAP The result set is returned as a SOAP response. The format of the data is determined by the
FORMAT clause. A request to a SOAP service must be a valid SOAP request, not just a simple HTTP
request.

♦ DISH A DISH service (Determine SOAP Handler) acts as a proxy for those SOAP services identified
by the GROUP clause, and generates a WSDL (Web Services Description Language) document for each
of these SOAP services.

♦ XML The result set is returned as XML. If the result set is already XML, no additional formatting is
applied. If it is not already XML, it is automatically formatted as XML. The effect is similar to that of
using the FOR XML RAW clause in a SELECT statement.

♦ HTML The result set of a statement or procedure is automatically formatted into an HTML document
that contains a table.

SQL Anywhere Web Services

636 Copyright © 2007, iAnywhere Solutions, Inc.

♦ RAW The result set is sent to the client without any further formatting. You can produce formatted
documents by generating the required tags explicitly within your procedure.

Of all the service types, RAW gives you the most control over the output. However, it does require that you
do more work as you must explicitly output all the necessary tags. The output of XML services can be
adjusted by applying the FOR XML clause to the service's statement. The output of SOAP services can be
adjusted using the FORMAT attribute of the CREATE or ALTER SERVICE statement.

For more information, see “CREATE SERVICE statement” [SQL Anywhere Server - SQL Reference].

Statements
The statement is the command, usually a stored procedure, that is called when someone accesses the service.
If you define a statement, this is the only statement that can be run through this service. The statement is
mandatory for SOAP services, and ignored for DISH services. The default is NULL, which means no
statement.

You can create services that do not include statements. The statement is taken from the URL. Services
configured in this way can be useful when you are testing a service, or want a general way of accessing
information. To do so, either omit the statement entirely or use the phrase AS NULL in place of the statement.

Services without statements are a serious security risk because they permit web clients to execute arbitrary
commands. When creating such services, you must enable authorization, which forces all clients to provide
a valid user name and password. Even so, only services that define statements should be run in a production
system.

Attributes
The following attributes are available. In general, all are optional. However, some are interdependent.

♦ AUTHORIZATION This attribute controls which users can use the service. The default setting is ON.
Authorization must be ON if no statement is provided. In addition, the authorization setting affects how
user names, defined by the USER attribute, are interpreted.

♦ SECURE When set to ON, only secure connections are permitted. All connections received on the
HTTP port are automatically redirected to the HTTPS port. The default is OFF, which enables both
HTTP and HTTPS requests, provided these ports are enabled using the appropriate options when the
database server is started.

For more information, see “-xs server option” [SQL Anywhere Server - Database Administration].

♦ USER The USER clause controls which database user accounts can be used to process service requests.
However, the interpretation of this setting depends on whether authorization is ON or OFF.

When authorization is set to ON, all clients must provide a valid user name and password when they
connect. When authorization is ON, the USER option can be NULL, a database user name, or the name
of a database group. If it is NULL, any database user can connect and make requests. Requests are run
using the account and permissions of that user. If a group name is specified, only those users who belong
to the group can run requests. All other database users are denied permission to use the service.

If authorization is OFF, a statement must be provided. In addition, a user name must be provided. All
requests are run using that user's account and permissions. Thus, if the server is connected to a public

Creating web services

Copyright © 2007, iAnywhere Solutions, Inc. 637

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

network, the permissions of the named user account should be minimal to limit the damage that could
be caused through malicious use.

♦ GROUP The GROUP clause, which applies to DISH services only, determines which SOAP services
are exposed by the DISH service. Only SOAP services whose names begin with the name of the group
name of a DISH service are exposed by that DISH service. Thus, the group name is a common prefix
among the exposed SOAP services. For example, specifying GROUP xyz exposes only SOAP services
xyz/aaaa, xyz/bbbb, or xyz/cccc, but does not expose abc/aaaa or xyzaaaa. If no group name is specified,
the DISH service exposes all the SOAP services in the database. The same characters are permitted in
group names as in service names.

SOAP services can be exposed by more than one DISH service. In particular, this feature permits a single
SOAP service to supply data in multiple formats. The service type, unless specified in a SOAP service,
is inherited from the DISH service. Thus, you can create a SOAP service that declares no format type,
then include it in multiple DISH services, each of which specifies a different format.

♦ FORMAT The FORMAT clause, which applies to DISH and SOAP services only, controls the output
format of the SOAP or DISH response. Output formats compatible with various types of SOAP clients,
such as .NET or Java JAX-RPC, are available. If the format of a SOAP service is not specified, the format
is inherited from the service's DISH service declaration. If the DISH service also does not declare a
format, it defaults to DNET, which is compatible with .NET clients. A SOAP service that does not declare
a format can be used with different types of SOAP clients by defining multiple DISH services, each
having a different FORMAT type.

♦ URL [PATH] The URL or URL PATH clause controls the interpretation of URLs and applies to XML,
HTML, and RAW service types only. In particular, it determines whether URL paths are accepted and,
if so, how they are processed. If the service name ends with the character "/", URL must be set to OFF.

For more information, see “CREATE SERVICE statement” [SQL Anywhere Server - SQL Reference].

SQL Anywhere Web Services

638 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Starting a database server that listens for web requests
When you want a database server to listen for web service requests over HTTP or HTTPS, you must specify
the types of web requests it is to listen on the command line when you start the server. By default, database
servers do not listen for web service requests, leaving no way for clients to access any services that may be
defined in your database.

You can also specify various properties of an HTTP or HTTPS service on the command line, such as on
which port they are to listen.

You must also create web services within the database. For more information, see “Creating web
services” on page 636.

You use the -xs option to enable protocols. The two available web service protocols are HTTP and HTTPS.
Optional parameters, placed within parentheses after the protocol name, let you customize access to each
type of web service.

The general syntax of the option is as follows:

-xs { protocol [(option=value; …)], … }

Starting multiple web servers
If you want to start multiple web servers at the same time, then you must change the port for additional web
servers since they all have the same default port.

Protocols
The following web service protocol values are available:

♦ http Listen for HTTP connections.

♦ https Listen for HTTPS connections.

♦ none Do not listen for web service requests. This is the default setting.

Options
The following are some of the options that are available:

♦ FIPS Specify FIPS=Y to listen for HTTPS FIPS connections.

♦ ServerPort [PORT] The port on which to listen for web requests. By default, SQL Anywhere listens
on port 80 for HTTP requests and on port 443 for secure HTTP (HTTPS) requests. The default port for
FIPS-approved HTTPS connections is the same as for HTTPS.

For example, if you already have a web server running on port 80, you could use the following options
to start a database server that listens for web requests on port 8080:

dbeng10 mywebapp.db -xs http(port=8080)

Starting a database server that listens for web requests

Copyright © 2007, iAnywhere Solutions, Inc. 639

As another example, the following command starts a secure web server using the sample certificate
included with SQL Anywhere (you must have installed RSA or FIPS-approved RSA encryption to have
this file). It should be entered on a single line.

dbeng10 -xs https(certificate=rsaserver.crt;
 certificate_password=test)

Caution
The sample certificate is intended for use only during testing and development. It provides no protection
because it is a standard part of SQL Anywhere. Replace it with your own certificate before deploying
your application.

♦ DatabaseName [DBN] Specifies the name of a database to use when processing web requests, or
uses the REQUIRED or AUTO keyword to specify whether database names are required as part of the
URL.

If this parameter is set to REQUIRED, the URL must specify the database name.

If this parameter is set to AUTO, the URL may specify a database name, but does not need to do so. If
the URL contains no database name, the default database on the server is used to process web requests.

If this parameter is set to the name of a database, that database is used to process all web requests. The
URL must not contain a database name.

♦ LocalOnly [LOCAL] When set to YES, this parameter causes a network database server to reject all
connections from clients running on different computers. This option has no effect on personal database
servers, which never accept web service requests from other computers. The default value is NO, which
means accept requests from clients no matter where they are located.

♦ LogFile [LOG] The name of the file to which the database server is to write information about web
service requests.

♦ LogFormat [LF] Controls the format of messages written to the log file and which fields appear in
them. If they appear in the string, current values are substituted for the codes, such as @T, when each
message is written.

The default value is @T - @W - @I - @P - "@M @U @V" - @R - @L - @E, which produces messages
such as the following:

06/15 01:30:08.114 - 0.686 - 127.0.0.1 - 80
 - "GET /web/ShowTable HTTP/1.1" - 200 OK - 55133 -

The format of the log file is compatible with Apache, so the same tools can be used to analyze it.

For more information on field codes, see “LogFormat protocol option [LF]” [SQL Anywhere Server -
Database Administration]

♦ LogOptions [LOPT] Allows you to specify keyword and error numbers that control which messages,
or types of messages, are written to the log file.

For more information, see “LogOptions protocol option [LOPT]” [SQL Anywhere Server - Database
Administration].

SQL Anywhere Web Services

640 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

For a complete list of the available options and detailed information about them, see “Network protocol
options” [SQL Anywhere Server - Database Administration].

Starting a database server that listens for web requests

Copyright © 2007, iAnywhere Solutions, Inc. 641

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Understanding how URLs are interpreted
Universal Resource Locators, or URLs, identify documents, such as HTML pages, available from SOAP or
HTTP web services. The URLs used in SQL Anywhere follow the patterns familiar to you from browsing
the web. Users browsing through a database server need not be aware that their requests are not being handled
by a traditional stand-alone web server.

Although standard in format, SQL Anywhere database servers interpret URLs differently than standard web
servers. The options you specify when you start the database server also affect their interpretation.

The general syntax of the URL is as follows:

{ http | https }://[user:password@]host[:port][/dbn]/service-name[path | ?searchpart]

The following is an example URL: http://localhost:80/demo/XMLtables.

User and password
When a web service requires authentication, the user name and password can be passed directly as part of
the URL by separating them with a colon and prepending them to the host name, much like an email address.

Host and port
Like all standard HTTP requests, the start of the URL contains the host name or IP number and, optionally,
a port number. The IP address or host name, and port, should be the one on which your server is listening.
The IP address is the address of a network card in the computer running SQL Anywhere. The port number
will be the port number you specified using the -xs option when you started the database server. If you did
not specify a port number, the default port number for that type of service is used. For example, the server
listens by default on port 80 for HTTP requests.

For more information, see “-xs server option” [SQL Anywhere Server - Database Administration].

Database name
The next token, between the slashes, is usually the name of a database. This database must be running on
the server and must contain web services.

The default database is used if no database name appears in the URL and the database name was not specified
using the DBN connection parameter to the -xs server option.

The database name can be omitted only if the database server is running only one database, or if the database
name was specified using the DBN connection parameter to the -xs option.

Service name
The next portion of the URL is the service name. This service must exist in the specified database. The
service name can extend beyond the next slash character because web service names can contain slash
characters. SQL Anywhere matches the remainder of the URL with the defined services.

If the URL provides no service name, then the database server looks for a service named root. If the named
service, or the root service, is not defined, then the server returns a 404 Not Found error.

SQL Anywhere Web Services

642 Copyright © 2007, iAnywhere Solutions, Inc.

http://localhost/demo/XMLtables
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Parameters
Depending on the type of the target service, parameters can be supplied in different ways. Parameters to
HTML, XML, and RAW services can be passed in any of the following ways:

♦ appended to the URL using slashes

♦ supplied as an explicit URL parameters list

♦ supplied as POST data in a POST request

Parameters to SOAP services must be included as part of a standard SOAP request. Values supplied in other
ways are ignored.

URL path

To access parameter values, parameters must be given names. These host variable names, prefixed with a
colon (:), can be included in the statement that forms part of the web service definition.

For example, suppose you define the following stored procedure:

CREATE PROCEDURE Display (IN ident INT)
BEGIN
 SELECT ID, GivenName, Surname FROM Customers
 WHERE ID = ident;
END

A statement that calls the stored procedure requires a customer identification number. Define the service as
follows:

CREATE SERVICE DisplayCustomer
TYPE 'HTML'
URL PATH ELEMENTS
AUTHORIZATION OFF
USER DBA
AS CALL Display(:url1);

An example of a URL for this is: http://localhost/demo/DisplayCustomer/105.

The parameter 105 is passed as url1 to the service. The clause URL PATH ELEMENTS indicates that
parameters separated by slashes should be passed as parameters url1, url2, url3, and so on. Up to 10
parameters can be passed in this way.

Since there is only one parameter to the Display procedure, the service could have been defined like this:

CREATE SERVICE DisplayCustomer
TYPE 'HTML'
URL PATH ON
AUTHORIZATION OFF
USER DBA
AS CALL Display(:url);

In this case, the parameter 105 would be passed as url to the service. The clause URL PATH ON indicates
that everything after the service name should be passed as a single parameter called url. So in the following
URL, the string 105/106 would be passed as url (and a SQL error would result since the Display stored
procedure requires an integer value).

Understanding how URLs are interpreted

Copyright © 2007, iAnywhere Solutions, Inc. 643

http://localhost/demo/DisplayCustomer/105

http://localhost:80/demo/DisplayCustomer/105/106

For more information about variables, see “Working with variables” on page 686.

Parameters can also be accessed using the HTTP_VARIABLE function. For more information, see
“HTTP_VARIABLE function [HTTP]” [SQL Anywhere Server - SQL Reference].

URL searchpart

Another method for passing parameters is through the URL searchpart mechanism. A URL searchpart
consists of a question mark (?) followed by name=value pairs separated by ampersands (&). The searchpart
is appended to the end of a URL. The following example shows the general format:

http://server/path/document?name1=value1&name2=value2

GET requests are formatted in this manner. If present, the named variables are defined and assigned the
corresponding values.

For example, a statement that calls the stored procedure ShowSalesOrderDetail requires both a customer
identification number and a product identification number:

CREATE SERVICE ShowSalesOrderDetail
TYPE 'HTML'
URL PATH OFF
AUTHORIZATION OFF
USER DBA
AS CALL ShowSalesOrderDetail(:customer_id, :product_id);

An example of a URL for this is: http://localhost:80/demo/ShowSalesOrderDetail?
customer_id=101&product_id=300.

If you have URL PATH set to ON or ELEMENTS, additional variables are defined. However, the two are
usually otherwise independent. You can allow variables to be used in requested URLs by setting URL PATH
to ON or ELEMENTS. The following example illustrates how the two can be mixed:

CREATE SERVICE ShowSalesOrderDetail2
TYPE 'HTML'
URL PATH ON
AUTHORIZATION OFF
USER DBA
AS CALL ShowSalesOrderDetail(:customer_id, :url);

In the following example, both searchpart and URL path are used. The value 300 is assigned to url and
101 is assigned to customer_id.

http://localhost:80/demo/ShowSalesOrderDetail2/300?customer_id=101

This can also be expressed using searchpart only in the following manner.

http://localhost:80/demo/ShowSalesOrderDetail2/?customer_id=101&url=300

This then leads to the question of what happens when both are specified for the same variable. In the following
example, first 300 and then 302 are assigned to url in sequence and it is the last assignment that takes
precedence.

http://localhost:80/demo/ShowSalesOrderDetail2/300?customer_id=101&url=302

SQL Anywhere Web Services

644 Copyright © 2007, iAnywhere Solutions, Inc.

http://localhost/demo/DisplayCustomer/105/106
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://localhost/demo/ShowSalesOrderDetail?customer_id=101&product_id=300
http://localhost/demo/ShowSalesOrderDetail?customer_id=101&product_id=300
http://localhost/demo/ShowSalesOrderDetail2/300?customer_id=101
http://localhost/demo/ShowSalesOrderDetail2/?customer_id=101&url=300
http://localhost/demo/ShowSalesOrderDetail2/300?customer_id=101&url=302

For more information about variables, see “Working with variables” on page 686.

Parameters can also be accessed using the HTTP_VARIABLE function. For more information, see
“HTTP_VARIABLE function [HTTP]” [SQL Anywhere Server - SQL Reference].

Understanding how URLs are interpreted

Copyright © 2007, iAnywhere Solutions, Inc. 645

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Creating SOAP and DISH web services
SOAP and DISH web services are the means by which you create standard SOAP web services that can be
accessed by standard SOAP clients, such as those written with Microsoft .NET or Java JAX-RPC.

SOAP services
SOAP services are the mechanism for constructing web services in SQL Anywhere that accept and process
standard SOAP requests.

To declare a SOAP service, specify that the service is to be of type SOAP. The body of a standard SOAP
request is SOAP envelope, meaning an XML document with a specific format. SQL Anywhere parses and
processes these requests using the procedures you provide. The response is automatically formatted in the
form of a standard SOAP response, which is also a SOAP envelope, and returned to the client.

The syntax of the statement used to create SOAP services is as follows:

CREATE SERVICE service-name
TYPE 'SOAP'
[FORMAT { 'DNET' | 'CONCRETE' | 'XML' | NULL }]
[common-attributes]
AS statement

DISH services
DISH services act as proxies for groups of SOAP services. In addition, they automatically construct WSDL
(Web Services Description Language) documents for their clients that describe the SOAP services that they
currently expose.

When you create a DISH service, the name given in the GROUP clause determines which SOAP services
the DISH service exposes. Every SOAP service whose name is prefixed with the name of the DISH service
is exposed. For example, specifying GROUP xyz exposes SOAP services xyz/aaaa, xyz/bbbb, or xyz/cccc.
It does not expose SOAP services named abc/aaaa or xyzaaaa. SOAP services can be exposed by more than
one DISH service. If no group name is specified, the DISH service exposes all the SOAP services in the
database. The same characters are permitted in DISH group names as in SOAP service names.

The syntax of the statement used to create DISH services is as follows:

CREATE SERVICE service-name
TYPE 'DISH'
[GROUP { group-name | NULL }]
[FORMAT { 'DNET' | 'CONCRETE' | 'XML' | NULL }]
[common-attributes]

SOAP and DISH service formats
The FORMAT clause of the CREATE SERVICE statement customizes the SOAP service data payload to
best suit the various types of SOAP clients, such as .NET and Java JAX-RPC. The FORMAT clause affects
the content of the WSDL document returned by a DISH service and the format of data payloads returned in
SOAP responses.

The default format, DNET, is a native format for use with .NET SOAP client applications, which expect
a .NET DataSet format.

SQL Anywhere Web Services

646 Copyright © 2007, iAnywhere Solutions, Inc.

The CONCRETE format is for use with clients such as Java JAX-RPC and .NET that automatically generate
interfaces based on the format of the returned data structures. When you specify this format, the WSDL
document returned by SQL Anywhere exposes a SimpleDataset element that describes a result set in concrete
terms. This element is a containment hierarchy of a rowset composed of an array of rows, each containing
an array of column elements.

The XML format is for use with SOAP clients that accept the SOAP response as one large string, and use
an XML parser to locate and extract the required elements and values. This format is generally the most
portable between different types of SOAP clients.

If the format of a SOAP service is not specified, the format is inherited from the service’s DISH service
declaration. If the DISH service also does not declare a format, it defaults to DNET, which is compatible
with .NET clients. A SOAP service that does not declare a format can be used with different types of SOAP
clients by defining multiple DISH services, each having a different FORMAT type.

Creating homogeneous DISH services
SOAP services need not specify a format type—you can set the format type to NULL. In this case, the format
is inherited from the DISH services that act as proxies for them. More than one DISH service can act as a
proxy for each SOAP service, and these DISH services need not be of the same type. These facts mean that
it is possible to use a single SOAP service with different types of SOAP clients, such as .NET and Java JAX-
RPC, by using multiple DISH services, each of a different type. Such DISH services are said to be
homogeneous because they expose the same data payloads for the same SOAP services, but in different
formats.

For example, consider the following two SOAP services, neither of which specifies a format:

CREATE SERVICE "abc/hello"
TYPE 'SOAP'
AS CALL hello(:student);

CREATE SERVICE "abc/goodbye"
TYPE 'SOAP'
AS CALL goodbye(:student);

Since neither of these services includes a FORMAT clause, the format, by default, is NULL. It is thus
inherited from the DISH service that is acting as a proxy. Now, consider the following two DISH services:

CREATE SERVICE "abc_xml"
TYPE 'DISH'
GROUP "abc"
FORMAT 'XML';

CREATE SERVICE "abc_concrete"
TYPE 'DISH'
GROUP "abc"
FORMAT 'CONCRETE';

Since both DISH services specify the same group name abc, they act as proxies for the same SOAP services,
namely all SOAP services whose names have the prefix "abc/".

However, when either of the two SOAP services is accessed through the abc_xml DISH service, the SOAP
service inherits the XML format; when accessed through the abc_concrete SOAP service, the SOAP service
inherits the CONCRETE format.

Creating SOAP and DISH web services

Copyright © 2007, iAnywhere Solutions, Inc. 647

Homogeneous DISH services provide a means of avoiding duplicate services whenever you want to give
different types of SOAP clients access to the SOAP web services you create.

SQL Anywhere Web Services

648 Copyright © 2007, iAnywhere Solutions, Inc.

Tutorial: Accessing web services from Microsoft .NET
The following tutorial demonstrates how to access web services from Microsoft .NET using Visual C#.

♦ To create SOAP and DISH services

1. Copy the SQL Anywhere sample database from samples-dir to another location, such as c:\webserver
\demo.db.

2. At a command prompt, execute the following statement to start a personal web server. The -xs http
(port=80) option tells the database server to accept HTTP requests. If you already have a web server
running on port 80, use another port number such as 8080 for this tutorial.

dbeng10 -xs http(port=80) c:\webserver\demo.db
3. Start Interactive SQL. Connect to the SQL Anywhere sample database as the DBA. Execute the

following statements:

a. Define a SOAP service that lists the Employees table.

CREATE SERVICE "SASoapTest/EmployeeList"
TYPE 'SOAP'
AUTHORIZATION OFF
SECURE OFF
USER DBA
AS SELECT * FROM Employees;

Because authorization has been turned off, anyone can use this service without supplying a user
name and password. The commands run under user DBA. This arrangement is simple, but insecure.

b. Create a DISH service to act as a proxy for the SOAP service and to generate the WSDL document.

CREATE SERVICE "SASoapTest_DNET"
TYPE 'DISH'
GROUP "SASoapTest"
FORMAT 'DNET'
AUTHORIZATION OFF
SECURE OFF
USER DBA;

The SOAP and DISH service must be of format DNET. In this example, the FORMAT clause was
omitted when the SOAP service was created. As a result, the SOAP service inherits the DNET
format from the DISH service.

4. Start Microsoft Visual C#. Note that this example uses functions from the .NET Framework 2.0.

a. Create a new Windows Application project.

An empty form appears.

b. From the Project menu, choose Add Web Reference.

c. In the URL field of the Add Web Reference page, enter the following URL: http://localhost:80/
demo/SASoapTest_DNET.

Tutorial: Accessing web services from Microsoft .NET

Copyright © 2007, iAnywhere Solutions, Inc. 649

d. Click Go.

You are presented with a list of the methods available for SASoapTest_DNET. You should see
the EmployeeList method.

e. Click Add Reference to finish.

The Solution Explorer window shows the new Web Reference.

f. Add a ListBox and a Button to the form as shown in the following diagram.

g. Rename the button text to Employee List.

h. Double-click the Employee List button and add the following code for the button click event.

int sqlCode;
listBox1.Items.Clear();
localhost.SASoapTest_DNET proxy = new localhost.SASoapTest_DNET();
DataSet results = proxy.EmployeeList(out sqlCode);
DataTableReader dr = results.CreateDataReader();
while (dr.Read())
{
 for (int i = 0; i < dr.FieldCount; i++)
 {
 string columnName = dr.GetName(i);
 string value = dr.GetString(i);
 listBox1.Items.Add(columnName+"="+value);
 }
 listBox1.Items.Add("");
}
dr.Close();

SQL Anywhere Web Services

650 Copyright © 2007, iAnywhere Solutions, Inc.

i. Build and run the program.

The listbox will display the EmployeeList result set as column name=value pairs.

Tutorial: Accessing web services from Microsoft .NET

Copyright © 2007, iAnywhere Solutions, Inc. 651

Tutorial: Accessing web services from Java JAX-RPC
The following tutorial demonstrates how to access web services from Java JAX-RPC.

SQL Anywhere SOAP web services that are accessed from JAX-RPC should be declared to be of format
CONCRETE.

♦ To create SOAP and DISH services

1. Copy the SQL Anywhere sample database from samples-dir to another location, such as c:\webserver
\demo.db.

2. At a command prompt, execute the following statement to start a personal web server. The -xs http
(port=80) option tells the database server to accept HTTP requests. If you already have a web server
running on port 80, use another port number such as 8080 for this tutorial.

dbeng10 -xs http(port=80) c:\webserver\demo.db
3. Start Interactive SQL and connect to the SQL Anywhere sample database as the DBA. Execute the

following statements:

a. Define a SOAP service that lists the Employees table. You may already have done this if you
performed the steps in “Tutorial: Accessing web services from Microsoft .NET” on page 649.

CREATE SERVICE "SASoapTest/EmployeeList"
TYPE 'SOAP'
AUTHORIZATION OFF
SECURE OFF
USER DBA
AS SELECT * FROM Employees;

Because authorization has been turned off, anyone can use this service without supplying a user
name and password. The commands run under user DBA. This arrangement is simple, but insecure.

b. Create a DISH service to act as a proxy for the SOAP service and to generate the WSDL document.

CREATE SERVICE "SASoapTest_CONCRETE"
TYPE 'DISH'
GROUP "SASoapTest"
FORMAT 'CONCRETE'
AUTHORIZATION OFF
SECURE OFF
USER DBA;

The SOAP and DISH service must be of format CONCRETE. In this example, the FORMAT
clause was omitted when the SOAP service was created. As a result, the SOAP service inherits
the CONCRETE format from the DISH service.

4. Take a look at the WSDL that the DISH service automatically creates. To do so, open a web browser
and browse to the following URL: http://localhost:80/demo/SASoapTest_CONCRETE. The DISH
service automatically generates a WSDL document that appears in the browser window.

In particular, observe the SimpleDataset object that is exposed because the format of this service is
CONCRETE. In a later step, the wscompile application uses this information to generate a SOAP 1.1
client interface for this service.

SQL Anywhere Web Services

652 Copyright © 2007, iAnywhere Solutions, Inc.

http://localhost/demo/SASoapTest_CONCRETE

<types>
<s:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace=
 "http://localhost/demo/SASoapTest_CONCRETE">
<s:import namespace="http://www.w3.org/2001/XMLSchema" />
<s:complexType name="SimpleDataset">
<s:sequence>

<s:element name="rowset">
<s:complexType>
<s:sequence>
<s:element name="row" minOccurs="0" maxOccurs="unbounded">
<s:complexType>
<s:sequence>
<s:any minOccurs="0" maxOccurs="unbounded" />

</s:sequence>
</s:complexType>
</s:element>
</s:sequence>
</s:complexType>
</s:element>
</s:sequence>
</s:complexType>
<s:element name="error" type="s:string" />
<s:element name="EmployeeList">
<s:complexType>

<s:sequence />
</s:complexType>
</s:element>
<s:element name="EmployeeListResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1"
 name="EmployeeListResult"
 type="s3:SimpleDataset" />
<s:element name="sqlcode" type="s:int" />
</s:sequence>
</s:complexType>
</s:element>
</s:schema>
</types>

In the next section of this tutorial, you access these services from Java. To do so, you need to use a Java
Web Services Developer Pack available from Sun.

To download the Java JAX-RPC tools, visit http://java.sun.com/webservices/. This example was developed
with Java Web Services Developer Pack 2.0 for Windows.

♦ To generate and use a JAX-RPC interface for these web services

1. Set your CLASSPATH environment variable. In this example, the Java Web Services Developer Pack
2.0 and the Sun Java 1.5 JDK are installed on drive C:.

set classpath=.;c:\jdk1.5.0_06\jre\lib\rt.jar;
c:\Sun\jwsdp-2.0\jaxrpc\lib\jaxrpc-api.jar;
c:\Sun\jwsdp-2.0\jaxrpc\lib\jaxrpc-impl.jar;
c:\Sun\jwsdp-2.0\jwsdp-shared\lib\activation.jar;

Tutorial: Accessing web services from Java JAX-RPC

Copyright © 2007, iAnywhere Solutions, Inc. 653

http://java.sun.com/webservices/

c:\Sun\jwsdp-2.0\jwsdp-shared\lib\mail.jar;
c:\Sun\jwsdp-2.0\saaj\lib\saaj-api.jar;
c:\Sun\jwsdp-2.0\saaj\lib\saaj-impl.jar;
c:\Sun\jwsdp-2.0\fastinfoset\lib\FastInfoset.jar;
c:\Sun\jwsdp-2.0\sjsxp\lib\jsr173_api.jar

2. Set your PATH environment variable so that it includes the Java Web Services binaries, as well as the
JDK. In this example, the Java Web Services Developer Pack 2.0 and the Sun Java 1.5 JDK are installed
on drive C:. The binaries are located in the following directories.

c:\Sun\jwsdp-2.0\jaxrpc\bin
c:\Sun\jwsdp-2.0\jwsdp-shared\bin
c:\jdk1.5.0_06\bin

3. The next step is to create a simple XML document and compile it using wscompile. Samples of this
configuration document are available from Sun. You need only replace the location attribute of the
wsdl element with the URL of your DISH service. Optionally, you can also specify a package name.
The package name causes the generated Java and Class files to be placed in a subdirectory of the same
name.

Using a text editor, create an XML document named config.xml with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<configuration
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
 <wsdl
 location="http://localhost:80/demo/SASoapTest_CONCRETE"
 packageName="sqlanywhere" />
</configuration>

In this case, the location specified is the URL of the DISH service. In addition, the optional
packageName attribute has been added so that all the generated files are placed in a new subdirectory
named sqlanywhere. This is the package name for the generated class files.

4. At a command prompt, execute the following command.

wscompile -gen -keep config.xml

The -gen option tells wscompile to retrieve the WSDL document from the given URL and generate and
compile an interface for it. The -keep option tells wscompile not to delete the .java files. Without this
option, these files are deleted after the corresponding .class files have been generated. Saving these
files makes it easer to examine the makeup of the interface.

Once this command completes, you should have a new subdirectory named sqlanywhere that contains
the following Java files, along with the compiled .class versions of each Java file.

EmployeeList.java
EmployeeListResponse.java
EmployeeListResponse_LiteralSerializer.java
EmployeeList_LiteralSerializer.java
FaultMessage.java
Row.java
Rowset.java
Rowset_LiteralSerializer.java
Row_LiteralSerializer.java
EmployeeList_LiteralSerializer.java
SASoapTest_CONCRETE.java
SASoapTest_CONCRETESoapPort.java

SQL Anywhere Web Services

654 Copyright © 2007, iAnywhere Solutions, Inc.

SASoapTest_CONCRETESoapPort_EmployeeList_Fault_SOAPBuilder.java
SASoapTest_CONCRETESoapPort_EmployeeList_Fault_SOAPSerializer.java
SASoapTest_CONCRETESoapPort_Stub.java
SASoapTest_CONCRETE_Impl.java
SASoapTest_CONCRETE_SerializerRegistry.java
SimpleDataset.java
SimpleDataset_LiteralSerializer.java

5. Save the following Java source code into SASoapDemo.java.

// SASoapDemo.java illustrates a web service client that
// calls the SASoapTest_CONCRETE service and prints out
// the data.
import java.util.*;
import sqlanywhere.*;
public class SASoapDemo
{
 public static void main(String[] args)
 {
 try {
 SASoapTest_CONCRETE_Impl service =
 new SASoapTest_CONCRETE_Impl();
 SASoapTest_CONCRETESoapPort port =
 service.getSASoapTest_CONCRETESoap();

 // This is the SOAP service call to EmployeeList
 EmployeeListResponse response = port.employeeList();
 SimpleDataset result = response.getEmployeeListResult();
 Rowset rowset = result.getRowset();
 Row[] row = rowset.getRow();

 for (int i = 0; i < row.length; i++) {
 // Column data is contained as a SOAPElement
 javax.xml.soap.SOAPElement[] col = row[i].get_any();
 for (int j = 0; j < col.length; j++) {
 System.out.print(col[j].getLocalName() + "=" +
 col[j].getValue() + " ");
 }
 System.out.println();
 System.out.println();
 }
 }
 catch (Exception x) {
 x.printStackTrace();
 }
 }
}

6. Compile SASoapDemo.java.

javac SASoapDemo.java
7. Run the compiled class file.

java SASoapDemo

The EmployeeList result set is displayed as column name=value pairs. Several lines of output similar
to the following should be generated.

Tutorial: Accessing web services from Java JAX-RPC

Copyright © 2007, iAnywhere Solutions, Inc. 655

EmployeeID=102 ManagerID=501
Surname=Whitney GivenName=Fran DepartmentID=100
Street=9 East Washington Street City=Cornwall
State=NY Country=USA PostalCode=02192
Phone=6175553985 Status=A SocialSecurityNumber=017349033
Salary=45700.000 StartDate=1984-08-28 TerminationDate=null
BirthDate=1958-06-05 BenefitHealthInsurance=1
BenefitLifeInsurance=1 BenefitDayCare=0 Sex=F
EmployeeID=105 ManagerID=501
Surname=Cobb GivenName=Matthew DepartmentID=100
Street=7 Pleasant Street City=Grimsby
State=UT Country=USA PostalCode=02154
Phone=6175553840 Status=A SocialSecurityNumber=052345739
Salary=62000.000 StartDate=1985-01-01 TerminationDate=null
BirthDate=1960-12-04 BenefitHealthInsurance=1
BenefitLifeInsurance=1 BenefitDayCare=0 Sex=M

SQL Anywhere Web Services

656 Copyright © 2007, iAnywhere Solutions, Inc.

Using procedures that provide HTML documents
Generally, it is easiest to write a procedure that handles the requests sent to a particular service. Such a
procedure should return a web page. Optionally the procedure can accept arguments, passed as part of the
URL, to customize its output.

The following example, however, is much simpler. It demonstrates how simple a service can be. This web
service simply returns the phrase "Hello world!".

CREATE SERVICE hello
TYPE 'RAW'
AUTHORIZATION OFF
USER DBA
AS SELECT 'Hello world!';

Start a database server with the -xs option to enable handling of web requests, and then request the URL
http://localhost/hello from any web browser. The words Hello world! appear on an otherwise plain page.

HTML pages
The above page appears in your browser in plain text. This happens because the default HTTP Content-Type
is text/plain. To create a more normal web page, formatted in HTML, you must do two things:

♦ Set the HTTP Content-Type header field to text/html so that the browsers expect HTML.

♦ Include HTML tags in the output.

You can write tags to the output in two ways. One way is to use the phrase TYPE 'HTML' in the CREATE
SERVICE statement. Doing so instructs the SQL Anywhere database server to add HTML tags for you. This
can work quite well if, for example, you are returning a table.

The other way is to use TYPE 'RAW' and write out all the necessary tags yourself. This second method
provides the most control over the output. Note that specifying type RAW does not necessarily mean the
output is not in HTML or XML format. It only tells SQL Anywhere that it can pass the return value directly
to the client without adding tags itself.

The following procedure generates a fancier version of Hello world. For convenience, the body of the work
is done in the following procedure, which formats the web page.

The built-in procedure sa_set_http_header is used to set the HTTP header type so browsers interpret the
result correctly. If you omit this statement, your browser displays all the HTML codes, rather than using
them to format the document.

CREATE PROCEDURE hello_pretty_world ()
RESULT (html_doc XML)
BEGIN
 CALL dbo.sa_set_http_header('Content-Type', 'text/html');
 SELECT HTML_DECODE(
 XMLCONCAT(
 '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">',
 XMLELEMENT('HTML',
 XMLELEMENT('HEAD',
 XMLELEMENT('TITLE', 'Hello Pretty World')
),
 XMLELEMENT('BODY',

Using procedures that provide HTML documents

Copyright © 2007, iAnywhere Solutions, Inc. 657

http://localhost/hello

 XMLELEMENT('H1', 'Hello Pretty World!'),
 XMLELEMENT('P',
 '(If you see the tags in your browser, check that '
 || 'the Content-Type header is set to text/html.)'
)
)
)
)
);
END

The following statement creates a service that uses this procedure. The statement calls the above procedure,
which generates the Hello Pretty World web page.

CREATE SERVICE hello_pretty_world
TYPE 'RAW'
AUTHORIZATION OFF
USER DBA
AS CALL hello_pretty_world();

Once you have created the procedure and the service, you are ready to access the web page. Ensure that your
database server was started with the correct -xs option values, and then open the URL http://localhost/
hello_pretty_world in a web browser.

You see the results formatted in a simple HTML page, with the title Hello Pretty World. You can make the
web page as elaborate as you want by including more content, using more tags, using style sheets, or including
scripts that run in the browser. In all cases, you create the necessary services to handle the browser's requests.

For more information about built-in stored procedures, see “System procedures” [SQL Anywhere Server -
SQL Reference].

Root services

When no service name is included in a URL, SQL Anywhere looks for a web service named root. The role
of root pages is analogous to the role of index.html pages in many traditional web servers.

Root services are handy for creating home pages because they can handle URL requests that contain only
the address of your web site. For example, the following procedure and service implement a simple web
page that appears when you browse to the URL http://localhost.

CREATE PROCEDURE HomePage()
RESULT (html_doc XML)
BEGIN
 CALL dbo.sa_set_http_header('Content-Type', 'text/html');
 SELECT HTML_DECODE(
 XMLCONCAT(
 '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">',
 XMLELEMENT('HTML',
 XMLELEMENT('HEAD',
 XMLELEMENT('TITLE', 'My Home Page')
),
 XMLELEMENT('BODY',
 XMLELEMENT('H1', 'My home on the web'),
 XMLELEMENT('P',
 'Thank you for visiting my web site!'
)
)
)

SQL Anywhere Web Services

658 Copyright © 2007, iAnywhere Solutions, Inc.

http://localhost/hello_pretty_world
http://localhost/hello_pretty_world
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://localhost/

)
);
END

Now create a service that uses this procedure:

CREATE SERVICE root
TYPE 'RAW'
AUTHORIZATION OFF
USER DBA
AS CALL HomePage()

You can access this web page by browsing to the URL http://localhost, as long as you do not specify that
database names are mandatory when you start the database server.

For more information, see “Starting a database server that listens for web requests” on page 639.

Examples
More extensive examples are included in the samples-dir\SQLAnywhere\HTTP directory.

Using procedures that provide HTML documents

Copyright © 2007, iAnywhere Solutions, Inc. 659

http://localhost/

Working with data types
By default, the XML encoding of parameter input is string and the result set output for SOAP service formats
contains no information that specifiically describes the data type of the columns in the result set. For all
formats, parameter data types are string. For the DNET format, within the schema section of the response,
all columns are typed as string. CONCRETE and XML formats contain no data type information in the
response. This default behavior can be manipulated using the DATATYPE clause.

SQL Anywhere enables data typing using the DATATYPE clause. Data type information can be included
in the XML encoding of parameter input and result set output or responses for all SOAP service formats.
This simplifies parameter passing from SOAP toolkits by not requiring client code to explicitly convert
parameters to Strings. For example, an integer can be passed as an int. XML encoded data types enable a
SOAP toolkit to parse and cast the data to the appropriate type.

When using string data types exclusively, the application needs to implicitly know the data type for every
column within the result set. This is not necessary when data typing is requested of the web server. To control
whether data type information is included, the DATATYPE clause can be used when the web service is
defined.

DATATYPE { OFF | ON | IN | OUT }

♦ OFF This is the default behavior when the DATATYPE option is not used. For DNET output format,
SQL Anywhere data types are translated to and from XML Schema string types. For CONCRETE and
XML formats, no data type information is emitted.

♦ ON Data type information is emitted for both input parameters and result set responses. SQL Anywhere
data types are translated to and from XML Schema data types.

♦ IN Data type information is emitted for input parameters only.

♦ OUT Data type information is emitted for result set responses only.

Here is an example of a web service definition that enlists data typing for the result set response.

CREATE SERVICE "SASoapTest/EmployeeList"
TYPE 'SOAP'
AUTHORIZATION OFF
SECURE OFF
USER DBA
DATATYPE OUT
AS SELECT * FROM Employees;

In this example, data type information is requested for result set responses only since this service does not
have parameters.

Data typing is applicable to all SQL Anywhere web services defined as type 'SOAP'.

Data typing of input parameters
Data typing of input parameters is supported by simply exposing the parameter data types as their true data
types in the WSDL generated by the DISH service.

A typical string parameter definition (or a non-typed parameter) would look like the following:

SQL Anywhere Web Services

660 Copyright © 2007, iAnywhere Solutions, Inc.

<s:element minOccurs="0" maxOccurs="1" name="a_varchar" nillable="true"
type="s:string" />

The String parameter may be nillable, that is, it may or may not occur.

For a typed parameter such as an integer, the parameter must occur and is not nillable. The following is an
example.

<s:element minOccurs="1" maxOccurs="1" name="an_int" nillable="false"
type="s:int" />

Data typing of output parameters
All SQL Anywhere web services of type 'SOAP' may expose data type information within the response data.
The data types are exposed as attributes within the rowset column element.

The following is an example of a typed SimpleDataSet response from a SOAP FORMAT 'CONCRETE'
web service.

<SOAP-ENV:Body>
 <tns:test_types_concrete_onResponse>
 <tns:test_types_concrete_onResult xsi:type='tns:SimpleDataset'>
 <tns:rowset>
 <tns:row>
 <tns:lvc xsi:type="xsd:string">Hello World</tns:lvc>
 <tns:i xsi:type="xsd:int">99</tns:i>
 <tns:ii xsi:type="xsd:long">99999999</tns:ii>
 <tns:f xsi:type="xsd:float">3.25</tns:f>
 <tns:d xsi:type="xsd:double">.555555555555555582</tns:d>
 <tns:bin xsi:type="xsd:base64Binary">AAAAZg==</tns:bin>
 <tns:date xsi:type="xsd:date">2006-05-29-04:00</tns:date>
 </tns:row>
 </tns:rowset>
 </tns:test_types_concrete_onResult>
 <tns:sqlcode>0</tns:sqlcode>
 </tns:test_types_concrete_onResponse>
</SOAP-ENV:Body>

The following is an example of a response from a SOAP FORMAT 'XML' web service returning the XML
data as a string. The interior rowset consists of encoded XML and is presented here in its decoded form for
legibility.

<SOAP-ENV:Body>
 <tns:test_types_XML_onResponse>
 <tns:test_types_XML_onResult xsi:type='xsd:string'>
 <tns:rowset
 xmlns:tns="http://localhost/satest/dish"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <tns:row>
 <tns:lvc xsi:type="xsd:string">Hello World</tns:lvc>
 <tns:i xsi:type="xsd:int">99</tns:i>
 <tns:ii xsi:type="xsd:long">99999999</tns:ii>
 <tns:f xsi:type="xsd:float">3.25</tns:f>
 <tns:d xsi:type="xsd:double">.555555555555555582</tns:d>
 <tns:bin xsi:type="xsd:base64Binary">AAAAZg==</tns:bin>
 <tns:date xsi:type="xsd:date">2006-05-29-04:00</tns:date>
 </tns:row>
 </tns:rowset>
 </tns:test_types_XML_onResult>

Working with data types

Copyright © 2007, iAnywhere Solutions, Inc. 661

 <tns:sqlcode>0</tns:sqlcode>
 </tns:test_types_XML_onResponse>
</SOAP-ENV:Body>

Note that, in addition to the data type information, the namespace for the elements and the XML schema
provides all the information necessary for post processing by an XML parser. When no data type information
exists in the result set (datatype OFF or IN) then the xsi:type and the XML schema namespace declarations
are omitted.

An example of a SOAP FORMAT 'DNET' web service returning a typed SimpleDataSet follows:

<SOAP-ENV:Body>
 <tns:test_types_dnet_outResponse>
 <tns:test_types_dnet_outResult xsi:type='sqlresultstream:SqlRowSet'>
 <xsd:schema id='Schema2'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:msdata='urn:schemas-microsoft.com:xml-msdata'>
 <xsd:element name='rowset' msdata:IsDataSet='true'>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name='row' minOccurs='0' maxOccurs='unbounded'>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name='lvc' minOccurs='0' type='xsd:string' />
 <xsd:element name='ub' minOccurs='0' type='xsd:unsignedByte' />
 <xsd:element name='s' minOccurs='0' type='xsd:short' />
 <xsd:element name='us' minOccurs='0' type='xsd:unsignedShort' />
 <xsd:element name='i' minOccurs='0' type='xsd:int' />
 <xsd:element name='ui' minOccurs='0' type='xsd:unsignedInt' />
 <xsd:element name='l' minOccurs='0' type='xsd:long' />
 <xsd:element name='ul' minOccurs='0' type='xsd:unsignedLong' />
 <xsd:element name='f' minOccurs='0' type='xsd:float' />
 <xsd:element name='d' minOccurs='0' type='xsd:double' />
 <xsd:element name='bin' minOccurs='0' type='xsd:base64Binary' />
 <xsd:element name='bool' minOccurs='0' type='xsd:boolean' />
 <xsd:element name='num' minOccurs='0' type='xsd:decimal' />
 <xsd:element name='dc' minOccurs='0' type='xsd:decimal' />
 <xsd:element name='date' minOccurs='0' type='xsd:date' />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

 <diffgr:diffgram xmlns:msdata='urn:schemas-microsoft-com:xml-msdata'
xmlns:diffgr='urn:schemas-microsoft-com:xml-diffgram-v1'>
 <rowset>
 <row>
 <lvc>Hello World</lvc>
 <ub>128</ub>
 <s>-99</s>
 <us>33000</us>
 <i>-2147483640</i>
 <ui>4294967295</ui>
 <l>-9223372036854775807</l>
 18446744073709551615
 <f>3.25</f>
 <d>.555555555555555582</d>
 <bin>QUJD</bin>
 <bool>1</bool>

SQL Anywhere Web Services

662 Copyright © 2007, iAnywhere Solutions, Inc.

 <num>123456.123457</num>
 <dc>-1.756000</dc>
 <date>2006-05-29-04:00</date>
 </row>
 </rowset>
 </diffgr:diffgram>
 </tns:test_types_dnet_outResult>
 <tns:sqlcode>0</tns:sqlcode>
 </tns:test_types_dnet_outResponse>
</SOAP-ENV:Body>

Mapping SQL Anywhere types to XML Schema types

SQL Anywhere type XML Schema type XML Example

CHAR string Hello World

VARCHAR string Hello World

LONG VARCHAR string Hello World

TEXT string Hello World

NCHAR string Hello World

NVARCHAR string Hello World

LONG NVARCHAR string Hello World

NTEXT string Hello World

XML This is user defined.
A parameter is as-
sumed to be valid
XML representing a
complex type (for ex-
ample, base64Binary,
SOAP array, struct).

<inputHexBinary xsi:type="xsd:hexBi-
nary"> 414243 </inputHexBinary>

(interpreted as 'ABC')

UNIQUEIDENTIFIERSTR string 12345678-1234-5678-9012-1234567890
12

BIGINT long -9223372036854775807

UNSIGNED BIGINT unsignedLong 18446744073709551615

BIT boolean 1

DECIMAL decimal -1.756000

DOUBLE double .555555555555555582

FLOAT float 12.3456792831420898

INTEGER int -2147483640

UNSIGNED INTEGER unsignedInt 4294967295

Working with data types

Copyright © 2007, iAnywhere Solutions, Inc. 663

SQL Anywhere type XML Schema type XML Example

NUMERIC decimal 123456.123457

REAL float 3.25

SMALLINT short -99

UNSIGNED SMALLINT unsignedShort 33000

TINYINT unsignedByte 128

MONEY decimal 12345678.9900

SMALLMONEY decimal 12.3400

VARBIT string 11111111

LONG VARBIT string 00000000000000001000000000000000

DATE date 2006-11-21-05:00

DATETIME dateTime 2006-05-21T09:00:00.000-08:00

SMALLDATETIME dateTime 2007-01-15T09:00:00.000-08:00

TIME time 14:14:48.980-05:00

TIMESTAMP dateTime 2007-01-12T21:02:14.420-06:00

BINARY base64Binary AAAAZg==

IMAGE base64Binary AAAAZg==

LONG BINARY base64Binary AAAAZg==

UNIQUEIDENTIFIER string 12345678-1234-5678-9012-1234567890
12

VARBINARY base64Binary AAAAZg==

SQL Anywhere Web Services

664 Copyright © 2007, iAnywhere Solutions, Inc.

Tutorial: Using data types with Microsoft .NET
The following tutorial demonstrates how to use the SQL Anywhere web service datatype support from within
Microsoft .NET using Visual C#.

♦ To create SOAP and DISH services

1. Copy the SQL Anywhere sample database from samples-dir to another location, such as c:\webserver
\demo.db.

2. At a command prompt, execute the following statement to start a personal web server. The -xs http
(port=80) option tells the database server to accept HTTP requests. If you already have a web server
running on port 80, use another port number such as 8080 for this tutorial.

dbeng10 -xs http(port=80) c:\webserver\demo.db
3. Start Interactive SQL. Connect to the SQL Anywhere sample database as the DBA. Execute the

following statements:

a. Define a SOAP service that lists the Employees table.

CREATE SERVICE "SASoapTest/EmployeeList"
TYPE 'SOAP'
AUTHORIZATION OFF
SECURE OFF
USER DBA
DATATYPE OUT
AS SELECT * FROM Employees;

In this example, DATATYPE OUT is specified to enable datatype information in the XML
response. A fragment of the response from the web server is shown below. Note that the type
information matches the datatype of the database columns.

<xsd:element name='EmployeeID' minOccurs='0' type='xsd:int' />
<xsd:element name='ManagerID' minOccurs='0' type='xsd:int' />
<xsd:element name='Surname' minOccurs='0' type='xsd:string' />
<xsd:element name='GivenName' minOccurs='0' type='xsd:string' />
<xsd:element name='DepartmentID' minOccurs='0' type='xsd:int' />
<xsd:element name='Street' minOccurs='0' type='xsd:string' />
<xsd:element name='City' minOccurs='0' type='xsd:string' />
<xsd:element name='State' minOccurs='0' type='xsd:string' />
<xsd:element name='Country' minOccurs='0' type='xsd:string' />
<xsd:element name='PostalCode' minOccurs='0' type='xsd:string' />
<xsd:element name='Phone' minOccurs='0' type='xsd:string' />
<xsd:element name='Status' minOccurs='0' type='xsd:string' />
<xsd:element name='SocialSecurityNumber' minOccurs='0'
type='xsd:string' />
<xsd:element name='Salary' minOccurs='0' type='xsd:decimal' />
<xsd:element name='StartDate' minOccurs='0' type='xsd:date' />
<xsd:element name='TerminationDate' minOccurs='0' type='xsd:date' />
<xsd:element name='BirthDate' minOccurs='0' type='xsd:date' />
<xsd:element name='BenefitHealthInsurance' minOccurs='0'
type='xsd:boolean' />
<xsd:element name='BenefitLifeInsurance' minOccurs='0'
type='xsd:boolean' />
<xsd:element name='BenefitDayCare' minOccurs='0' type='xsd:boolean' /

Tutorial: Using data types with Microsoft .NET

Copyright © 2007, iAnywhere Solutions, Inc. 665

>
<xsd:element name='Sex' minOccurs='0' type='xsd:string' />

b. Create a DISH service to act as a proxy for the SOAP service and to generate the WSDL document.

CREATE SERVICE "SASoapTest_DNET"
TYPE 'DISH'
GROUP "SASoapTest"
FORMAT 'DNET'
AUTHORIZATION OFF
SECURE OFF
USER DBA;

The SOAP and DISH service must be of format DNET. In this example, the FORMAT clause was
omitted when the SOAP service was created. As a result, the SOAP service inherits the DNET
format from the DISH service.

4. Start Microsoft Visual C#. Note that this example uses functions from the .NET Framework 2.0.

a. Create a new Windows Application project.

An empty form appears.

b. From the Project menu, choose Add Web Reference.

c. In the URL field of the Add Web Reference page, enter the following URL: http://localhost:80/
demo/SASoapTest_DNET.

d. Click Go.

You are presented with a list of the methods available for SASoapTest_DNET. You should see
the EmployeeList method.

e. Click Add Reference to finish.

The Solution Explorer window shows the new Web Reference.

f. Add a ListBox and a Button to the form as shown in the following diagram.

SQL Anywhere Web Services

666 Copyright © 2007, iAnywhere Solutions, Inc.

g. Rename the button text to Employee List.

h. Double-click the Employee List button and add the following code for the button click event.

int sqlCode;
listBox1.Items.Clear();
localhost.SASoapTest_DNET proxy = new localhost.SASoapTest_DNET();
DataSet results = proxy.EmployeeList(out sqlCode);
DataTableReader dr = results.CreateDataReader();
while (dr.Read())
{
 for (int i = 0; i < dr.FieldCount; i++)
 {
 string columnName = dr.GetName(i);
 string typeName = dr.GetDataTypeName(i);
 columnName = columnName + "(" + typeName + ")";
 if (dr.IsDBNull(i))
 {
 listBox1.Items.Add(columnName + "=(null)");
 }
 else {
 System.TypeCode typeCode =
 System.Type.GetTypeCode(dr.GetFieldType(i));
 switch (typeCode)
 {
 case System.TypeCode.Int32:
 Int32 intValue = dr.GetInt32(i);
 listBox1.Items.Add(columnName + "="
 + intValue);
 break;
 case System.TypeCode.Decimal:
 Decimal decValue = dr.GetDecimal(i);
 listBox1.Items.Add(columnName + "="
 + decValue.ToString("c"));

Tutorial: Using data types with Microsoft .NET

Copyright © 2007, iAnywhere Solutions, Inc. 667

 break;
 case System.TypeCode.String:
 string stringValue = dr.GetString(i);
 listBox1.Items.Add(columnName + "="
 + stringValue);
 break;
 case System.TypeCode.DateTime:
 DateTime dateValue = dr.GetDateTime(i);
 listBox1.Items.Add(columnName + "="
 + dateValue);
 break;
 case System.TypeCode.Boolean:
 Boolean boolValue = dr.GetBoolean(i);
 listBox1.Items.Add(columnName + "="
 + boolValue);
 break;
 case System.TypeCode.DBNull:
 listBox1.Items.Add(columnName
 + "=(null)");
 break;
 default:
 listBox1.Items.Add(columnName
 + "=(unsupported)");
 break;
 }
 }
 }
 listBox1.Items.Add("");
}
dr.Close();

This example is designed to illustrate the fine control the application developer can have over the
datatype information that is available.

i. Build and run the program.

The XML response from the web server includes a formatted result set. The first row of the formatted result
set is shown below.

<row>
 <EmployeeID>102</EmployeeID>
 <ManagerID>501</ManagerID>
 <Surname>Whitney</Surname>
 <GivenName>Fran</GivenName>
 <DepartmentID>100</DepartmentID>
 <Street>9 East Washington Street</Street>
 <City>Cornwall</City>
 <State>NY</State>
 <Country>USA</Country>
 <PostalCode>02192</PostalCode>
 <Phone>6175553985</Phone>
 <Status>A</Status>
 <SocialSecurityNumber>017349033</SocialSecurityNumber>
 <Salary>45700.000</Salary>
 <StartDate>1984-08-28-05:00</StartDate>
 <TerminationDate xsi:nil="true" />
 <BirthDate>1958-06-05-05:00</BirthDate>
 <BenefitHealthInsurance>1</BenefitHealthInsurance>
 <BenefitLifeInsurance>1</BenefitLifeInsurance>
 <BenefitDayCare>0</BenefitDayCare>
 <Sex>F</Sex>
</row>

SQL Anywhere Web Services

668 Copyright © 2007, iAnywhere Solutions, Inc.

There are a few things to note about the XML response.

♦ All column data is converted to a string representation of the data.
♦ Columns that contain date and/or time information include the offset from UTC of the web server. In

this example, the offset is -05:00 which is 5 hours to the west of UTC (in this case, North American
Eastern Standard Time).

♦ Columns containing date only are formatted as follows:yyyy-mm-dd-HH:MM or yyyy-mm-dd
+HH:MM. A zone offset (-HH:MM or +HH:MM) is suffixed to the string.

♦ Columns containing time only are formatted as follows:hh:mm:ss.nnn-HH:MM or hh:mm:ss.nnn
+HH:MM. A zone offset (-HH:MM or +HH:MM) is suffixed to the string.

♦ Columns containing date and time are formatted as follows:yyyy-mm-ddThh:mm:ss.nnn-
HH:MM or yyyy-mm-ddThh:mm:ss.nnn+HH:MM. Note that the date is separated from the time
using the letter 'T'. A zone offset (-HH:MM or +HH:MM) is suffixed to the string.

The listbox will display the EmployeeList result set as column name(type)=value pairs. The result from
processing the first row of the result set is shown below.

EmployeeID(Int32)=102
ManagerID(Int32)=501
Surname(String)=Whitney
GivenName(String)=Fran
DepartmentID(Int32)=100
Street(String)=9 East Washington Street
City(String)=Cornwall
State(String)=New York
Country(String)=USA
PostalCode(String)=02192
Phone(String)=6175553985
Status(String)=A
SocialSecurityNumber(String)=017349033
Salary(String)=$45,700.00
StartDate(DateTime)=28/08/1984 0:00:00 AM
TerminationDate(DateTime)=(null)
BirthDate(DateTime)=05/06/1958 0:00:00 AM
BenefitHealthInsurance(Boolean)=True
BenefitLifeInsurance(Boolean)=True
BenefitDayCare(Boolean)=False
Sex(String)=F

There are a couple of things to note about the results.

♦ Columns that contain nulls are returned as type DBNull.
♦ The Salary amount has been converted to the client's currency format.
♦ Columns that contain date but no time values assume a time of 00:00:00 or midnight.

Tutorial: Using data types with Microsoft .NET

Copyright © 2007, iAnywhere Solutions, Inc. 669

Creating web service client functions and procedures
As well as providing web services, a SQL Anywhere database can consume web services. These can be
standard web services available over the Internet, or these can be provided by SQL Anywhere databases, as
long as the web service is not in the same database as the client procedure or function.

SQL Anywhere can act as both HTTP and SOAP web service clients. This functionality is provided through
stored functions and stored procedures.

Client functions and procedures are created and manipulated using the following SQL statements:

♦ “CREATE FUNCTION statement” [SQL Anywhere Server - SQL Reference]
♦ “CREATE PROCEDURE statement” [SQL Anywhere Server - SQL Reference]
♦ “ALTER FUNCTION statement” [SQL Anywhere Server - SQL Reference]
♦ “ALTER PROCEDURE statement” [SQL Anywhere Server - SQL Reference]
♦ “DROP statement” [SQL Anywhere Server - SQL Reference]

For example, the syntax of the CREATE FUNCTION and CREATE PROCEDURE statements, as used to
create web service client functions, are as follows:

CREATE FUNCTION [owner.]procedure-name ([parameter, …])
RETURNS data-type
URL url-string
[proc-attributes]

CREATE PROCEDURE [owner.]procedure-name ([parameter, …])
URL url-string
[proc-attributes]

Key to this syntax is the URL clause, which is used to provide the URL of the web service that you want
the procedure to access. The basic syntax of the URL clause is as follows:

url-string :
'{ HTTP | HTTPS | HTTPS_FIPS }://[user:password@]hostname[:port][/path]'

The optional user and password information permits you to access web services that require authentication.
The hostname can be the name or the IP address of the computer providing the web service.

The port number is required only if the server is listening on a port number other than the default. The default
port numbers are 80 for HTTP services and 443 for HTTPS services.

The path identifies the resource or web service on the server.

A request can be sent to any web service, whether it is provided by another SQL Anywhere database or
available over the Internet. The web service can be provided by the same database server, but must not reside
in the same database as the client function. Attempting to access a web service in the same database results
in the error 403 Forbidden.

Because it is used for parameter substitution, exclamation marks that appear in strings anywhere in the
procedure definition must be escaped. For more information, see “Escaping the !
character” on page 679.

SQL Anywhere Web Services

670 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Common clauses
The additional clauses that let you supply more detailed information about the procedure call are as follows:

proc-attributes :
[TYPE { 'HTTP[:{ GET | POST[:MIME-type] }]' |
 'SOAP[:{RPC|DOC}]' }]
[NAMESPACE namespace-string]
[CERTIFICATE certificate-string]
[CLIENTPORT clientport-string]
[PROXY proxy-string]

The TYPE clause is important because it tells SQL Anywhere how to format the request to the web service
provider. Standard SOAP types RPC and DOC are available. The standard HTTP methods of GET and POST
are available, specified as HTTP:GET and HTTP:POST, respectively. Specifying HTTP implies
HTTP:POST.

If type SOAP is chosen, SQL Anywhere automatically formats the request as an XML document in the
standard format necessary for SOAP requests. Since a SOAP request is always an XML document, an HTTP
POST request is always implicitly used to send the SOAP request document to the server whenever type
SOAP is chosen. Type SOAP implies SOAP:RPC.

Names for web service client functions and procedures

The procedure name is used as the SOAP operation name when building the outgoing SOAP request. In
addition, the names of any parameters also appear in tagnames in the SOAP request envelope. Therefore,
specifying them correctly, as the SOAP server expects to see these names, is an important part of defining
a SOAP stored procedure. This fact places restrictions on the name of SOAP procedures and functions,
beyond the general rules that apply to procedure and function names in SQL Anywhere.

The following procedure definition demonstrates what happens.

CREATE PROCEDURE MyOperation (a INTEGER, b CHAR(128))
URL 'HTTP://localhost'
TYPE 'SOAP:DOC';

When this procedure is called, such as by the following statement, a SOAP request is generated:

CALL MyOperation(123, 'abc')

The procedure name, which in this example is MyOperation, appears in the <m:MyOperation> tag within
the request body. Furthermore, the two parameters to the procedure, a and b, become <m:a> and <m:b>,
respectively.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:m="http://localhost">
 <SOAP-ENV:Body>
 <m:MyOperation>
 <m:a>123</m:a>
 <m:b>abc</m:b>
 </m:MyOperation>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Creating web service client functions and procedures

Copyright © 2007, iAnywhere Solutions, Inc. 671

Namespace URIs
All SOAP requests require a method namespace URI. The SOAP processor on the server side uses this URI
to understand the names of the various entities in the message body of the request.

When creating a SOAP function or procedure, of either SOAP:DOC or SOAP:RPC, you may be required
to specify a namespace URI before the call succeeds. You can obtain the required namespace value from
the WSDL description document, or from other available documentation for the service. The NAMESPACE
clause applies only to SOAP functions and procedures. The default namespace value is the procedure's URI,
up to, but not including, the optional path component and excluding any user and password values.

HTTPS requests
To issue a secure HTTPS request, the client must have access to the server's certificate, or the certificate
used to sign the server's certificate. This certificate tells SQL Anywhere how to encrypt the request.
Certificate values are also required when a request directed to an insecure server might be redirected to a
secure one.

There are two ways to provide the certificate information. You can either place the certificate in a file and
provide the file name, or you can provide the entire certificate as a string value. You cannot do both.

The certificate attributes are supplied as a string value constructed as key=value pairs separated by
semicolons:

certificate-string :
{ file=filename | certificate=string } ; company=company ; unit=company-unit ; name= common-name

The following keys are available:

Key Abbrevia-
tion

Description

file The file name of the certificate.

certificate cert The certificate itself, Base64 encoded.

company co The company specified in the certificate.

unit The company unit specified in the certificate.

name The common name specified in the certificate.

For example, the following statement creates a procedure that makes a secure request to a web service located
on the same computer as the client:

CREATE PROCEDURE test()
URL 'HTTPS://localhost/myservice'
CERTIFICATE 'file=C:\srv_cert.crt;co=iAnywhere;
 unit=SA;name=JohnSmith';

Since no TYPE clause was provided, the request is assumed to be of type SOAP:RPC. The server's public
certificate is located in the file C:\srv_cert.crt.

SQL Anywhere Web Services

672 Copyright © 2007, iAnywhere Solutions, Inc.

Client ports
When accessing web services through a firewall, it is sometimes necessary to tell SQL Anywhere which
ports to use when opening a connection to the server. Ordinarily, port numbers are obtained dynamically,
and you should rely on the default behavior unless your firewall restricts access to a particular range of ports.

The ClientPort option designates the port number on which the client application communicates using TCP/
IP. You can specify a single port number, or a combination of individual port numbers, and ranges of port
numbers, as demonstrated in the following example:

CREATE PROCEDURE test ()
URL 'HTTPS://localhost/myservice'
CLIENTPORT '5040,5050-5060,5070';

It is best to specify a list or a range of port numbers. If you specify a single port number, then only one
connection is maintained at a time. In fact, even after closing the one connection, there is a several minute
timeout period during which no new connection can be made to the same remote server and port. When you
specify a list and/or range of port numbers, the application keeps trying port numbers until it finds one to
which it can successfully bind.

This feature is similar to the ClientPort network protocol option. For more information, see “ClientPort
protocol option [CPORT]” [SQL Anywhere Server - Database Administration].

Using proxies
Some web service requests may need to be made through a proxy server. When this is the case, the URL of
the proxy server must be supplied using the PROXY clause.

The format of the value is the same as for the URL clause, although any user, password, or path values are
ignored:

proxy-string :
'{ HTTP | HTTPS }://[user:password@]hostname[:port][/path]'

When a proxy server is specified, SQL Anywhere formats the request and sends it to the proxy server using
the supplied proxy URL. The proxy server forwards the request to the final destination, obtains the response,
and forwards the response back to SQL Anywhere.

Modifying HTTP headers

When creating a web service procedure using the CREATE PROCEDURE statement, if you specify an
HTTP HEADER name with no colon (:) and no value, the HTTP client application suppresses the header.
If you include a colon but do not provide a value, the HTTP client application includes the header name, but
no value. For example:

CREATE PROCEDURE suds(...)
TYPE 'SOAP:RPC'
URL '...'
HEADER 'SOAPAction\nDate\nFrom:';

In this example, the Action and Date HTTP headers, which are automatically generated by SQL Anywhere,
are suppressed, and the From header is included but with no value.

Creating web service client functions and procedures

Copyright © 2007, iAnywhere Solutions, Inc. 673

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Modifying automatically generated headers, can have unexpected results. The following HTTP headers are
typically automatically generated and should not be modified without very careful consideration.

Accept-Charset Always automatically generated. If changed or deleted, may result in unexpected
data conversion errors.

ASA-Id Always automatically generated. Ensures client does not connect to itself (that is to
the same server) which may result in deadlock.

Authorization Automatically generated when URL contains credentials. If changed or deleted, may
result in failure of the request. Only BASIC authorization is supported. User and
password information should only be included when connecting via HTTPS.

Connection Connection: close, is always automatically generated. Client does not support per-
sistent connections. Should not be changed or connection may hang.

Host Always automatically generated. HTTP/1.1 servers are required to respond with 400
Bad Request if an HTTP/1.1 client does not provide a Host header.

Transfer-Encoding Automatically generated when posting a request in chunk mode. Removing this
header or deleting the chunked value will result in failure when the client is using
CHUNK mode.

Content-Length Automatically generated when posting a request and not in chunk mode. This header
is required to tell the server the content length of the body. If the content length is
wrong the connection may hang or data loss could occur.

SQL Anywhere Web Services

674 Copyright © 2007, iAnywhere Solutions, Inc.

Working with return values and result sets
Web service client calls can be made with either stored functions, or stored procedures. If made from a
function, the return type of the function must be of a character data type, such as CHAR, VARCHAR, or
LONG VARCHAR. The value returned is the body of the HTTP response. No header information is included.
Additional information about the request, including the HTTP status information, is returned by procedures.
Thus, procedures are preferred when access to this additional information is desired.

SOAP procedures
The response from a SOAP function is an XML document that contains the SOAP response.

Since SOAP responses are structured XML documents, SQL Anywhere by default attempts to exploit this
information and construct a more useful result set. Each of the top-level tags within the returned response
document is extracted and used as a column name. The contents of the subtree below each of these tags is
used as the row value for that column.

For example, given the SOAP response shown below, SQL Anywhere would construct the shown data set:

<SOAP-ENV:Envelope
 xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <ElizaResponse xmlns:SOAPSDK4="SoapInterop">
 <Eliza>Hi, I'm Eliza. Nice to meet you.</Eliza>
 <ElizaResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Eliza

Hi, I'm Eliza. Nice to meet you.

In this example, the response document is delimited by the ElizaResponse tags that appear within the SOAP-
ENV:Body tags.

Result sets have as many columns as there are top-level tags. This result set has only one column because
there is only one top-level tag in the SOAP response. This single top-level tag, Eliza, becomes the name of
the column.

XML processing facilities
Information within XML result sets, including SOAP responses, can also be accessed using the built-in Open
XML processing capabilities.

The following example uses the OPENXML procedure to extract portions of a SOAP response. This example
uses a web service to expose the contents of the SYSWEBSERVICE table as a SOAP service:

CREATE SERVICE get_webservices
TYPE 'SOAP'
AUTHORIZATION OFF
USER DBA
AS SELECT * FROM SYSWEBSERVICE;

Working with return values and result sets

Copyright © 2007, iAnywhere Solutions, Inc. 675

The following stored function, which must be created in a second SQL Anywhere database, issues a call to
this web service. The return value of this function is the entire SOAP response document. The response is
in the .NET DataSet format, as DNET is the default SOAP service format.

CREATE FUNCTION get_webservices()
RETURNS LONG VARCHAR
URL 'HTTP://localhost/get_webservices'
TYPE 'SOAP:DOC';

The following statement demonstrates how two columns of the result set can be extracted with the aid of the
OPENXML procedure. These are the service_name and secure_required columns, which indicate which
SOAP services are secure and hence require HTTPS.

SELECT *
FROM openxml(get_webservices(), '//row')
WITH ("Name" char(128) 'service_name',
 "Secure?" char(1) 'secure_required');

This statement works by selecting the decedents of the row node. The WITH clause constructs the result set
based on the two elements of interest. Assuming only the get_webservices service exists, this function returns
the following result set:

Name Secure?

get_webservices N

For more information about the XML processing facilities available in SQL Anywhere, see “Using XML in
the Database” [SQL Anywhere Server - SQL Usage].

Other types of procedures
Procedures of other types return all the information about a response in a two-column result set. This result
set includes the response status, header information and body. The first column, is named Attribute and the
second Value. Both are of data type LONG VARCHAR.

The result set has one row for each of the response header fields, as well as a row for the HTTP status line
(Status attribute) and a row for the response body (Body attribute).

The following example represents a typical response:

Attribute Value

Status HTTP /1.0 200 OK

Body <!DOCTYPE HTML … ><HTML> … </HTML>

Content-Type text/html

Server GWS/2.1

Content-Length 2234

Date Mon, 18 Oct 2004, 16:00:00 GMT

SQL Anywhere Web Services

676 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbugen10.pdf

Selecting from result sets
The SELECT statement is used to retrieve values from results sets. Once retrieved, these values can be stored
in tables or used to set variables.

CREATE PROCEDURE test(INOUT parm CHAR(128))
URL 'HTTP://localhost/test'
TYPE 'HTTP';

Because it is of type HTTP, this procedure returns the two-column result set described in the previous section.
In the first column is an attribute name; in the second column the attribute value. The keywords are as in the
HTTP response header fields. A Body attribute contains the body of the message, which is typically an
HTML document.

One approach is to insert the result sets into a table, such as the following one:

CREATE TABLE StoredResults(
 Attribute LONG VARCHAR,
 Value LONG VARCHAR
);

Result sets can be inserted into this table as follows:

INSERT INTO StoredResults SELECT *
FROM test('Storing into a table')
WITH (Attribute LONG VARCHAR, Value LONG VARCHAR);

You can add clauses according to the usual syntax of the SELECT statement. For example, if you want only
a specific row of the result set you can add a WHERE clause to limit the results of the select to only one
row:

SELECT Value
FROM test('Calling test for the Status Code')
WITH (Attribute LONG VARCHAR, Value LONG VARCHAR)
WHERE Attribute = 'Status';

This statement selects only the status information from the result set. It can thus be used to verify that the
call was successful.

Selecting from result sets

Copyright © 2007, iAnywhere Solutions, Inc. 677

Using parameters
Stored functions and stored procedures that act as web service clients can be declared with parameters, just
like other types of function or procedures. These parameter values, unless used during parameter substitution,
are passed as part of the HTTP or SOAP request.

In addition, parameters can be used to replace placeholders within the body of the stored function or stored
procedure at the time the function or procedure is called. If no placeholders for a particular variable exist,
the parameter and its value are passed as part of the request. Parameters and values used for substitution in
this manner are not passed as part of the web service request.

Passed parameters
All parameters to a function or procedure, unless used during parameter substitution, are passed as part of
the web service request. The format in which they are passed depends on the type of the web service request.

HTTP requests
Parameters to requests of type HTTP:GET are encoded in the URL. For example, the following procedure
declares two parameters:

CREATE PROCEDURE test (a INTEGER, b CHAR(128))
URL 'HTTP://localhost/myservice'
TYPE 'HTTP:GET';

If this procedure is invoked with the two values 123 and 'xyz', then the URL used for the request is equivalent
to that shown below:

HTTP://localhost/myservice?a=123&b=xyz

If the type is HTTP:POST, the parameters and their values instead become part of the body of the request.
In the case of the two parameter and values, the following text appears, after the headers, in the body of the
HTTP request:

a=123&b=xyz

SOAP requests
Parameters passed to SOAP requests are bundled as part of the request body, as required by the SOAP
specification:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:m="http://localhost">
 <SOAP-ENV:Body>
 <m:test>
 <m:a>123</m:a>
 <m:b>abc</m:b>
 </m:test>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SQL Anywhere Web Services

678 Copyright © 2007, iAnywhere Solutions, Inc.

Parameter substitution
Declared parameters to the stored procedure or stored function are automatically substituted for placeholders
within the stored function or stored procedure definition each time the procedure or function is executed.
Any substrings that contain an exclamation mark (!) followed by the name of one of the declared parameters
are replaced by that parameter's value.

For example, the following procedure definition permits the entire URL to be passed as a parameter. Different
values can be used each time this procedure is called.

CREATE PROCEDURE test (url CHAR(128))
URL '!url'
TYPE 'HTTP:POST';

For example, you could then use the procedure as follows:

CALL test ('HTTP://localhost/myservice');

Hiding user and password values
One useful application of parameter substitution is to avoid making sensitive values, such as user names and
passwords, part of a web service client function or procedure definition. When such values are specified as
literals in the procedure or function definition, they are stored in the system tables, making them readily
accessible to all users of the database. Passing these values as parameters circumvents this problem.

For example, the following procedure definition includes the user name and password as plain text as part
of the procedure definition:

CREATE PROCEDURE test
URL 'HTTP://dba:sql@localhost/myservice';

To avoid this problem, you can declare user and password as parameters. Doing so permits the user and
password values to be supplied only when the procedure is invoked. For example:

CREATE PROCEDURE test (uid CHAR(128), pwd CHAR(128))
URL 'HTTP://!uid:!pwd@localhost/myservice';

This procedure is called as follows:

CALL test ('dba', 'sql');

As another example, you can use parameter substitution to pass encryption certificates from a file and pass
them to a stored procedure or stored function:

CREATE PROCEDURE secure(cert LONG VARCHAR)
URL 'https://localhost/secure'
TYPE 'HTTP:GET'
CERTIFICATE 'cert=!cert;company=test;unit=test;name=RSA Server';

When you call this procedure, you supply the certificate as a string. In the following example call, the
certificate is read from a file. This is done for illustration only, as the certificate can be read directly from a
file using the file= keyword for the CERTIFICATE clause.

CALL secure(xp_read_file('install-dir\win32\rsaserver.crt'));

Escaping the ! character
Because the exclamation mark (!) is used to identify placeholders for parameter substitution in the context
of web service client stored functions and stored procedures, it must be escaped whenever you want to include

Using parameters

Copyright © 2007, iAnywhere Solutions, Inc. 679

this character as part of any of the procedure attribute strings string. To do so, prefix the exclamation mark
with a second exclamation mark. Hence, all occurrences of !! in strings within a web service client or web
service function definition are replaced by !.

Parameter names used as placeholders must contain only alphanumeric characters. In addition, placeholders
must be followed by a non-alphanumeric character to avoid ambiguity. Placeholders with no matching
parameter name are automatically deleted. For example, the parameter size would not be substituted for the
placeholder in the following procedure:

CREATE PROCEDURE orderitem (size CHAR(18))
URL 'HTTP://salesserver/order?size=!sizeXL'
TYPE 'SOAP:RPC'

Instead, !sizeXL is always deleted because it is a valid placeholder for which there is no matching parameter.

Parameter data type conversion
Parameter values that are not of character or binary data types are converted to a string representation before
being added to the request. This process is equivalent to casting the value to a character type. The conversion
is done in accordance with the data type formatting option settings at the time the function or procedure is
invoked. In particular, the conversion can be affected by such options as precision, scale, and
timestamp_format.

SQL Anywhere Web Services

680 Copyright © 2007, iAnywhere Solutions, Inc.

Working with structured data types
XML return values

The SQL Anywhere server as a web service client may interface to a web service using a function or a
procedure.

For simple return data types, a string representation within a result set may suffice. In such a case, the use
of a stored procedure may be warranted.

The use of web service functions are a better choice when returning complex data such as arrays or structures.
For function declarations, the RETURN clause can specify an XML data type. The returned XML can be
parsed using OPENXML to extract the elements of interest.

Note that a return of XML data such as dateTime will be rendered within the result set verbatim. For example,
if a TIMESTAMP column was included within a result set, it would be formatted as an XML dateTime string
(2006-12-25T12:00:00.000-05:00) not as a string (2006-12-25 12:00:00.000).

XML parameter values
The SQL Anywhere XML data type is supported for use as a parameter within web service functions and
procedures. For simple types, the parameter element is automatically constructed when generating the SOAP
request body. However, for parameters of type XML, this cannot be done since the XML representation of
the element may require attributes that provide additional data. Therefore, when generating the XML for a
parameter whose data type is XML, the root element name must correspond to the parameter name.

<inputHexBinary xsi:type="xsd:hexBinary">414243</inputHexBinary>

The XML type demonstrates how to send a parameter as a hexBinary XML type. The SOAP endpoint expects
that the parameter name (or in XML terms, the root element name) is "inputHexBinary".

Cookbook constants
Knowledge of how SQL Anywhere references namespaces is required to construct complex structures and
arrays. The prefixes listed here correspond to the namespace declarations generated for a SQL Anywhere
SOAP request envelope.

SQL Anywhere XML Prefix Namespace

xsd http://www.w3.org/2001/XMLSchema

xsi http://www.w3.org/2001/XMLSchema-instance

SOAP-ENC http://schemas.xmlsoap.org/soap/encoding/

m namespace as defined in the NAMESPACE clause

Complex data type examples
The following three examples demonstrate how to create web service client functions taking parameters that
represent an array, a structure, and an array of structures. The examples are designed to issue requests to the
Microsoft SOAP ToolKit 3.0 Round 2 Interoperability test server (http://mssoapinterop.org/stkV3). The web
service functions will communicate to SOAP operations (or RPC function names) named echoFloatArray,
echoStruct and echoStructArray respectively. The common namespace used for Interoperability testing is

Working with structured data types

Copyright © 2007, iAnywhere Solutions, Inc. 681

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/mssoapinterop.org/stkV3

"http://soapinterop.org/", allowing a given function to test against alternative Interoperability servers simply
by changing the URL clause to the desired SOAP endpoint.

All three examples use a table to generate the XML data. The following shows how to set up that table.

CREATE LOCAL TEMPORARY TABLE SoapData
(
 seqno INT DEFAULT AUTOINCREMENT,
 i INT,
 f FLOAT,
 s LONG VARCHAR
) ON COMMIT PRESERVE ROWS;
INSERT INTO SoapData (i,f,s)
VALUES (99,99.999,'Ninety-Nine');
INSERT INTO SoapData (i,f,s)
VALUES (199,199.999,'Hundred and Ninety-Nine');

The following three functions send SOAP requests to the Interoperability server. Note that this sample issues
requests to Microsoft's interop server:

CALL sa_make_object('function', 'echoFloatArray');
ALTER FUNCTION echoFloatArray(inputFloatArray XML)
RETURNS XML
URL 'http://mssoapinterop.org/stkV3/Interop.wsdl'
HEADER 'SOAPAction:"http://soapinterop.org/"'
NAMESPACE 'http://soapinterop.org/';
CALL sa_make_object('function', 'echoStruct');
ALTER FUNCTION echoStruct(inputStruct XML)
RETURNS XML
URL 'http://mssoapinterop.org/stkV3/Interop.wsdl'
HEADER 'SOAPAction:"http://soapinterop.org/"'
NAMESPACE 'http://soapinterop.org/';
CALL sa_make_object('function', 'echoStructArray');
ALTER FUNCTION echoStructArray(inputStructArray XML)
RETURNS XML
URL 'http://mssoapinterop.org/stkV3/Interop.wsdl'
HEADER 'SOAPAction:"http://soapinterop.org/"'
NAMESPACE 'http://soapinterop.org/';

Finally, the three example statements along with the XML representation of their parameters are presented:

1. The parameters in the following example represent an array.

SELECT echoFloatArray(
 XMLELEMENT('inputFloatArray',
 XMLATTRIBUTES('xsd:float[]' as "SOAP-ENC:arrayType"),
 (
 SELECT XMLAGG(XMLELEMENT('number', f) ORDER BY seqno)
 FROM SoapData
)
)
);

The stored procedure echoFloatArray will send the following XML to the Interoperability server.

<inputFloatArray SOAP-ENC:arrayType="xsd:float[2]">
<number>99.9990005493164</number>

SQL Anywhere Web Services

682 Copyright © 2007, iAnywhere Solutions, Inc.

<number>199.998992919922</number>
</inputFloatArray>

The response from the Interoperability server is shown below.

'<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope
 xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAPSDK4:echoFloatArrayResponse
 xmlns:SOAPSDK4="http://soapinterop.org/">
 <Result SOAPSDK3:arrayType="SOAPSDK1:float[2]"
 SOAPSDK3:offset="[0]"
 SOAPSDK2:type="SOAPSDK3:Array">
 <SOAPSDK3:float>99.9990005493164</SOAPSDK3:float>
 <SOAPSDK3:float>199.998992919922</SOAPSDK3:float>
 </Result>
 </SOAPSDK4:echoFloatArrayResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>'

If the response was stored in a variable, then it can be parsed using OPENXML.

SELECT * FROM openxml(resp,'//*:Result/*')
WITH (varFloat FLOAT 'text()');

varFloat

99.9990005493

199.9989929199

2. The parameters in the following example represent a structure.

SELECT echoStruct(
 XMLELEMENT('inputStruct',
 (
 SELECT XMLFOREST(s as varString,
 i as varInt,
 f as varFloat)
 FROM SoapData
 WHERE seqno=1
)
)
);

The stored procedure echoStruct will send the following XML to the Interoperability server.

<inputStruct>
 <varString>Ninety-Nine</varString>
 <varInt>99</varInt>
 <varFloat>99.9990005493164</varFloat>
</inputStruct>

The response from the Interoperability server is shown below.

'<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope

Working with structured data types

Copyright © 2007, iAnywhere Solutions, Inc. 683

 xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAPSDK4:echoStructResponse
 xmlns:SOAPSDK4="http://soapinterop.org/">
 <Result href="#id1"/>
 </SOAPSDK4:echoStructResponse>
 <SOAPSDK5:SOAPStruct
 xmlns:SOAPSDK5="http://soapinterop.org/xsd"
 id="id1"
 SOAPSDK3:root="0"
 SOAPSDK2:type="SOAPSDK5:SOAPStruct">
 <varString>Ninety-Nine</varString>
 <varInt>99</varInt>
 <varFloat>99.9990005493164</varFloat>
 </SOAPSDK5:SOAPStruct>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>'

If the response was stored in a variable, then it can be parsed using OPENXML.

SELECT * FROM openxml(resp,'//*:Body/*:SOAPStruct')
WITH (
varString LONG VARCHAR 'varString',
varInt INT 'varInt',
varFloat FLOAT 'varFloat');

varString varInt varFloat

Ninety-Nine 99 99.9990005493

3. The parameters in the following example represent an array of structures.

SELECT echoStructArray(
 XMLELEMENT('inputStructArray',
 XMLATTRIBUTES('http://soapinterop.org/xsd' AS "xmlns:q2",
 'q2:SOAPStruct[2]' AS "SOAP-ENC:arrayType"),
 (
 SELECT XMLAGG(
 XMLElement('q2:SOAPStruct',
 XMLFOREST(s as varString,
 i as varInt,
 f as varFloat)
)
 ORDER BY seqno
)
 FROM SoapData
)
)
);

The stored procedure echoFloatArray will send the following XML to the Interoperability server.

<inputStructArray xmlns:q2="http://soapinterop.org/xsd"
 SOAP-ENC:arrayType="q2:SOAPStruct[2]">
 <q2:SOAPStruct>
 <varString>Ninety-Nine</varString>
 <varInt>99</varInt>
 <varFloat>99.9990005493164</varFloat>

SQL Anywhere Web Services

684 Copyright © 2007, iAnywhere Solutions, Inc.

 </q2:SOAPStruct>
 <q2:SOAPStruct>
 <varString>Hundred and Ninety-Nine</varString>
 <varInt>199</varInt>
 <varFloat>199.998992919922</varFloat>
 </q2:SOAPStruct>
</inputStructArray>

The response from the Interoperability server is shown below.

'<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope
 xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAPSDK4:echoStructArrayResponse
 xmlns:SOAPSDK4="http://soapinterop.org/">
 <Result xmlns:SOAPSDK5="http://soapinterop.org/xsd"
 SOAPSDK3:arrayType="SOAPSDK5:SOAPStruct[2]"
 SOAPSDK3:offset="[0]" SOAPSDK2:type="SOAPSDK3:Array">
 <SOAPSDK5:SOAPStruct href="#id1"/>
 <SOAPSDK5:SOAPStruct href="#id2"/>
 </Result>
 </SOAPSDK4:echoStructArrayResponse>
 <SOAPSDK6:SOAPStruct
 xmlns:SOAPSDK6="http://soapinterop.org/xsd"
 id="id1"
 SOAPSDK3:root="0"
 SOAPSDK2:type="SOAPSDK6:SOAPStruct">
 <varString>Ninety-Nine</varString>
 <varInt>99</varInt>
 <varFloat>99.9990005493164</varFloat>
 </SOAPSDK6:SOAPStruct>
 <SOAPSDK7:SOAPStruct
 xmlns:SOAPSDK7="http://soapinterop.org/xsd"
 id="id2"
 SOAPSDK3:root="0"
 SOAPSDK2:type="SOAPSDK7:SOAPStruct">
 <varString>Hundred and Ninety-Nine</varString>
 <varInt>199</varInt>
 <varFloat>199.998992919922</varFloat>
 </SOAPSDK7:SOAPStruct>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>'

If the response was stored in a variable, then it can be parsed using OPENXML.

SELECT * FROM openxml(resp,'//*:Body/*:SOAPStruct')
WITH (
varString LONG VARCHAR 'varString',
varInt INT 'varInt',
varFloat FLOAT 'varFloat');

varString varInt varFloat

Ninety-Nine 99 99.9990005493

Hundred and Ninety-Nine 199 199.9989929199

Working with structured data types

Copyright © 2007, iAnywhere Solutions, Inc. 685

Working with variables
Variables in HTTP requests come from one of two sources. First, the URL can include a query string, which
includes various name=value pairs. HTTP GET requests are formatted in this manner. Here is an example
of a URL that contains a query string.

http://localhost/gallery?picture=sunset.jpg

The second way is through the URL path. Setting URL PATH to either ON or ELEMENTS causes the
portion of the path following the service name to be interpreted as variable values. This option allows URLs
to appear to be requesting a file in a particular directory, as would be the case on a traditional file-based web
site, rather than something stored inside a database. The following is an example.

http://localhost/gallery/sunset.jpg

This URL appears to request the file sunset.jpg from a directory named gallery. In fact, the gallery service
receives this string as a parameter (using it, perhaps, to retrieve a picture from a database table).

The parameter passed in HTTP requests depends on the setting of URL PATH.

♦ OFF No path parameters are permitted after the service name.

♦ ON All path elements after the service name are assigned to the variable URL.

♦ ELEMENTS The remainder of the URL path is split at the slash characters into a list of up to 10
elements. These values are assigned the variables URL1, URL2, URL3, …, URL10. If there are fewer
than 10 values, the remaining variables are set to NULL. Specifying more than ten variables causes an
error.

Apart from the location in which they are defined, there is no difference between variables. You access and
use all HTTP variables the same way. For example, the values of variables such as url1 are accessed in the
same way as parameters that appear as part of a query, such as ?picture=sunset.jpg.

Accessing variables
There are two main ways to access variables. The first is to mention variables in the statement of the service
declaration. For example, the following statement passes the value of multiple variables to the ShowTable
stored procedure:

CREATE SERVICE ShowTable
TYPE 'RAW'
AUTHORIZATION ON
AS CALL ShowTable(:user_name, :table_name, :limit, :start);

The other way is to use the built-in functions NEXT_HTTP_VARIABLE and HTTP_VARIABLE within
the stored procedure that handles the request. If you do not know which variables are defined, you can use
the NEXT_HTTP_VARIABLE to find out. The HTTP_VARIABLE function returns the variable values.

The NEXT_HTTP_VARIABLE function allows you to iterate through the names of the defined variables.
The first time you call it, you pass in the NULL value. This returns the name of one variable. Calling it
subsequent times, each time passing in the name of the previous variable, returns the next variable name.
When the name of the last variable is passed to this function, it returns NULL.

SQL Anywhere Web Services

686 Copyright © 2007, iAnywhere Solutions, Inc.

Iterating through the variable names in this manner guarantees that each variable name is returned exactly
once. However, the order that the values are returned may not be the same as the order that they appear in
the request. In addition, if you iterate through the names a second time, they can be returned in a different
order.

To get the value of each variable, use the HTTP_VARIABLE function. The first parameter is the name of
the variable. Additional parameters are optional. In the case that multiple values were supplied for a variable,
the function returns the first value if supplied with only one parameter. Supplying an integer as the second
parameter allows you to retrieve additional values.

The third parameter allows you to retrieve variable header-field values from multi-part requests. Supply the
name of a header field to retrieve its value. For example, the following SQL statements retrieve three variable
values, then retrieve the header-field values of the image variable.

SET v_id = HTTP_VARIABLE('ID');
SET v_title = HTTP_VARIABLE('Title');
SET v_descr = HTTP_VARIABLE('descr');
SET v_name = HTTP_VARIABLE('image', NULL, 'Content-Disposition');
SET v_type = HTTP_VARIABLE('image', NULL, 'Content-Type');
SET v_image = HTTP_VARIABLE('image', NULL, '@BINARY');

Here is an example that uses the HTTP_VARIABLE function to retrieve the values associated with the
variables. It is a modified version of the ShowSalesOrderDetail service described in an earlier section.

CREATE PROCEDURE ShowDetail()
BEGIN
 DECLARE v_customer_id LONG VARCHAR;
 DECLARE v_product_id LONG VARCHAR;
 SET v_customer_id = HTTP_VARIABLE('customer_id');
 SET v_product_id = HTTP_VARIABLE('product_id');
 CALL ShowSalesOrderDetail(v_customer_id, v_product_id);
END;

The service that invokes the stored procedure follows:

CREATE SERVICE ShowDetail
TYPE 'HTML'
URL PATH OFF
AUTHORIZATION OFF
USER DBA
AS CALL ShowDetail();

To test the service, open a web browser and supply the following URL:

http://localhost:80/demo/ShowDetail?product_id=300&customer_id=101

For more information on parameter passing, see “Understanding how URLs are interpreted” on page 642
and “HTTP and SOAP functions” [SQL Anywhere Server - SQL Reference].

Working with variables

Copyright © 2007, iAnywhere Solutions, Inc. 687

http://localhost/demo/ShowDetail?product_id=300&customer_id=101
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Working with HTTP headers
Headers in HTTP requests can be obtained using a combination of the NEXT_HTTP_HEADER and
HTTP_HEADER functions. The NEXT_HTTP_HEADER function iterates through the HTTP headers
included within a request and returns the next HTTP header name. Calling it with NULL causes it to return
the name of the first header. Subsequent headers are retrieved by passing the function the name of the previous
header. This function returns NULL when called with the name of the last header.

Calling this function repeatedly returns all the header fields exactly once, but not necessarily in the order
that they appear in the HTTP request.

The HTTP_HEADER function returns the value of the named HTTP header field, or NULL if not called
from an HTTP service. It is used when processing an HTTP request via a web service. If a header for the
given field name does not exist, the return value is NULL.

Here is a table of some typical HTTP headers and values.

Header Name Header Value

Accept image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-
flash, application/vnd.ms-excel, application/vnd.ms-powerpoint, application/
msword, */*

Accept-Language en-us

UA-CPU x86

Accept-Encoding gzip, deflate

User-Agent Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.2; WOW64; SV1; .NET CLR
2.0.50727)

Host localhost

Connection Keep-Alive

@HttpMethod GET

@HttpURI /demo/ShowHTTPHeaders

@HttpVersion HTTP/1.1

To get the value of each header, use the NEXT_HTTP_HEADER function to get the name of the header
and then use the HTTP_HEADER function to get its value. The following example illustrates how to do
this.

CREATE PROCEDURE HTTPHeaderExample()
RESULT (html_string LONG VARCHAR)
BEGIN
 declare header_name long varchar;
 declare header_value long varchar;
 declare table_rows XML;

SQL Anywhere Web Services

688 Copyright © 2007, iAnywhere Solutions, Inc.

 set header_name = NULL;
 set table_rows = NULL;
header_loop:
 LOOP
 SET header_name = NEXT_HTTP_HEADER(header_name);
 IF header_name IS NULL THEN
 LEAVE header_loop
 END IF;
 SET header_value = HTTP_HEADER(header_name);
 -- Format header name and value into an HTML table row
 SET table_rows = table_rows ||
 XMLELEMENT(name "tr",
 XMLATTRIBUTES('left' AS "align",
 'top' AS "valign"),
 XMLELEMENT(name "td", header_name),
 XMLELEMENT(name "td", header_value));

 END LOOP;
 SELECT XMLELEMENT(name "table",
 XMLATTRIBUTES('' AS "BORDER",
 '10' AS "CELLPADDING",
 '0' AS "CELLSPACING"),
 XMLELEMENT(name "th",
 XMLATTRIBUTES('left' AS "align",
 'top' AS "valign"),
 'Header Name'),
 XMLELEMENT(name "th",
 XMLATTRIBUTES('left' AS "align",
 'top' AS "valign"),
 'Header Value'),
 table_rows);
END;

This example formats the header names and values into an HTML table. The following service can be defined
to show how this sample procedure works.

CREATE SERVICE ShowHTTPHeaders
TYPE 'RAW'
AUTHORIZATION OFF
USER DBA
AS CALL HTTPHeaderExample();

To test the service, open a web browser and supply the following URL:

http://localhost:80/demo/ShowHTTPHeaders

For more information on header processing, see “HTTP and SOAP functions” [SQL Anywhere Server - SQL
Reference].

Working with HTTP headers

Copyright © 2007, iAnywhere Solutions, Inc. 689

http://localhost/demo/ShowHTTPHeaders
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Using SOAP services
To illustrate many of the features of web services, start with a simple Fahrenheit to Celsius temperature
convertor as a sample service.

♦ To set up a simple web service server

1. Create a database.

dbinit ftc
2. Start a server using this database.

dbsrv10 -xs http(port=8082) -n ftc ftc.db
3. Connect to the server using Interactive SQL.

dbisql -c "UID=DBA;PWD=sql;ENG=ftc"
4. Using Interactive SQL, create a web service.

CREATE SERVICE FtoCService
TYPE 'SOAP'
FORMAT 'XML'
AUTHORIZATION OFF
USER DBA
AS CALL FToCConvertor(:temperature);

5. Define the stored procedure that this service is to call to perform the calculation needed to convert from
a temperature expressed in degrees Fahrenheit to a temperature expressed in degrees Celsius:

CREATE PROCEDURE FToCConvertor(temperature FLOAT)
BEGIN
 SELECT ROUND((temperature - 32.0) * 5.0 / 9.0, 5)
 AS answer;
END;

At this point, you now have a SQL Anywhere web service server running and ready to handle requests. The
server is listening for SOAP requests on port 8082.

So how can you test this SOAP request server? The simplest way to do this is to use another SQL Anywhere
database server to communicate the SOAP request and retrieve the response.

♦ To send and receive SOAP requests

1. Create another database for use with a second server.

dbinit ftc_client
2. Start the personal server using this database.

dbeng10 ftc_client.db
3. Connect to the personal server using another instance of Interactive SQL.

dbisql -c "UID=DBA;PWD=sql;ENG=ftc_client"

SQL Anywhere Web Services

690 Copyright © 2007, iAnywhere Solutions, Inc.

4. Using Interactive SQL, create a stored procedure.

CREATE PROCEDURE FtoC(temperature FLOAT)
 URL 'http://localhost:8082/FtoCService'
 TYPE 'SOAP:DOC';

The URL clause is used to reference the SOAP web service. The string 'http://localhost:
8082/FtoCService' specifies the URI of the web service that is going to be used. This is a
reference to the web server that is listening on port 8082.

The default format used when making a web service request is 'SOAP:RPC'. The format chosen in this
example is 'SOAP:DOC', which is similar to 'SOAP:RPC' but allows for a richer set of data types. SOAP
requests are always sent as XML documents. The mechanism for sending SOAP requests is
'HTTP:POST'.

5. You need a wrapper for the FtoC stored procedure, so create a second stored procedure.

CREATE PROCEDURE FahrenheitToCelsius(temperature FLOAT)
BEGIN
 DECLARE result LONG VARCHAR;
 DECLARE err INTEGER;
 DECLARE crsr CURSOR FOR
 CALL FtoC(temperature);
 OPEN crsr;
 FETCH crsr INTO result, err;
 CLOSE crsr;
 SELECT temperature, Celsius
 FROM OPENXML(result, '//tns:answer', 1, result)
 WITH ("Celsius" FLOAT 'text()');
END;

This stored procedure acts as a cover procedure for the call to the web service. The FtoC stored procedure
returns a result set that this stored procedure processes. The result set is a single XML string that looks
like the following.

<tns:rowset xmlns:tns="http://localhost/ftc/FtoCService">
 <tns:row>
 <tns:answer>100</tns:answer>
 </tns:row>
</tns:rowset>

The OPENXML function is used to parse the XML that is returned, extracting the value that is the
temperature in degrees Celsius.

6. Call the stored procedure in order to send the request and obtain the response.

CALL FahrenheitToCelsius(212);

The Fahrenheit temperature and the Celsius equivalent appear.

temperature Celsius

212 100

At this point, a simple web service running on a SQL Anywhere web server has been demonstrated. As you
have seen, other SQL Anywhere servers can communicate with this web server. There has been little control

Using SOAP services

Copyright © 2007, iAnywhere Solutions, Inc. 691

over the content of the SOAP requests and responses that have travelled between these servers. In the next
section, you will see how this simple web service can be extended by adding your own SOAP headers.

Note
The web service can be provided by the same database server, but must not reside in the same database as
the client function. Attempting to access a web service in the same database results in the error 403
Forbidden.

For information on SOAP header processing, see “Working with SOAP headers” on page 693.

SQL Anywhere Web Services

692 Copyright © 2007, iAnywhere Solutions, Inc.

Working with SOAP headers
In this section, the simple web service that was introduced in “Using SOAP services” on page 690 is extended
to handle SOAP headers.

If you have followed the steps outlined in the previous section, you can skip steps 1 through 4 and go directly
to step 5.

♦ To create a web service server

1. Create a database.

dbinit ftc
2. Start a server using this database.

dbsrv10 -xs http(port=8082) -n ftc ftc.db
3. Connect to the server using Interactive SQL.

dbisql -c "UID=DBA;PWD=sql;ENG=ftc"
4. Using Interactive SQL, create a web service.

CREATE SERVICE FtoCService
TYPE 'SOAP'
FORMAT 'XML'
AUTHORIZATION OFF
USER DBA
AS CALL FToCConvertor(:temperature);

5. Define the stored procedure that this service is to call to perform the calculation needed to convert from
a temperature expressed in degrees Fahrenheit to a temperature expressed in degrees Celsius. Unlike
the example in the previous section, this one includes additional statements to process a special SOAP
header. If you have already worked through the example in the previous section, change the CREATE
below to ALTER since you are now going to modify the stored procedure.

CREATE PROCEDURE FToCConvertor(temperature FLOAT)
BEGIN
 DECLARE hd_key LONG VARCHAR;
 DECLARE hd_entry LONG VARCHAR;
 DECLARE alias LONG VARCHAR;
 DECLARE first_name LONG VARCHAR;
 DECLARE last_name LONG VARCHAR;
 DECLARE xpath LONG VARCHAR;
 DECLARE authinfo LONG VARCHAR;
 DECLARE namespace LONG VARCHAR;
 DECLARE mustUnderstand LONG VARCHAR;
header_loop:
 LOOP
 SET hd_key = NEXT_SOAP_HEADER(hd_key);
 IF hd_key IS NULL THEN
 -- no more header entries
 LEAVE header_loop;
 END IF;
 IF hd_key = 'Authentication' THEN
 SET hd_entry = SOAP_HEADER(hd_key);

Working with SOAP headers

Copyright © 2007, iAnywhere Solutions, Inc. 693

 SET xpath = '/*:' || hd_key || '/*:userName';
 SET namespace = SOAP_HEADER(hd_key, 1,
 '@namespace');
 SET mustUnderstand = SOAP_HEADER(hd_key, 1,
 'mustUnderstand');
 BEGIN
 -- parse the XML returned in the SOAP header
 DECLARE crsr CURSOR FOR
 SELECT *
 FROM OPENXML(hd_entry, xpath)
 WITH (alias LONG VARCHAR '@*:alias',
 first_name LONG VARCHAR '*:first/text()',
 last_name LONG VARCHAR '*:last/text()');
 OPEN crsr;
 FETCH crsr INTO alias, first_name, last_name;
 CLOSE crsr;
 END;
 -- build a response header
 -- based on the pieces from the request header
 SET authinfo =
 XMLELEMENT('Authentication',
 XMLATTRIBUTES(
 namespace as xmlns,
 alias,
 mustUnderstand),
 XMLELEMENT('first', first_name),
 XMLELEMENT('last', last_name));
 CALL SA_SET_SOAP_HEADER('authinfo', authinfo);
 END IF;
 END LOOP header_loop;
 SELECT ROUND((temperature - 32.0) * 5.0 / 9.0, 5)
 AS answer;
END;

Headers in SOAP requests can be obtained using a combination of the NEXT_SOAP_HEADER and
SOAP_HEADER functions. The NEXT_SOAP_HEADER function iterates through the SOAP headers
included within a request and returns the next SOAP header name. Calling it with NULL causes it to return
the name of the first header. Subsequent headers are retrieved by passing the name of the previous header
to the NEXT_SOAP_HEADER function. This function returns NULL when called with the name of the last
header. The SQL code that does the SOAP header retrieval in the example is this. It exits the loop when
NULL is finally returned.

 SET hd_key = NEXT_SOAP_HEADER(hd_key);
 IF hd_key IS NULL THEN
 -- no more header entries
 LEAVE header_loop;
 END IF;

Calling this function repeatedly returns all the header fields exactly once, but not necessarily in the order
they appear in the SOAP request.

The SOAP_HEADER function returns the value of the named SOAP header field, or NULL if not called
from an SOAP service. It is used when processing an SOAP request via a web service. If a header for the
given field-name does not exist, the return value is NULL.

The example searches for a SOAP header named Authentication. When it finds this header, it extracts the
value for entire SOAP header as well as the values of the @namespace and mustUnderstand attributes.
The SOAP header value might look something like this XML string:

SQL Anywhere Web Services

694 Copyright © 2007, iAnywhere Solutions, Inc.

<Authentication xmlns="SecretAgent" mustUnderstand="1">
 <userName alias="99">
 <first>Susan</first>
 <last>Hilton</last>
 </userName>
</Authentication>

For this header, the @namespace attribute value would be:

SecretAgent

Also, the mustUnderstand attribute value would be:

1

The interior of this XML string is parsed with the OPENXML function using an XPath string set to /
:Authentication/:userName.

SELECT *
FROM OPENXML(hd_entry, xpath)
 WITH (alias LONG VARCHAR '@*:alias',
 first_name LONG VARCHAR '*:first/text()',
 last_name LONG VARCHAR '*:last/text()');

Using the sample SOAP header value shown above, the SELECT statement would create a result set as
follows:

alias first_name last_name

99 Susan Hilton

A cursor is declared on this result set and the three column values are fetched into three variables. At this
point, you have all the information of interest that was passed to the web service. You have the temperature
in Fahrenheit degrees and you have some additional attributes that were passed to the web service in a SOAP
header. So what could you do with this information?

You could look up the name and alias that were provided to see if the person is authorized to use the web
service. However, this exercise is not shown in the example.

The next step in the stored procedure is to create a response in the SOAP format. You can build the XML
response as follows:

SET authinfo =
 XMLELEMENT('Authentication',
 XMLATTRIBUTES(
 namespace as xmlns,
 alias,
 mustUnderstand),
 XMLELEMENT('first', first_name),
 XMLELEMENT('last', last_name));

This builds the following XML string:

<Authentication xmlns="SecretAgent" alias="99"
 mustUnderstand="1">
 <first>Susan</first>
 <last>Hilton</last>
</Authentication>

Working with SOAP headers

Copyright © 2007, iAnywhere Solutions, Inc. 695

Finally, to return the SOAP response to the caller, the SA_SET_SOAP_HEADER stored procedure is used:

CALL SA_SET_SOAP_HEADER('authinfo', authinfo);

As in the example in the previous section, the last step is the calculation that converts from degrees Fahrenheit
to degrees Celsius.

At this point, you now have a SQL Anywhere web service server running that can convert temperatures from
degrees Fahrenheit to degrees Celsius as in the previous section. The major difference, however, is that it
can also process a SOAP header from the caller and send a SOAP response back to the caller.

This is only half of the picture. The next step is to develop an example client that can send SOAP requests
and receive SOAP responses.

If you have followed the steps outlined in the previous section, you can skip steps 1 through 3 and go directly
to step 4.

♦ To send and receive SOAP headers

1. Create another database for use with a second server.

dbinit ftc_client
2. Start the personal server using this database.

dbeng10 ftc_client.db
3. Connect to the personal server using another instance of Interactive SQL.

dbisql -c "UID=DBA;PWD=sql;ENG=ftc_client"
4. Using Interactive SQL, create a stored procedure.

CREATE PROCEDURE FtoC(temperature FLOAT,
 INOUT inoutheader LONG VARCHAR,
 IN inheader LONG VARCHAR)
 URL 'http://localhost:8082/FtoCService'
 TYPE 'SOAP:DOC'
 SOAPHEADER '!inoutheader!inheader';

The URL clause is used to reference the SOAP web service. The string 'http://localhost:
8082/FtoCService' specifies the URI of the web service that is going to be used. This is a
reference to the web server that is listening on port 8082.

The default format used when making a web service request is 'SOAP:RPC'. The format chosen in this
example is 'SOAP:DOC', which is similar to 'SOAP:RPC' but allows for a richer set of datatypes. SOAP
requests are always sent as XML documents. The mechanism for sending SOAP requests is
'HTTP:POST'.

The substitution variables in a SQL Anywhere client procedure (inoutheader, inheader) must be alpha-
numeric. If the web service client is declared as a function, all its parameters are IN mode only (they
cannot be assigned by the called function). Therefore, OPENXML or other string functions will have
to be used to extract the SOAP response header information.

5. You need a wrapper for the FtoC stored procedure so create a second stored procedure as follows.
Unlike the example in the previous section, this one includes additional statements to create a special

SQL Anywhere Web Services

696 Copyright © 2007, iAnywhere Solutions, Inc.

SOAP header, send it in a web service call, and process a response from the web server. If you have
already worked through the example in the previous section, change the CREATE below to ALTER
since you are now going to modify the stored procedure.

CREATE PROCEDURE FahrenheitToCelsius(temperature FLOAT)
BEGIN
 DECLARE io_header LONG VARCHAR;
 DECLARE in_header LONG VARCHAR;
 DECLARE result LONG VARCHAR;
 DECLARE err INTEGER;
 DECLARE crsr CURSOR FOR
 CALL FtoC(temperature, io_header, in_header);
 SET io_header =
 '<Authentication xmlns="SecretAgent" ' ||
 'mustUnderstand="1">' ||
 '<userName alias="99">' ||
 '<first>Susan</first><last>Hilton</last>' ||
 '</userName>' ||
 '</Authentication>';
 SET in_header =
 '<Session xmlns="SomeSession">' ||
 '123456789' ||
 '</Session>';

 MESSAGE 'send, soapheader=' || io_header || in_header;
 OPEN crsr;
 FETCH crsr INTO result, err;
 CLOSE crsr;
 MESSAGE 'receive, soapheader=' || io_header;
 SELECT temperature, Celsius
 FROM OPENXML(result, '//tns:answer', 1, result)
 WITH ("Celsius" FLOAT 'text()');
END;

This stored procedure acts as a cover procedure for the call to the web service. The stored procedure
has been enhanced from the example in the previous section. It creates two SOAP headers. The first
one is this.

<Authentication xmlns="SecretAgent"
 mustUnderstand="1">
 <userName alias="99">
 <first>Susan</first>
 <last>Hilton</last>
 </userName></Authentication>

The second one is this.

<Session xmlns="SomeSession">123456789</Session>

When the cursor is opened, the SOAP request is sent to the web service.

<Authentication xmlns="SecretAgent" alias="99"
 mustUnderstand="1">
<first>Susan</first>
<last>Hilton</last>
</Authentication>

The FtoC stored procedure returns a result set that this stored procedure will process. The result set will
look something like this.

Working with SOAP headers

Copyright © 2007, iAnywhere Solutions, Inc. 697

<tns:rowset xmlns:tns="http://localhost/ftc/FtoCService">
 <tns:row>
 <tns:answer>100</tns:answer>
 </tns:row>
</tns:rowset>

The OPENXML function is used to parse the XML that is returned, extracting the value that is the
temperature in degrees Celsius.

6. Call the stored procedure in order to send the request and obtain the response:

CALL FahrenheitToCelsius(212);

The Fahrenheit temperature and the Celsius equivalent appears.

temperature Celsius

212.0 100.0

A SQL Anywhere web service client can be declared as either a function or a procedure. A SQL Anywhere
client function declaration effectively restricts all parameters to in mode only (parameters cannot be assigned
by the called function). Calling a SQL Anywhere web service function will return the raw SOAP envelope
response whereas a procedure returns a result set.

A SOAPHEADER clause has been added to the create/alter procedure/function statements. A SOAP header
can be declared as a static constant or can be dynamically set using the parameter substitution mechanism.
A web service client function can define one or more in mode substitution parameters whereas a web service
client procedure can also define a single inout or out substitution parameter. Therefore a web service client
procedure can return the response SOAP header within an out (or inout) substitution parameter. A web
service function must parse the response SOAP envelope to obtain the header entries.

The following example illustrates how a client can specify the sending of several header entries with
parameters and receiving the response SOAP header data.

CREATE PROCEDURE SoapClient(
 INOUT hd1 VARCHAR,
 IN hd2 VARCHAR,
 IN hd3 VARCHAR)
 URL 'localhost/some_endpoint'
 SOAPHEADER '!hd1!hd2!hd3';

Notes
♦ hd1, hd2, and hd3 all specify request header entries. hd1 also returns the aggregate of all response header

entries.
♦ When the SOAP client is called with a SOAP header, it will generate the enclosing SOAP header element.

If the SOAPHEADER value is NULL then no SOAP header element is generated.
♦ If no SOAP header is received, then hd1 is set to NULL.
♦ The INOUT mode specification of hd1 is redundant since the default mode of a parameter is INOUT.
♦ The following runtime error results if more than one substitution parameter is specified as an OUT (or

INOUT) type: 'Expression has unsupported data type' SQLCODE=-624, ODBC 3
State-"HY000"

♦ Only a single substitution parameter explicitly used for a SOAPHEADER can be declared as OUT.

SQL Anywhere Web Services

698 Copyright © 2007, iAnywhere Solutions, Inc.

Limitations
♦ Server side SOAP services cannot currently define input and output SOAP header requirements.

Therefore SOAP header metadata is not available in the WSDL output of a DISH service. This means
that a SOAP client toolkit cannot automatically generate SOAP header interfaces for a SQL Anywhere
SOAP service endpoint.

♦ Soap header faults are not supported.

Working with SOAP headers

Copyright © 2007, iAnywhere Solutions, Inc. 699

Working with MIME types
The TYPE clause for a SQL Anywhere web service client procedure or function definition allows the
specification of a MIME type. The value of the MIME type specification is used to set the Content-Type
request header and set the mode of operation to allow only a single call parameter to populate the body of
the request. Only zero or one parameter may remain when making a web service stored procedure (or
function) call after parameter substitutions have been processed. Calling a web service procedure with a null
or no parameter (after substitutions) will result in a request with no body and a content-length of zero. The
behavior has not changed if a MIME type is not specified. Parameter names and values (multiple parameters
are permitted) are URL encoded within the body of the HTTP request.

Some typical MIME types include:

♦ text/plain
♦ text/html
♦ text/xml

The following steps illustrate the setting of a MIME type. The first part sets up a web service that can be
used to test the setting of MIME type. The second part demonstrates how to set a MIME type.

♦ Create a web service server

1. Create a database.

dbinit echo
2. Start a server using this database.

dbsrv10 -xs http(port=8082) -n echo echo.db
3. Connect to the server using Interactive SQL.

dbisql -c "UID=DBA;PWD=sql;ENG=echo"
4. Using Interactive SQL, create a web service.

CREATE SERVICE EchoService
TYPE 'RAW'
USER DBA
AUTHORIZATION OFF
SECURE OFF
AS CALL Echo(:valueAsXML);

5. Define the stored procedure that this service is to call.

CREATE PROCEDURE Echo(parm LONG VARCHAR)
BEGIN
 SELECT parm;
END;

At this point, you now have a SQL Anywhere web service server running and ready to handle requests. The
server is listening for HTTP requests on port 8082.

To use this web server for testing, create another SQL Anywhere database, start it, and connect to it. The
following steps show how to do this.

SQL Anywhere Web Services

700 Copyright © 2007, iAnywhere Solutions, Inc.

♦ To send an HTTP request

1. Using the database creation utility, create another database for use with a web service client.

dbinit echo_client
2. Continuing with Interactive SQL, start this database using the following statement.

START DATABASE 'echo_client.db'
AS echo_client;

3. Now, connect to the database that has been started on the server echo using the following statement.

CONNECT TO 'echo'
DATABASE 'echo_client'
USER 'DBA'
IDENTIFIED BY 'sql';

4. Create a stored procedure that will communicate with the EchoService web service.

CREATE PROCEDURE setMIME(
 value LONG VARCHAR,
 mimeType LONG VARCHAR,
 urlSpec LONG VARCHAR
)
URL '!urlSpec'
HEADER 'ASA-Id'
TYPE 'HTTP:POST:!mimeType';

The URL clause is used to reference the web service. For illustration purposes, the URL will be passed
as a parameter to the setMIME procedure.

The TYPE clause indicates that the MIME type will be passed as a parameter to the setMIME procedure.
The default format used when making a web service request is 'SOAP:RPC'. The format chosen for
making this web service request is 'HTTP:POST'.

5. Call the stored procedure in order to send the request and obtain the response. The value parameter that
is passed is a URL-encoded form of <hello>this is xml</hello>. The media type is
application/x-www-form-urlencoded since form-urlencoded is understood by the SQL
Anywhere web server. The URL for the web service is included as the final parameter in the call.

CALL setMIME('valueAsXML=%3Chello%3Ethis%20is%20xml%3C/hello%3E',
 'application/x-www-form-urlencoded',
 'http://localhost:8082/EchoService');

The final parameter specifies the URI of the web service that is listening on port 8082.

The following is representative of the HTTP packet that is sent to the web server.

POST /EchoService HTTP/1.0
Date: Sun, 28 Jan 2007 04:04:44 GMT
Host: localhost
Accept-Charset: windows-1252, UTF-8, *
User-Agent: SQLAnywhere/10.0.1.3349
Content-Type: application/x-www-form-urlencoded; charset=windows-1252
Content-Length: 49
ASA-Id: 1055532613:echo_client:echo:968000
Connection: close
valueAsXML=%3Chello%3Ethis%20is%20xml%3C/hello%3E

Working with MIME types

Copyright © 2007, iAnywhere Solutions, Inc. 701

The following is the response from the web server.

HTTP/1.1 200 OK
Server: SQLAnywhere/10.0.1.3349
Date: Sun, 28 Jan 2007 04:04:44 GMT
Expires: Sun, 28 Jan 2007 04:04:44 GMT
Content-Type: text/plain; charset=windows-1252
Connection: close
<hello>this is xml</hello>

The result set that is displayed by Interactive SQL is shown next.

Attribute Value

Status HTTP/1.1 200 OK

Body <hello>this is xml</hello>

Server SQLAnywhere/10.0.1.3349

Date Sun, 28 Jan 2007 04:04:44 GMT

Expires Sun, 28 Jan 2007 04:04:44 GMT

Content-Type text/plain; charset=windows-1252

Connection close

SQL Anywhere Web Services

702 Copyright © 2007, iAnywhere Solutions, Inc.

Using HTTP sessions
HTTP connections can create an HTTP session to maintain state between HTTP requests.

An HTTP session provides the means for persisting the client (typically a web-browser) state with minimal
SQL application code. A database connection under a session context is held for the duration of the session's
lifetime. Each new HTTP request that is marked with a session ID is serialized (queued) so that each request
with the same session ID is sequentially processed using the same database connection. Reusing the database
connection provides the means of maintaining state information between HTTP requests. In contrast,
sessionless HTTP requests create a new database connection for each request and data from temporary tables
and connection variables cannot be shared across requests.

HTTP session management provides support for both URL and cookie state management techniques.

A working example of the HTTP session features is provided in samples-dir\SQLAnywhere\HTTP
\session.sql.

Creating an HTTP session

A session is created within a web application using the HTTP option SessionID by calling the
sa_set_http_option system procedure. A session ID can be any non-null string. Internally, a session key
composed of the session ID and database name is generated so that the session key is unique across databases
in the event that multiple databases are loaded. The entire session key is limited to 128 characters in length.
In this example, a unique session ID is generated and passed to sa_set_http_option.

DECLARE session_id VARCHAR(64);
DECLARE tm TIMESTAMP;
SET tm=now(*);
SET session_id = 'session_' ||
 CONVERT(VARCHAR, SECONDS(tm)*1000+DATEPART(millisecond,tm));
CALL sa_set_http_option('SessionID', session_id);

A web application can obtain the session ID through the SessionID connection property. This property is an
empty string if no session ID is defined for the connection (that is, the connection is sessionless).

DECLARE session_id VARCHAR(64);
SELECT CONNECTION_PROPERTY('SessionID') INTO session_id;

Once the session is created with the sa_set_http_option procedure, a localhost client can access the session
with the specified session ID (for example, session_63315422814117) running within the database
dbname running the service session_service with the following URL.

http://localhost/dbname/session_service?sessionid=session_63315422814117

If only one database is connected, then the database name can be omitted.

http://localhost/session_service?sessionid=session_63315422814117

Using HTTP sessions

Copyright © 2007, iAnywhere Solutions, Inc. 703

Session management with cookies

Cookie state management is supported using the sa_set_http_header system procedure with 'Set-Cookie' as
the field name. Utilizing cookies for state management negates the need to include the session ID within the
URL. Instead, the client provides the session ID within its HTTP cookie header. The downside to using
cookies for state management is that cookie support cannot be depended upon in an unregulated environment
where clients may have disabled cookies. Consequently, a web application should support both URL and
cookie session state management. A URL session ID, as described in the previous section, takes precedence
in the event that a client provides both a URL and cookie session ID. It is the web application's responsibility
to delete the SessionID cookie in the event that the session expires or that the session is explicitly deleted
(for example, sa_set_http_option('SessionID', NULL)).

DECLARE session_id VARCHAR(64);
DECLARE tm TIMESTAMP;
SET tm=now(*);
SET session_id = 'session_' ||
 CONVERT(VARCHAR, SECONDS(tm)*1000+DATEPART(millisecond,tm));
CALL sa_set_http_option('SessionID', session_id);
CALL sa_set_http_header('Set-Cookie',
 'sessionid=' || session_id || ';' ||
 'max-age=60;' ||
 'path=/session;');

Detection of stale sessions

The SessionID and SessionCreateTime connection properties are useful for determining whether the current
connection is within a session context. If either connection property query returns an empty string, then the
session does not exist. The SessionCreateTime property provides a metric of when a given session was
created. It is defined immediately at the time that the sa_set_http_option call is made. The SessionLastTime
property provides the time that the session was last used. More specifically, it is the time when the last
processed request for the session released the database connection upon termination of that previous request.
The SessionLastTime connection property is returned as an empty string when the session is first created
until the request (that created the session) releases the connection.

Deleting or changing the session ID
The session ID can be reset to another value by calling the sa_set_http_option system procedure with a new
SessionID value. Changing the session ID has the effect of deleting the old session and creating a new session,
but it reuses the current database connection so that state information is not lost. A SessionID can be set to
NULL (or the empty string) which deletes the session. A SessionID cannot be set to an ID of an existing
session (other than its own session ID in which case nothing happens). Trying to set a SessionID to an existing
session's session ID will result in an "Invalid setting for HTTP option 'SessionID' SQLCODE=-939" error.

A server receiving a burst of multiple HTTP requests specifying the same session context queues (serializes)
the requests on its session queue. In the event that the SessionID is changed or deleted by one (or more) of
the requests, any pending requests in the session queue are requeued as individual HTTP requests. Each
HTTP request will fail to obtain the session because it no longer exists. An HTTP request failing to obtain
a session will default to sessionless operation and create a new database connection. The web application
can verify that a request is operating within a session context by checking for a non-empty string value for

SQL Anywhere Web Services

704 Copyright © 2007, iAnywhere Solutions, Inc.

the SessionID or SessionCreateTime connection properties. Of course, the web application can check the
state of any application specific variables or temporary tables that it uses. Here is an example:

IF VAREXISTS('state') = 0 THEN
 // first invocation by this connection
 CREATE VARIABLE state LONG VARCHAR;
END IF;

Session semantics

An HTTP request can create an HTTP session context. A session created by the request is always immediately
instantiated so that any subsequent HTTP requests requiring that session context is queued by the session.

An HTTP request that begins with no session but has created its session context is the creator of its session.
The creator request can change or delete its session context where any change or deletion occurs immediately.
An HTTP request that begins within a session context can also change or delete its session. A change made
to its session immediately creates a pending session that is fully functional with the exception that another
HTTP request cannot take ownership (an incoming request requiring the pending session would instead be
queued on the session). To summarize, changing or deleting a session of a creator request modifies the current
session context immediately, while a request only changing its session modifies its pending session. When
an HTTP request finishes, it checks to see if it has a pending session. If a pending session exists, it deletes
its current session and replaces it with the pending session. The database connection cached by the session
is effectively moved to the new session context and all state data, such as temporary tables and created
variables, are preserved.

In all cases, whenever an HTTP session is deleted, any requests within its queue are released and allowed
to execute without a session context. Application code expecting that a request is running within a session
context must attempt to acquire a valid session context by calling CONNECTION_PROPERTY
('SessionID').

DECLARE ses_id LONG VARCHAR;
SELECT CONNECTION_PROPERTY('SessionID') INTO ses_id;

If an HTTP request is canceled either intentionally or because of network failure, an existing pending session
is deleted preserving the original session context. A creator HTTP request, whether canceled or having
terminated normally, changes session state immediately.

Dropping a connection and server shutdown

Explicitly dropping a database connection that is cached within a session context causes the session to be
deleted. Deletion of the session in this manner is considered a cancel operation, and any HTTP requests
released from the session queue are in a canceled state. This ensures that the HTTP requests are terminated
quickly and signal the user appropriately.

Similarly, a server or database shutdown cancels its appropriate database connections possibly causing
canceled HTTP requests.

Using HTTP sessions

Copyright © 2007, iAnywhere Solutions, Inc. 705

Session timeout

The http_session_timeout public database option provides variable session timeout control. The option
setting is in units of minutes. By default the public setting is 30 minutes. The minimum value is 1 minute
and the maximum value is 525600 minutes (365 days). Web applications can change the timeout criteria
from within any request that owns the session. A new timeout criteria may impact subsequent requests queued
should the session timeout. It is up to the web application to provide the logic to detect if a client is attempting
to access a non-existent session. It can do this by examining the SessionCreateTime connection property to
determine if it is a valid timestamp. The SessionCreateTime value will be an empty string if the HTTP request
is not associated with an existing session.

Session scope
Sessions are not persisted across server restarts.

Licensing

Since the connection associated with a session maintains its hold on a database connection for the life of the
connection, it also holds one license seat as well. Web applications should take this into consideration and
therefore ensure that stale sessions are deleted appropriately or have an appropriate timeout value set.

For more information about licensing in SQL Anywhere, visit http://www.ianywhere.com/products/
sa_licensing.html.

Session errors

The error 503 Service Unavailable occurs when a new request tries to access a session where more
than 16 requests are pending on that session, or an error occured while queuing the session.

The error 403 Forbidden occurs if the client IP address or hostname does not match that of the creator
of the session.

A request stipulating a session that does not exist does not implicitly generate an error. It is up to the web
application to detect this condition (by checking SessionID, SessionCreateTime, or SessionLastTime
connection properties) and do the appropriate action.

Summary of session connection properties and options

Connection properties
♦ SessionID

SELECT CONNECTION_PROPERTY('SessionID') INTO ses_id;

Provides the current session ID within the current database context.

SQL Anywhere Web Services

706 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/products/sa_licensing.html
http://www.ianywhere.com/products/sa_licensing.html

♦ SessionCreateTime

SELECT CONNECTION_PROPERTY('SessionCreateTime') INTO ses_create;

Provides the timestamp of when the session was created.

♦ SessionLastTime

SELECT CONNECTION_PROPERTY('SessionLastTime') INTO ses_last;

Provides timestamp of when the session was released by the last request.

♦ http_session_timeout

SELECT CONNECTION_PROPERTY('http_session_timeout') INTO ses_timeout;

Fetches the current session timeout in units of minutes.

HTTP options
♦ 'SessionID','value'

CALL sa_set_http_option('SessionID', 'my_app_session_1')

Create or change a session context for the current HTTP request. Returns an error if my_app_session_1
is owned by another HTTP request.

♦ 'SessionID', NULL

CALL sa_set_http_option('SessionID', NULL)

If the request comes from the session creator, the current session is deleted immediately; otherwise, the
session is marked for deletion. Deleting a session when the request has no session is not an error and has
no effect.

Changing a session to a SessionID of the current session (has no pending session) is not an error and has
no substantial effect.

Changing a session to a SessionID in use by another HTTP request is an error.

Changing a session when a change is already pending results in the pending session being deleted and
new pending session being created.

Changing a session with a pending session back to its original SessionID results in the pending session
being deleted.

HTTP session timeout
♦ http_session_timeout

SET TEMPORARY OPTION PUBLIC.http_session_timeout=100;

Sets the current HTTP session timeout (in minutes). The default is 30 and the range is 1 to 525600 minutes
(365 days).

See “http_session_timeout option [database]” [SQL Anywhere Server - Database Administration].

Using HTTP sessions

Copyright © 2007, iAnywhere Solutions, Inc. 707

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Administration

A web application may require a means by which it can track active session usage within the database server.
Session data can be found using the NEXT_CONNECTION function call to iterate through the active
database connections and checking for session related properties such as SessionID. The following SQL
code demonstrates this approach:

CREATE VARIABLE conn_id LONG VARCHAR;
CREATE VARIABLE the_sessionID LONG VARCHAR;
SELECT NEXT_CONNECTION(NULL, NULL) INTO conn_id;
conn_loop:
LOOP
 IF conn_id IS NULL THEN
 LEAVE conn_loop;
 END IF;
 SELECT CONNECTION_PROPERTY('SessionID', conn_id)
 INTO the_sessionID;
 IF the_sessionID != '' THEN
 PRINT 'conn_id = %1!, SessionID = %2!', conn_id, the_sessionID;
 ELSE
 PRINT 'conn_id = %1!', conn_id;
 END IF;
 SELECT NEXT_CONNECTION(conn_id, NULL) INTO conn_id;
END LOOP conn_loop;
PRINT '\n';

If you examine the server messages window, you might see output similar to the following.

conn_id = 30
conn_id = 29, SessionID = session_63315442223323
conn_id = 28, SessionID = session_63315442220088
conn_id = 25, SessionID = session_63315441867629

Explicitly dropping a connection that belongs to a session causes the connection to be closed and the session
to be deleted. If the connection being dropped is currently active in servicing an HTTP request, the request
is marked for deletion and sent a cancel signal to terminate the request. When the request terminates, the
session is deleted and the connection closed. Deleting the session causes any pending requests on that
session's queue to be requeued as discussed in “Deleting or changing the session ID” on page 704. In the
event the connection is currently inactive, the session is marked for deletion and requeued to the beginning
of the session timeout queue. The session and the connection are deleted in the next timeout cycle (normally
within 5 seconds). Any session marked for deletion cannot be used by a new HTTP request.

When stopping a database unconditionally, each database connection is dropped, causing all sessions under
that database context (see the description of session key in “Creating an HTTP session” on page 703) to be
deleted. This is guaranteed since one valid database connection must exist for one session context and a
database connection can only be associated with one session at a time. Both the session and database
connection must be within the same database context.

SQL Anywhere Web Services

708 Copyright © 2007, iAnywhere Solutions, Inc.

Using automatic character set conversion
By default, character set conversion is performed automatically on outgoing result sets of type text. Result
sets of other types, such as binary objects, are not translated. The character set of the request is converted to
the database character set, and the result set is converted from the database character set to the client character
set, as required, except on binary columns in the result set. When the request lists multiple character sets
that it can handle, the server takes the first suitable one from the list.

Character-set conversion can be enabled or disabled by setting the HTTP option CharsetConversion. The
allowed values are ON and OFF. The default value is ON. The following statement turns automatic character-
set conversion off:

CALL sa_set_http_option('CharsetConversion', 'OFF')

For more information about built-in stored procedures, see “System procedures” [SQL Anywhere Server -
SQL Reference].

Using automatic character set conversion

Copyright © 2007, iAnywhere Solutions, Inc. 709

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

Handling errors
When web service requests fail, the database server generates standard errors that appear in your browser.
These errors are assigned numbers consistent with the protocol standards.

If the service is a SOAP service, faults are returned to the client as SOAP faults as defined in the SOAP
version 1.1 standard:

♦ When an error in the application handling the request generates a SQLCODE, a SOAP Fault is returned
with a faultcode of Client, possibly with a sub-category, such as Procedure. The faultstring element
within the SOAP Fault is set to a detailed explanation of the error and a detail element contains the
numeric SQLCODE value.

♦ In the event of a transport protocol error, the faultcode is set to either Client or Server, depending on the
error, faultstring is set to the HTTP transport message, such as 404 Not Found, and the detail element
contains the numeric HTTP error value.

♦ SOAP Fault messages generated due to application errors that return a SQLCODE value are returned
with an HTTP status of 200 OK.

If the client cannot be identified as a SOAP client, then the appropriate HTTP error is returned in a generated
HTML document.

The following are some of the typical errors that you may encounter:

Number Name SOAP fault Description

301 Moved perma-
nently

Server The requested page has been permanently
moved. The server automatically redirects the
request to the new location.

304 Not Modified Server The server has decided, based on information in
the request, that the requested data has not been
modified since the last request and so it does not
need to be sent again.

307 Temporary Redi-
rect

Server The requested page has been moved, but this
change may not be permanent. The server au-
tomatically redirects the request to the new lo-
cation.

400 Bad Request Client.BadRequest The HTTP request is incomplete or malformed.

401 Authorization
Required

Client.Authorization Authorization is required to use the service, but
a valid user name and password were not sup-
plied.

403 Forbidden Client.Forbidden You do not have permission to access the
database.

404 Not Found Client.NotFound The named database is not running on the serv-
er, or the named web service does not exist.

SQL Anywhere Web Services

710 Copyright © 2007, iAnywhere Solutions, Inc.

Number Name SOAP fault Description

408 Request Timeout Server.RequestTime-
out

The maximum connection idle time was ex-
ceeded while receiving the request.

411 HTTP Length
Required

Client.LengthRe-
quired

The server requires that the client include a
Content-Length specification in the request.
This typically occurs when uploading data to
the server.

413 Entity Too Large Server The request exceeds the maximum permitted
size.

414 URI Too Large Server The length of the URI exceeds the maximum
allowed length.

500 Internal Server
Error

Server An internal error occurred. The request could
not be processed.

501 Not Implemented Server The HTTP request method is not GET, HEAD,
or POST.

502 Bad Gateway Server The document requested resides on a third-party
server and the server received an error from the
third-party server.

503 Service Unavail-
able

Server The number of connections exceeds the allowed
maximum.

Handling errors

Copyright © 2007, iAnywhere Solutions, Inc. 711

712

Part IV. Using ADO and Visual Basic
with SQL Anywhere

This part provides a simple example of the ADO interface using Visual Basic.

CHAPTER 18

Tutorial: Develop a Simple Application in
Visual Basic

Contents
Introduction to Visual Basic tutorial ... 716

Copyright © 2007, iAnywhere Solutions, Inc. 715

Introduction to Visual Basic tutorial
This tutorial is based on Visual Basic 6.0. The complete application can be found in the Visual Basic project
samples-dir\SQLAnywhere\VBStarter\Starter.vbp.

Visual Basic provides several data access technologies. In this tutorial, you use the Microsoft ADO Data
Control with the SQL Anywhere OLE DB provider to access the SQL Anywhere sample database from
Visual Basic.

♦ To develop a database application with Visual Basic

1. Start Visual Basic, choosing a Standard Executable project.

2. Add the Microsoft ADO Data Control 6.0 to your tool palette:

♦ From the Project menu, choose Components.

♦ Select the Microsoft ADO Data Control 6.0 component from the list.

♦ Click OK to add the control to the Toolbox palette.

3. Add the ADO Data Control to the form, as follows:

Tutorial: Develop a Simple Application in Visual Basic

716 Copyright © 2007, iAnywhere Solutions, Inc.

♦ From the View menu, choose Toolbox.

♦ Click the Adodc icon in the Toolbox palette.

♦ Draw a rectangle on the design form.

4. Configure the ADO Data Control:

Property Value

CommandType 2 - adCmdTable

ConnectionString Provider=SAOLEDB;DSN=SQL Anywhere 10
Demo

CursorLocation 2 - adUseServer

CursorType 2 - adOpenDynamic

RecordSource Employees

The ConnectionString uses the SQL Anywhere OLE DB Provider (SAOLEDB) to connect to the "SQL
Anywhere 10 Demo" data source. The cursor settings take advantage of SQL Anywhere server-side
cursors rather than using client-side cursors.

5. Add two text boxes to the form, as follows:

♦ Click the TextBox icon in the Toolbox palette.

♦ Draw a rectangle on the design form just above the Adodc1 control as shown in the diagram below.

♦ Draw a second rectangle on the design form to the right of the first TextBox as shown in the diagram.

Introduction to Visual Basic tutorial

Copyright © 2007, iAnywhere Solutions, Inc. 717

6. Bind the text boxes to the ADO Data Control:

♦ Set the DataSource property for each to be Adodc1.

♦ Set the DataField property for the left-hand text box to GivenName, which is the column holding
the employee's first name.

♦ Set the DataField property for the right-hand text box to Surname, which is the column holding
the employee's last name.

7. Save the project.

8. Run the sample:

♦ Choose Run ► Start to run the application.

The application connects to the SQL Anywhere sample database and puts the name of the first
employee in the text boxes, as follows:

♦ You can use the buttons on the ADO Data Control to scroll through the rows of the result set.

You have now created a simple Visual Basic application that works with ADO and the SQL Anywhere
OLEDB provider.

Tutorial: Develop a Simple Application in Visual Basic

718 Copyright © 2007, iAnywhere Solutions, Inc.

Part V. SQL Anywhere Database Tools
Interface

This part describes the database tools programming interface for SQL Anywhere.

CHAPTER 19

Database Tools Interface

Contents
Introduction to the database tools interface ... 722
Using the database tools interface .. 724
DBTools functions ... 731
DBTools structures .. 740
DBTools enumeration types .. 777

Copyright © 2007, iAnywhere Solutions, Inc. 721

Introduction to the database tools interface
SQL Anywhere includes Sybase Central and a set of utilities for managing databases. These database
management utilities perform tasks such as backing up databases, creating databases, translating transaction
logs to SQL, and so on.

Supported platforms

All the database management utilities use a shared library called the database tools library. It is supplied
for Windows operating systems and for Unix. The name of this library is dbtool10.dll for Windows, and
libdbtool10.so (non-threaded) or libdbtool10_r.so (threaded) for Unix.

You can develop your own database management utilities or incorporate database management features into
your applications by calling the database tools library. This chapter describes the interface to the database
tools library. This chapter assumes you are familiar with how to call DLLs from the development
environment you are using.

The database tools library has functions, or entry points, for each of the database management utilities. In
addition, functions must be called before use of other database tools functions and when you have finished
using other database tools functions.

Windows CE

The dbtool10.dll library is supplied for Windows CE, but includes only entry points for DBToolsInit,
DBToolsFini, DBRemoteSQL, and DBSynchronizeLog. Other tools are not provided for Windows CE.

The dbtools.h header file
The dbtools header file included with SQL Anywhere lists the entry points to the DBTools library and also
the structures used to pass information to and from the library. The dbtools.h file is installed into the h
subdirectory under your SQL Anywhere installation directory. You should consult the dbtools.h file for the
latest information about the entry points and structure members.

The dbtools.h header file includes three other files:

♦ sqlca.h This is included for resolution of various macros, not for the SQLCA itself.

♦ dllapi.h Defines preprocessor macros for operating-system dependent and language-dependent
macros.

♦ dbtlvers.h Defines the DB_TOOLS_VERSION_NUMBER preprocessor macro and other version
specific macros.

The sqldef.h header file also includes error return values.

The dbrmt.h header file
The dbrmt.h header file included with SQL Anywhere describes the DBRemoteSQL entry point in the
DBTools library and also the structure used to pass information to and from the DBRemoteSQL entry point.
The dbrmt.h file is installed into the h subdirectory under your SQL Anywhere installation directory. You

Database Tools Interface

722 Copyright © 2007, iAnywhere Solutions, Inc.

should consult the dbrmt.h file for the latest information about the DBRemoteSQL entry point and structure
members.

Introduction to the database tools interface

Copyright © 2007, iAnywhere Solutions, Inc. 723

Using the database tools interface
This section provides an overview of how to develop applications that use the DBTools interface for
managing databases.

Using the import libraries

To use the DBTools functions, you must link your application against a DBTools import library that
contains the required function definitions.

Supported platforms
Import libraries are compiler-specific and are supplied for Windows operating systems with the exception
of Windows CE. Import libraries for the DBTools interface are provided with SQL Anywhere, and can be
found in the lib subdirectory of each operating system's directory, under your SQL Anywhere installation
directory. The provided DBTools import libraries are as follows:

Compiler Library

Borland lib\dbtlstb.lib

Microsoft lib\dbtlstm.lib

Microsoft (Windows CE) lib\dbtools10.lib

Watcom lib\dbtlstw.lib

Starting and finishing the DBTools library

Before using any other DBTools functions, you must call DBToolsInit. When you are finished using the
DBTools DLL, you must call DBToolsFini.

The primary purpose of the DBToolsInit and DBToolsFini functions is to allow the DBTools DLL to load
the SQL Anywhere language DLL. The language DLL contains localized versions of all error messages and
prompts that DBTools uses internally. If DBToolsFini is not called, the reference count of the language DLL
is not decremented and it will not be unloaded, so be careful to ensure there is a matched pair of DBToolsInit/
DBToolsFini calls.

The following code fragment illustrates how to initialize and clean up DBTools:

// Declarations
a_dbtools_info info;
short ret;
//Initialize the a_dbtools_info structure
memset(&info, 0, sizeof(a_dbtools_info));
info.errorrtn = (MSG_CALLBACK)MyErrorRtn;
// initialize DBTools
ret = DBToolsInit(&info);

Database Tools Interface

724 Copyright © 2007, iAnywhere Solutions, Inc.

if(ret != EXIT_OKAY) {
 // DLL initialization failed
 ...
}
// call some DBTools routines . . .
...
// cleanup the DBTools dll
DBToolsFini(&info);

Calling the DBTools functions

All the tools are run by first filling out a structure, and then calling a function (or entry point) in the DBTools
DLL. Each entry point takes a pointer to a single structure as argument.

The following example shows how to use the DBBackup function on a Windows operating system.

// Initialize the structure
a_backup_db backup_info;
memset(&backup_info, 0, sizeof(backup_info));
// Fill out the structure
backup_info.version = DB_TOOLS_VERSION_NUMBER;
backup_info.output_dir = "c:\\backup";
backup_info.connectparms ="UID=DBA;PWD=sql;DBF=demo.db";
backup_info.confirmrtn = (MSG_CALLBACK) ConfirmRtn ;
backup_info.errorrtn = (MSG_CALLBACK) ErrorRtn ;
backup_info.msgrtn = (MSG_CALLBACK) MessageRtn ;
backup_info.statusrtn = (MSG_CALLBACK) StatusRtn ;
backup_info.backup_database = TRUE;
// start the backup
DBBackup(&backup_info);

For information about the members of the DBTools structures, see “DBTools structures” on page 740.

Using callback functions
Several elements in DBTools structures are of type MSG_CALLBACK. These are pointers to callback
functions.

Uses of callback functions
Callback functions allow DBTools functions to return control of operation to the user's calling application.
The DBTools library uses callback functions to handle messages sent to the user by the DBTools functions
for four purposes:

♦ Confirmation Called when an action needs to be confirmed by the user. For example, if the backup
directory does not exist, the tools DLL asks if it needs to be created.

♦ Error message Called to handle a message when an error occurs, such as when an operation is out
of disk space.

♦ Information message Called for the tools to display some message to the user (such as the name of
the current table being unloaded).

Using the database tools interface

Copyright © 2007, iAnywhere Solutions, Inc. 725

♦ Status information Called for the tools to display the status of an operation (such as the percentage
done when unloading a table).

Assigning a callback function to a structure
You can directly assign a callback routine to the structure. The following statement is an example using a
backup structure:

backup_info.errorrtn = (MSG_CALLBACK) MyFunction

MSG_CALLBACK is defined in the dllapi.h header file supplied with SQL Anywhere. Tools routines can
call back to the calling application with messages that should appear in the appropriate user interface, whether
that be a windowing environment, standard output on a character-based system, or other user interface.

Confirmation callback function example
The following example confirmation routine asks the user to answer YES or NO to a prompt and returns the
user's selection:

extern short _callback ConfirmRtn(
 char * question)
{
 int ret = IDNO;
 if(question != NULL) {
 ret = MessageBox(HwndParent, question,
 "Confirm", MB_ICONEXCLAMATION|MB_YESNO);
 }
 return(ret == IDYES);
}

Error callback function example
The following is an example of an error message handling routine, which displays the error message in a
message box.

extern short _callback ErrorRtn(
 char * errorstr)
{
 if(errorstr != NULL) {
 MessageBox(HwndParent, errorstr, "Backup Error", MB_ICONSTOP|
MB_OK);
 }
 return(0);
}

Message callback function example
A common implementation of a message callback function outputs the message to the screen:

extern short _callback MessageRtn(
 char * messagestr)
{
 if(messagestr != NULL) {
 OutputMessageToWindow(messagestr);
 }
 return(0);
}

Database Tools Interface

726 Copyright © 2007, iAnywhere Solutions, Inc.

Status callback function example
A status callback routine is called when a tool needs to display the status of an operation (like the percentage
done unloading a table). A common implementation would just output the message to the screen:

extern short _callback StatusRtn(
 char * statusstr)
{
 if(statusstr != NULL) {
 OutputMessageToWindow(statusstr);
 return(0);
}

Version numbers and compatibility
Each structure has a member that indicates the version number. You should use this version member to hold
the version of the DBTools library that your application was developed against. The current version of the
DBTools library is included as a symbolic constant in the dbtools.h header file.

♦ To assign the current version number to a structure

• Assign the version constant to the version member of the structure before calling the DBTools function.
The following line assigns the current version to a backup structure:

backup_info.version = DB_TOOLS_VERSION_NUMBER;

Compatibility
The version number allows your application to continue working against newer versions of the DBTools
library. The DBTools functions use the version number supplied by your application to allow the application
to work, even if new members have been added to the DBTools structure.

When any of the DBTools structures are updated, or when a newer version of the software is released, the
version number is augmented. If you use DB_TOOLS_VERSION_NUMBER and you rebuild your
application with a new version of the DBTools header file, then you must deploy a new version of the
DBTools DLL. If the functionality of your application doesn't change, then you may want to use one of the
version-specific macros defined in dbtlsvers.h, so that a DLL version mismatch does not occur.

Using bit fields

Many of the DBTools structures use bit fields to hold Boolean information in a compact manner. For example,
the backup structure includes the following bit fields:

a_bit_field backup_database : 1;
a_bit_field backup_logfile : 1;
a_bit_field no_confirm : 1;
a_bit_field quiet : 1;
a_bit_field rename_log : 1;
a_bit_field truncate_log : 1;
a_bit_field rename_local_log: 1;
a_bit_field server_backup : 1;

Using the database tools interface

Copyright © 2007, iAnywhere Solutions, Inc. 727

Each bit field is one bit long, indicated by the 1 to the right of the colon in the structure declaration. The
specific data type used depends on the value assigned to a_bit_field, which is set at the top of dbtools.h, and
is operating system-dependent.

You assign a value of 0 or 1 to a bit field to pass Boolean information in the structure.

A DBTools example

You can find this sample and instructions for compiling it in the samples-dir\SQLAnywhere\DBTools
directory. The sample program itself is in main.cpp. The sample illustrates how to use the DBTools library
to perform a backup of a database.

#define WIN32
#include <stdio.h>
#include <string.h>
#include "windows.h"
#include "sqldef.h"
#include "dbtools.h"
extern short _callback ConfirmCallBack(char * str)
{
 if(MessageBox(NULL, str, "Backup",
 MB_YESNO|MB_ICONQUESTION) == IDYES)
 {
 return 1;
 }
 return 0;
}
extern short _callback MessageCallBack(char * str)
{
 if(str != NULL)
 {
 fprintf(stdout, "%s\n", str);
 }
 return 0;
}
extern short _callback StatusCallBack(char * str)
{
 if(str != NULL)
 {
 fprintf(stdout, "%s\n", str);
 }
 return 0;
}
extern short _callback ErrorCallBack(char * str)
{
 if(str != NULL)
 {
 fprintf(stdout, "%s\n", str);
 }
 return 0;
}
typedef void (CALLBACK *DBTOOLSPROC)(void *);
typedef short (CALLBACK *DBTOOLSFUNC)(void *);

Database Tools Interface

728 Copyright © 2007, iAnywhere Solutions, Inc.

// Main entry point into the program.
int main(int argc, char * argv[])
{
 a_dbtools_info dbt_info;
 a_backup_db backup_info;
 char dir_name[_MAX_PATH + 1];
 char connect[256];
 HINSTANCE hinst;
 DBTOOLSFUNC dbbackup;
 DBTOOLSFUNC dbtoolsinit;
 DBTOOLSPROC dbtoolsfini;
 short ret_code;
 // Always initialize to 0 so new versions
 // of the structure will be compatible.
 memset(&dbt_info, 0, sizeof(a_dbtools_info));
 dbt_info.errorrtn = (MSG_CALLBACK)MessageCallBack;;
 memset(&backup_info, 0, sizeof(a_backup_db));
 backup_info.version = DB_TOOLS_VERSION_NUMBER;
 backup_info.quiet = 0;
 backup_info.no_confirm = 0;
 backup_info.confirmrtn = (MSG_CALLBACK)ConfirmCallBack;
 backup_info.errorrtn = (MSG_CALLBACK)ErrorCallBack;
 backup_info.msgrtn = (MSG_CALLBACK)MessageCallBack;
 backup_info.statusrtn = (MSG_CALLBACK)StatusCallBack;
 if(argc > 1)
 {
 strncpy(dir_name, argv[1], _MAX_PATH);
 }
 else
 {
 // DBTools does not expect (or like) a trailing slash
 strcpy(dir_name, "c:\\temp");
 }
 backup_info.output_dir = dir_name;
 if(argc > 2)
 {
 strncpy(connect, argv[2], 255);
 }
 else
 {
 strcpy(connect, "DSN=SQL Anywhere 10 Demo");
 }
 backup_info.connectparms = connect;
 backup_info.quiet = 0;
 backup_info.no_confirm = 0;
 backup_info.backup_database = 1;
 backup_info.backup_logfile = 1;
 backup_info.rename_log = 0;
 backup_info.truncate_log = 0;
 hinst = LoadLibrary("dbtool10.dll");
 if(hinst == NULL)
 {
 // Failed
 return EXIT_FAIL;
 }
 dbbackup = (DBTOOLSFUNC) GetProcAddress((HMODULE)hinst,
 "_DBBackup@4");
 dbtoolsinit = (DBTOOLSFUNC) GetProcAddress((HMODULE)hinst,

Using the database tools interface

Copyright © 2007, iAnywhere Solutions, Inc. 729

 "_DBToolsInit@4");
 dbtoolsfini = (DBTOOLSPROC) GetProcAddress((HMODULE)hinst,
 "_DBToolsFini@4");
 ret_code = (*dbtoolsinit)(&dbt_info);
 if(ret_code != EXIT_OKAY) {
 return ret_code;
 }
 ret_code = (*dbbackup)(&backup_info);
 (*dbtoolsfini)(&dbt_info);
 FreeLibrary(hinst);
 return ret_code;
}

Database Tools Interface

730 Copyright © 2007, iAnywhere Solutions, Inc.

DBTools functions

DBBackup function

Backs up a database. This function is used by the dbbackup utility.

Prototype
short DBBackup (const a_backup_db *);

Parameters
A pointer to a structure. See “a_backup_db structure” on page 740.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
The DBBackup function manages all client-side database backup tasks.

For a description of these tasks, see “Backup utility (dbbackup)” [SQL Anywhere Server - Database
Administration].

To perform a server-side backup, use the BACKUP DATABASE statement. See “BACKUP
statement” [SQL Anywhere Server - SQL Reference].

DBChangeLogName function

Changes the name of the transaction log file. This function is used by the dblog utility.

Prototype
short DBChangeLogName (const a_change_log *);

Parameters
A pointer to a structure. See “a_change_log structure” on page 742.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
The -t option of the Transaction Log utility (dblog) changes the name of the transaction log.
DBChangeLogName provides a programmatic interface to this function.

For a description of the dblog utility, see “Transaction Log utility (dblog)” [SQL Anywhere Server - Database
Administration].

DBTools functions

Copyright © 2007, iAnywhere Solutions, Inc. 731

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

See also
♦ “ALTER DATABASE statement” [SQL Anywhere Server - SQL Reference]

DBCreate function

Creates a database. This function is used by the dbinit utility.

Prototype
short DBCreate (const a_create_db *);

Parameters
A pointer to a structure. See “a_create_db structure” on page 743.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the dbinit utility, see “Initialization utility (dbinit)” [SQL Anywhere Server - Database
Administration].

See also
♦ “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]

DBCreatedVersion function

Determines the version of SQL Anywhere that was used to create a database file, without attempting to start
the database. Currently, this function only differentiates between version 10 and pre-10 databases.

Prototype
short DBCreatedVersion (a_db_version_info *);

Parameters
A pointer to a structure. See “a_db_version_info structure” on page 748.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
If the return code indicates success, then the created_version field of the a_db_version_info structure contains
a value of type a_db_version indicating which version of SQL Anywhere created the database. For the
definition of the possible values, see “a_db_version enumeration” on page 778.

Version information is not set if a failing code is returned.

Database Tools Interface

732 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

See also
♦ “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]
♦ “a_db_version_info structure” on page 748
♦ “a_db_version enumeration” on page 778

DBErase function

Erases a database file and/or transaction log file. This function is used by the dberase utility.

Prototype
short DBErase (const an_erase_db *);

Parameters
A pointer to a structure. See “an_erase_db structure” on page 750.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the Erase utility and its features, see “Erase utility (dberase)” [SQL Anywhere Server
- Database Administration].

DBInfo function

Returns information about a database file. This function is used by the dbinfo utility.

Prototype
short DBInfo (const a_db_info *);

Parameters
A pointer to a structure. See “a_db_info structure” on page 746.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the Information utility and its features, see “Information utility (dbinfo)” [SQL
Anywhere Server - Database Administration].

See also
♦ “DBInfoDump function” on page 734
♦ “DBInfoFree function” on page 734
♦ “DB_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]

DBTools functions

Copyright © 2007, iAnywhere Solutions, Inc. 733

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

DBInfoDump function

Returns information about a database file. This function is used by the dbinfo utility when the -u option is
used.

Prototype
short DBInfoDump (const a_db_info *);

Parameters
A pointer to a structure. See “a_db_info structure” on page 746.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the Information utility and its features, see “Information utility (dbinfo)” [SQL
Anywhere Server - Database Administration].

See also
♦ “DBInfo function” on page 733
♦ “DBInfoFree function” on page 734
♦ “sa_table_page_usage system procedure” [SQL Anywhere Server - SQL Reference]

DBInfoFree function

Frees resources after the DBInfoDump function is called.

Prototype
short DBInfoFree (const a_db_info *);

Parameters
A pointer to a structure. See “a_db_info structure” on page 746.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the Information utility and its features, see “Information utility (dbinfo)” [SQL
Anywhere Server - Database Administration].

See also
♦ “DBInfo function” on page 733
♦ “DBInfoDump function” on page 734

Database Tools Interface

734 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

DBLicense function

Modifies or reports the licensing information of the database server.

Prototype
short DBLicense (const a_db_lic_info *);

Parameters
A pointer to a structure. See “a_dblic_info structure” on page 749.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the Server Licensing utility and its features, see “Server Licensing utility
(dblic)” [SQL Anywhere Server - Database Administration].

DBRemoteSQL function

Accesses the SQL Remote Message Agent.

Prototype
short DBRemoteSQL(const a _remote_sql *);

Parameters
A pointer to a structure. See “a_remote_sql structure” on page 752.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the features you can access, see “Message Agent” [SQL Remote].

See also
♦ “SQL Remote Concepts” [SQL Remote]

DBSynchronizeLog function

Synchronize a database with a MobiLink server.

Prototype
short DBSynchronizeLog(const a _sync_db *);

Parameters
A pointer to a structure. See “a_sync_db structure” on page 757.

DBTools functions

Copyright © 2007, iAnywhere Solutions, Inc. 735

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbsren10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbsren10.pdf

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the features you can access, see “Initiating synchronization” [MobiLink - Client
Administration].

See also
♦ “DBTools Interface for dbmlsync” [MobiLink - Client Administration]

DBToolsFini function

Decrements the counter and frees resources when an application is finished with the DBTools library.

Prototype
short DBToolsFini (const a_dbtools_info *);

Parameters
A pointer to a structure. See “a_dbtools_info structure” on page 750.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
The DBToolsFini function must be called at the end of any application that uses the DBTools interface.
Failure to do so can lead to lost memory resources.

See also
♦ “DBToolsInit function” on page 736

DBToolsInit function

Prepares the DBTools library for use.

Prototype
short DBToolsInit(const a_dbtools_info *);

Parameters
A pointer to a structure. See “a_dbtools_info structure” on page 750.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Database Tools Interface

736 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbmnen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbmnen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbmnen10.pdf

Remarks
The primary purpose of the DBToolsInit function is to load the SQL Anywhere language DLL. The language
DLL contains localized versions of error messages and prompts that DBTools uses internally.

The DBToolsInit function must be called at the start of any application that uses the DBTools interface,
before any other DBTools functions. For an example, see “A DBTools example” on page 728.

See also
♦ “DBToolsFini function” on page 736

DBToolsVersion function

Returns the version number of the DBTools library.

Prototype
short DBToolsVersion (void);

Return value
A short integer indicating the version number of the DBTools library.

Remarks
Use the DBToolsVersion function to check that the DBTools library is not older than one against which your
application is developed. While applications can run against newer versions of DBTools, they cannot run
against older versions.

See also
♦ “Version numbers and compatibility” on page 727

DBTranslateLog function

Translates a transaction log file to SQL. This function is used by the dbtran utility.

Prototype
short DBTranslateLog (const a_translate_log *);

Parameters
A pointer to a structure. See “a_translate_log structure” on page 765.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the Log Translation utility, see “Log Translation utility (dbtran)” [SQL Anywhere
Server - Database Administration].

DBTools functions

Copyright © 2007, iAnywhere Solutions, Inc. 737

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

DBTruncateLog function

Truncates a transaction log file. This function is used by the dbbackup utility.

Prototype
short DBTruncateLog (const a_truncate_log *);

Parameters
A pointer to a structure. See “a_truncate_log structure” on page 769.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the Backup utility, see “Backup utility (dbbackup)” [SQL Anywhere Server - Database
Administration]

See also
♦ “BACKUP statement” [SQL Anywhere Server - SQL Reference]

DBUnload function

Unloads a database. This function is used by the dbunload and dbxtract utilities.

Prototype
short DBUnload (const an_unload_db *);

Parameters
A pointer to a structure. See “an_unload_db structure” on page 770.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the Unload utility, see “Unload utility (dbunload)” [SQL Anywhere Server - Database
Administration].

For information about the Extraction utility, see “Extraction utility” [SQL Remote].

DBUpgrade function

Upgrades a database file. This function is used by the dbupgrad utility.

Prototype
short DBUpgrade (const an_upgrade_db *);

Database Tools Interface

738 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbsren10.pdf

Parameters
A pointer to a structure. See “an_upgrade_db structure” on page 774.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the Upgrade utility, see “Upgrade utility (dbupgrad)” [SQL Anywhere Server -
Database Administration].

See also
♦ “ALTER DATABASE statement” [SQL Anywhere Server - SQL Reference]

DBValidate function

Validates all or part of a database. This function is used by the dbvalid utility.

Prototype
short DBValidate (const a_validate_db *);

Parameters
A pointer to a structure. See “a_validate_db structure” on page 775.

Return value
A return code, as listed in “Software component exit codes” on page 784.

Remarks
For information about the Validation utility, see “Validation utility (dbvalid)” [SQL Anywhere Server -
Database Administration].

Caution
Validating a table or an entire database should be performed while no connections are making changes to
the database; otherwise, spurious errors may be reported indicating some form of database corruption even
though no corruption actually exists.

See also
♦ “VALIDATE statement” [SQL Anywhere Server - SQL Reference]
♦ “sa_validate system procedure” [SQL Anywhere Server - SQL Reference]

DBTools functions

Copyright © 2007, iAnywhere Solutions, Inc. 739

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

DBTools structures
This section lists the structures that are used to exchange information with the DBTools library. The structures
are listed alphabetically. With the exception of the a_remote_sql structure, all of these structures are defined
in dbtools.h. The a_remote_sql structure is defined in dbrmt.h.

Many of the structure elements correspond to command line options on the corresponding utility. For
example, several structures have a member named quiet, which can take on values of 0 or 1. This member
corresponds to the quiet operation (-q) option used by many of the utilities.

a_backup_db structure

Holds the information needed to perform backup tasks using the DBTools library.

Syntax
typedef struct a_backup_db {
 unsigned short version;
 const char * output_dir;
 const char * connectparms;
 const char * _unused0;
 MSG_CALLBACK confirmrtn;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 MSG_CALLBACK statusrtn;
 a_bit_field backup_database : 1;
 a_bit_field backup_logfile : 1;
 a_bit_field _unused1 : 1;
 a_bit_field no_confirm : 1;
 a_bit_field quiet : 1;
 a_bit_field rename_log : 1;
 a_bit_field truncate_log : 1;
 a_bit_field rename_local_log: 1;
 const char * hotlog_filename;
 char backup_interrupted;
 a_bit_field server_backup : 1;
 a_chkpt_log_type chkpt_log_type;
 a_sql_uint32 page_blocksize;
} a_backup_db;

Members

Member Description

Version DBTools version number.

output_dir Path to the output directory. For example:

"c:\backup"

Database Tools Interface

740 Copyright © 2007, iAnywhere Solutions, Inc.

Member Description

connectparms Parameters needed to connect to the database. They take the form of con-
nection strings, such as the following:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db"

The database server would be started by the connection string START pa-
rameter. For example:

"START=d:\sqlany10\win32\dbeng10.exe"

A full example connection string including the START parameter:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db;START=d:
\sqlany10\win32\dbeng10.exe"

For a list of connection parameters, see “Connection parameters” [SQL
Anywhere Server - Database Administration].

confirmrtn Callback routine for confirming an action.

errorrtn Callback routine for handling an error message.

msgrtn Callback routine for handling an information message.

statusrtn Callback routine for handling a status message.

backup_database Back up the database file (1) or not (0).

backup_logfile Back up the transaction log file (1) or not (0).

_unused1 (unused)

no_confirm Operate with (0) or without (1) confirmation.

quiet Operate without printing messages (1), or print messages (0).

rename_log Rename the transaction log.

truncate_log Delete the transaction log.

rename_local_log Rename the local backup of the transaction log.

hotlog_filename File name for the live backup file.

backup_interrupted Indicates that the operation was interrupted.

server_backup When set to 1, indicates backup on server using BACKUP DATABASE.
Equivalent to dbbackup -s option.

chkpt_log_type Control copying of checkpoint log. Must be one of
BACKUP_CHKPT_LOG_COPY, BACKUP_CHKPT_LOG_NOCOPY,
BACKUP_CHKPT_LOG_RECOVER,BACKUP_CHKPT_LOG_AUTO,
or BACKUP_CHKPT_LOG_DEFAULT.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 741

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Member Description

page_blocksize Number of pages in data blocks. Equivalent to dbbackup -b option. If set to
0, then the default is 128.

See also
♦ “DBBackup function” on page 731
♦ “a_db_version enumeration” on page 778
♦ “Using callback functions” on page 725.

a_change_log structure

Holds the information needed to perform dblog tasks using the DBTools library.

Syntax
typedef struct a_change_log {
 unsigned short version;
 const char * dbname;
 const char * logname;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;

 a_bit_field query_only : 1;
 a_bit_field quiet : 1;
 a_bit_field _unused1 : 1;
 a_bit_field change_mirrorname : 1;
 a_bit_field change_logname : 1;
 a_bit_field ignore_ltm_trunc : 1;
 a_bit_field ignore_remote_trunc : 1;
 a_bit_field set_generation_number : 1;
 a_bit_field ignore_dbsync_trunc : 1;

 const char * mirrorname;
 unsigned short generation_number;
 const char * _unused2;
 char * zap_current_offset;
 char * zap_starting_offset;
 char * encryption_key;
} a_change_log;

Members

Member Description

version DBTools version number.

dbname Database file name.

logname The name of the transaction log. If set to NULL, there is no log.

errorrtn Callback routine for handling an error message.

Database Tools Interface

742 Copyright © 2007, iAnywhere Solutions, Inc.

Member Description

msgrtn Callback routine for handling an information message.

query_only If 1, just display the name of the transaction log. If 0, permit changing
of the log name.

quiet Operate without printing messages (1), or print messages (0).

change_mirrorname If 1, permit changing of the log mirror name.

change_logname If 1, permit changing of the transaction log name.

ignore_ltm_trunc When using the Log Transfer Manager, performs the same function as
the dbcc settrunc('ltm', 'gen_id', n) Replication Server function.

For information on dbcc, see your Replication Server documentation.

ignore_remote_trunc For SQL Remote. Resets the offset kept for the purposes of the
delete_old_logs option, allowing transaction logs to be deleted when
they are no longer needed.

set_generation_number When using the Log Transfer Manager, used after a backup is restored
to set the generation number.

ignore_dbsync_trunc When using dbmlsync, resets the offset kept for the purposes of the
delete_old_logs option, allowing transaction logs to be deleted when
they are no longer needed.

mirrorname The new name of the transaction log mirror file.

generation_number The new generation number. Used together with set_generation_num-
ber.

zap_current_offset Change the current offset to the specified value. This is for use only in
resetting a transaction log after an unload and reload to match dbremote
or dbmlsync settings.

zap_starting_offset Change the starting offset to the specified value. This is for use only in
resetting a transaction log after an unload and reload to match dbremote
or dbmlsync settings.

encryption_key The encryption key for the database file.

See also
♦ “DBChangeLogName function” on page 731
♦ “Using callback functions” on page 725.

a_create_db structure

Holds the information needed to create a database using the DBTools library.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 743

Syntax
typedef struct a_create_db {
 unsigned short version;
 const char *dbname;
 const char *logname;
 const char *startline;
 unsigned short page_size;
 const char *default_collation;
 const char *encoding;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 short _unused1;
 char verbose;

 a_bit_field blank_pad : 2;
 a_bit_field respect_case : 1;
 a_bit_field encrypt : 1;
 a_bit_field _unused2 : 1;
 a_bit_field _unused3 : 1;
 a_bit_field _unused4 : 1;
 a_bit_field avoid_view_collisions : 1;
 short _unused5;
 const char *_unused6;
 const char *_mirrorname;
 const char *_unused7;
 a_bit_field _unused8 : 1;
 a_bit_field jconnect : 1;
 const char *data_store_type;
 const char *encryption_key;
 const char *encryption_algorithm;
 const char *_unused9;
 a_bit_field _unused10 : 1;
 a_bit_field checksum : 1;
 a_bit_field encrypted_tables : 1;
 char accent_sensitivity;
 const char *nchar_collation;
 char *dba_uid;
 char *dba_pwd;
 unsigned int db_size;
 int db_size_unit;
} a_create_db;

Members

Member Description

version DBTools version number.

dbname Database file name.

logname New transaction log name.

Database Tools Interface

744 Copyright © 2007, iAnywhere Solutions, Inc.

Member Description

startline The command line used to start the database server. For example:

"d:\sqlany10\win32\dbeng10.exe"

The default start line is used if this member is NULL

The following is the default START parameter:

"dbeng10 -gp page_size -c 10M"

page_size The page size of the database.

default_collation The collation for the database.

errorrtn Callback routine for handling an error message.

msgrtn Callback routine for handling an information message.

verbose See “Verbosity enumeration” on page 781.

blank_pad Must be one of NO_BLANK_PADDING or BLANK_PADDING. Treat
blanks as significant in string comparisons and hold index information to
reflect this. See “Blank padding enumeration” on page 777.

respect_case Make string comparisons case sensitive and hold index information to
reflect this.

encrypt When set, generates the ENCRYPTED ON or, when encrypted_tables is
also set, the ENCRYPTED TABLES ON clause.

avoid_view_collisions Omit the generation of Watcom SQL compatibility views
SYS.SYSCOLUMNS and SYS.SYSINDEXES.

mirrorname Transaction log mirror name.

jconnect Include system procedures needed for jConnect.

data_store_type Reserved. Use NULL.

encryption_key The encryption key for the database file. Used with encrypt, it generates
the KEY clause.

encryption_algorithm The encryption algorithm (AES or AES_FIPS). Used with encrypt and
encryption_key, it generates the ALGORITHM clause.

checksum Set to 1 for ON or 0 for OFF. Generates one of CHECKSUM ON or
CHECKSUM OFF clauses.

encrypted_tables Set to 1 for encrypted tables. Used with encrypt, generates the EN-
CRYPTED TABLE ON clause instead of the ENCRYPTED ON clause.

accent_sensitivity One of y, n, or f (yes, no, french). Generates one of the ACCENT RE-
SPECT, ACCENT IGNORE or ACCENT FRENCH clauses.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 745

Member Description

nchar_collation If not NULL, use to generate the NCHAR COLLATION clause with
specified string.

dba_uid When not NULL, generates the DBA USER xxx clause.

dba_pwd When not NULL, generates the DBA PASSWORD xxx clause.

db_size When not 0, generates the DATABASE SIZE clause.

db_size_unit Used with db_size, must be one of DBSP_UNIT_NONE,
DBSP_UNIT_PAGES, DBSP_UNIT_BYTES, DBSP_UNIT_KILO-
BYTES, DBSP_UNIT_MEGABYTES, DBSP_UNIT_GIGABYTES,
DBSP_UNIT_TERABYTES. When not DBSP_UNIT_NONE, it gener-
ates the corresponding keyword (for example, DATABASE SIZE 10 MB
is generated when db_size is 10 and db_size_unit is
DBSP_UNIT_MEGABYTES). See “Database size unit enumera-
tion” on page 778.

See also
♦ “DBCreate function” on page 732
♦ “Using callback functions” on page 725.

a_db_info structure

Holds the information needed to return dbinfo information using the DBTools library.

Syntax
typedef struct a_db_info {
 unsigned short version;
 MSG_CALLBACK errorrtn;
 const char * _unused0;
 unsigned short dbbufsize;
 char * dbnamebuffer;
 unsigned short logbufsize;
 char * lognamebuffer;
 unsigned short _unused1;
 char * _unused2;
 a_bit_field quiet : 1;
 a_bit_field _unused3 : 1;
 a_sysinfo sysinfo;
 a_sql_uint32 free_pages;
 a_bit_field _unused4 : 1;

 const char * connectparms;
 const char * _unused5;
 MSG_CALLBACK msgrtn;
 MSG_CALLBACK statusrtn;
 a_bit_field page_usage : 1;
 a_table_info * totals;
 a_sql_uint32 file_size;
 a_sql_uint32 unused_pages;
 a_sql_uint32 other_pages;

Database Tools Interface

746 Copyright © 2007, iAnywhere Solutions, Inc.

 unsigned short mirrorbufsize;
 char * mirrornamebuffer;
 const char * _unused6;
 char * collationnamebuffer;
 unsigned short collationnamebufsize;
 char * _unused7;
 unsigned short _unused8;
 a_bit_field checksum : 1;
 a_bit_field encrypted_tables : 1;
 a_sql_uint32 bit_map_pages;
} a_db_info;

Members

Member Description

version DBTools version number.

errortrn Callback routine for handling an error message.

dbbufsize The length of the dbnamebuffer member.

dbnamebuffer Database file name.

logbufsize The length of the lognamebuffer member.

lognamebuffer Transaction log file name.

_unused1 (unused)

_unused2 (unused)

quiet Operate without confirming messages.

sysinfo Pointer to a_sysinfo structure.

free_pages Number of free pages.

connectparms Parameters needed to connect to the database. They take the form of con-
nection strings, such as the following:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db"

The database server would be started by the connection string START
parameter. For example:

"START=d:\sqlany10\win32\dbeng10.exe"

A full example connection string including the START parameter:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db;START=d:
\sqlany10\win32\dbeng10.exe"

For a list of connection parameters, see “Connection parameters” [SQL
Anywhere Server - Database Administration].

msgrtn Callback routine for handling an information message.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 747

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Member Description

statusrtn Callback routine for handling a status message.

page_usage 1 to report page usage statistics, otherwise 0.

totals Pointer to a_table_info structure.

file_size Size of database file.

unused_pages Number of unused free pages.

other_pages Number of pages that are not table pages, index pages, free pages, or
bitmap pages.

mirrorbufsize The length of the mirrornamebuffer member.

mirrornamebuffer The transaction log mirror name.

collationnamebuffer The database collation name and label (the maximum size is 128+1).

collationnamebufsize The length of the collationnamebuffer member.

checksum Database page checksums enabled if 1, disabled if 0.

encrypted_tables Encrypted tables are supported if 1, disabled if 0.

bit_map_pages Number of bitmap pages in the database.

See also
♦ “DBInfo function” on page 733
♦ “Using callback functions” on page 725.

a_db_version_info structure

Holds information regarding which version of SQL Anywhere was used to create the database.

Syntax
typedef struct a_db_version_info {
 unsigned short version;
 const char *filename;
 a_db_version created_version;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 } a_db_version_info;

Members

Member Description

version DBTools version number.

Database Tools Interface

748 Copyright © 2007, iAnywhere Solutions, Inc.

Member Description

filename Name of the database file to check.

created_version Set to a value of type a_db_version indicating the server version that create the
database file. See “a_db_version enumeration” on page 778.

errorrtn Callback routine for handling an error message.

msgrtn Callback routine for handling an information message.

See also
♦ “DBCreatedVersion function” on page 732
♦ “a_db_version enumeration” on page 778
♦ “Using callback functions” on page 725

a_dblic_info structure

Holds information containing licensing information. You must use this information only in a manner
consistent with your license agreement.

Syntax
typedef struct a_dblic_info {
 unsigned short version;
 char *exename;
 char *username;
 char *compname;
 char *_unused1;
 a_sql_int32 nodecount;
 a_sql_int32 conncount;
 a_license_type type;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 a_bit_field quiet : 1;
 a_bit_field query_only : 1;
 char *installkey;
} a_dblic_info;

Members

Member Description

version DBTools version number.

exename Name of the server executable or license file.

username User name for licensing.

compname Company name for licensing.

nodecount Number of nodes licensed.

conncount Must be 1000000L.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 749

Member Description

type See lictype.h for values.

errorrtn Callback routine for handling an error message.

msgrtn Callback routine for handling an information message.

quiet Operate without printing messages (1), or print messages (0).

query_only If 1, just display the license information. If 0, permit changing the information.

installkey Internal use only. Set to NULL.

a_dbtools_info structure

Holds the information needed to start and finish working with the DBTools library.

Syntax
typedef struct a_dbtools_info {
 MSG_CALLBACK errorrtn;
} a_dbtools_info;

Members

Member Description

errorrtn Callback routine for handling an error message.

See also
♦ “DBToolsFini function” on page 736
♦ “DBToolsInit function” on page 736
♦ “Using callback functions” on page 725.

an_erase_db structure

Holds information needed to erase a database using the DBTools library.

Syntax
typedef struct an_erase_db {
 unsigned short version;
 const char * dbname;
 MSG_CALLBACK confirmrtn;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 a_bit_field quiet : 1;
 a_bit_field erase : 1;
 const char * encryption_key;
} an_erase_db;

Database Tools Interface

750 Copyright © 2007, iAnywhere Solutions, Inc.

Members

Member Description

version DBTools version number.

dbname Database file name to erase.

confirmrtn Callback routine for confirming an action.

errorrtn Callback routine for handling an error message.

msgrtn Callback routine for handling an information message.

quiet Operate without printing messages (1), or print messages (0).

erase Erase without confirmation (1) or with confirmation (0).

encryption_key The encryption key for the database file.

See also
♦ “DBErase function” on page 733
♦ “Using callback functions” on page 725.

a_name structure

Holds a linked list of names. This is used by other structures requiring lists of names.

Syntax
typedef struct a_name {
 struct a_name *next;
 char name[1];
} a_name, * p_name;

Members

Member Description

next Pointer to the next a_name structure in the list.

name The name.

See also
♦ “a_translate_log structure” on page 765
♦ “a_validate_db structure” on page 775
♦ “an_unload_db structure” on page 770

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 751

a_remote_sql structure

Holds information needed for the dbremote utility using the DBTools library.

Syntax
typedef struct a_remote_sql {
 short version;
 MSG_CALLBACK confirmrtn;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 MSG_QUEUE_CALLBACK msgqueuertn;
 char * connectparms;
 char * transaction_logs;
 a_bit_field receive : 1;
 a_bit_field send : 1;
 a_bit_field verbose : 1;
 a_bit_field deleted : 1;
 a_bit_field apply : 1;
 a_bit_field batch : 1;
 a_bit_field more : 1;
 a_bit_field triggers : 1;
 a_bit_field debug : 1;
 a_bit_field rename_log : 1;
 a_bit_field latest_backup : 1;
 a_bit_field scan_log : 1;
 a_bit_field link_debug : 1;
 a_bit_field full_q_scan : 1;
 a_bit_field no_user_interaction : 1;
 a_bit_field _unused1 : 1;
 a_sql_uint32 max_length;
 a_sql_uint32 memory;
 a_sql_uint32 frequency;
 a_sql_uint32 threads;
 a_sql_uint32 operations;
 char * queueparms;
 char * locale;
 a_sql_uint32 receive_delay;
 a_sql_uint32 patience_retry;
 MSG_CALLBACK logrtn;
 a_bit_field use_hex_offsets : 1;
 a_bit_field use_relative_offsets : 1;
 a_bit_field debug_page_offsets : 1;
 a_sql_uint32 debug_dump_size;
 a_sql_uint32 send_delay;
 a_sql_uint32 resend_urgency;

 char * include_scan_range;
 SET_WINDOW_TITLE_CALLBACK set_window_title_rtn;
 char * default_window_title;
 MSG_CALLBACK progress_msg_rtn;
 SET_PROGRESS_CALLBACK progress_index_rtn;
 char ** argv;
 a_sql_uint32 log_size;
 char * encryption_key;
 char * log_file_name;
 a_bit_field truncate_remote_output_file:1;
 char * remote_output_file_name;
 MSG_CALLBACK warningrtn;

Database Tools Interface

752 Copyright © 2007, iAnywhere Solutions, Inc.

 char * mirror_logs;
} a_remote_sql;

Members

Member Description

version DBTools version number.

confirmrtn Pointer to a function that prints the given message and accepts a yes
or no response returning TRUE if yes and FALSE if no.

errorrtn Pointer to a function that prints the given error message.

msgrtn Pointer to a function that prints the given informational (non-error)
message.

msgqueuertn Pointer to a function that should sleep for the number of milliseconds
passed to it. This function is called with 0 when DBRemoteSQL is
busy, but wants to allow the upper layer to process messages. This
routine should return MSGQ_SLEEP_THROUGH normally, or
MSGQ_SHUTDOWN_REQUESTED to stop SQL Remote pro-
cessing.

connectparms Parameters needed to connect to the database. Corresponds to the
dbremote -c option. They take the form of connection strings, such
as the following:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db"

The database server would be started by the connection string
START parameter. For example:

"START=d:\sqlany10\win32\dbeng10.exe"

A full example connection string including the START parameter:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db;START=d:
\sqlany10\win32\dbeng10.exe"

For a list of connection parameters, see “Connection parame-
ters” [SQL Anywhere Server - Database Administration].

transaction_logs Pointer to a string naming the directory with offline transaction logs.
Corresponds to the transaction_logs_directory argument of dbre-
mote.

receive If receive is true, messages are received. Corresponds to the dbre-
mote -r option.

If receive and send are both false then both are assumed true. It is
recommended to set both to false.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 753

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Member Description

send If send is true, messages are sent. Corresponds to the dbremote -s
option.

If receive and send are both false then both are assumed true. It is
recommended to set both to false.

verbose When true, extra information is printed. Corresponds to the dbremote
-v option.

deleted Should be set to true. If false, messages are not deleted after they are
applied. Corresponds to dbremote -p option.

apply Should be set to true. If false, messages are scanned, but not applied.
Corresponds to dbremote -a option.

batch If true, force exit after applying messages and scanning log. Same as
at least one user having 'always' send time. If false, allow run mode
to be determined by remote users' send times.

more Should be set to true.

triggers Should be set to false in most cases; otherwise, true means DBRe-
moteSQL replicates trigger actions. Corresponds to the dbremote -t
option.

debug Include debugging output if set true.

rename_log If set to true, logs are renamed and restarted.

latest_backup If set to true, only process logs that are backed up. Don't send oper-
ations from a live log. Corresponds to the dbremote -u option.

scan_log Reserved; set to false.

link_debug If set to true, debugging is turned on for links.

full_q_scan Reserved; set to false.

no_user_interaction If set to true, no user interaction is requested.

max_length Set to the maximum length (in bytes) a message can have. This affects
sending and receiving. The recommended value is 50000. Corre-
sponds to the dbremote -l option.

memory Set to the maximum size (in bytes) of memory buffers to use while
building messages to send. The recommended value is at least 2 *
1024 * 1024. Corresponds to the dbremote -m option.

frequency Set the polling frequency for incoming messages. This value should
be set to the max(1, receive_delay/60). See receive_delay below.

Database Tools Interface

754 Copyright © 2007, iAnywhere Solutions, Inc.

Member Description

threads Set the number of worker threads that should be used to apply mes-
sages. This value must not exceed 50. Corresponds to the dbremote
-w option.

operations This value is used when applying messages. Commits are ignored
until DBRemoteSQL has at least this number of operations(inserts,
deletes, updates) that are uncommitted. Corresponds to the dbremote
-g option.

queueparms Reserved; set to NULL.

locale Reserved; set to NULL.

receive_delay Set this to the time (in seconds) to wait between polls for new in-
coming messages. The recommended value is 60. Corresponds to the
dbremote -rd option.

patience_retry Set this to the number of polls for incoming messages that DBRe-
moteSQL should wait before assuming that a message it is expecting
is lost. For example, if patience_retry is 3 then DBRemoteSQL tries
up to three times to receive the missing message. Afterwards, it sends
a resend request. The recommended value is 1. Corresponds to the
dbremote -rp option.

logrtn Pointer to a function that prints the given message to a log file. These
messages do not need to be seen by the user.

use_hex_offsets Set to true if you want log offsets to be shown in hexadecimal nota-
tion; otherwise decimal notation will be used.

use_relative_offsets Set to true if you want log offsets to be displayed as relative to the
start of the current log file. Set to false if you want log offsets from
the beginning of time to be displayed.

debug_page_offsets Reserved; set to false.

debug_dump_size Reserved; set to 0.

send_delay Set the time (in seconds) between scans of the log file for new op-
erations to send. Set to zero to allow DBRemoteSQL to choose a
good value based on user send times. Corresponds to the dbremote -
sd option.

resend_urgency Set the time (in seconds) that DBRemoteSQL waits after seeing that
a user needs a rescan before performing a full scan of the log. Set to
zero to allow DBRemoteSQL to choose a good value based on user
send times and other information it has collected. Corresponds to the
dbremote -ru option.

include_scan_range Reserved; set to NULL.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 755

Member Description

set_window_title_rtn Pointer to a function that resets the title of the window (Windows
only). The title could be "database_name (receiving, scanning, or
sending) - default_window_title".

default_window_title A pointer to the default window title string.

progress_msg_rtn Pointer to a function that displays a progress message.

progress_index_rtn Pointer to a function that updates the state of the progress bar. This
function takes two unsigned integer arguments index and max. On
the first call, the values are the minimum and maximum values (for
example, 0, 100). On subsequent calls, the first argument is the cur-
rent index value (for example, between 0 and 100) and the second
argument is always 0.

argv Pointer to a parsed command line (a vector of pointers to strings). If
not NULL, then DBRemoteSQL will call a message routine to dis-
play each command line argument except those prefixed with -c, -
cq, or -ek.

log_size DBRemoteSQL renames and restarts the online transaction log when
the size of the online transaction log is greater than this value. Cor-
responds to the dbremote -x option.

encryption_key Pointer to an encryption key. Corresponds to the dbremote -ek op-
tion.

log_file_name Pointer to the name of the DBRemoteSQL output log to which the
message callbacks print their output. If send is true, the error log is
sent to the consolidated (unless this pointer is NULL).

truncate_remote_output_file Set to true to cause the remote output file to be truncated rather than
appended to. See below. Corresponds to the dbremote -rt option.

remote_output_file_name Pointer to the name of the DBRemoteSQL remote output file. Cor-
responds to the dbremote -ro or -rt option.

warningrtn Pointer to a function that prints the given warning message. If NULL,
the errorrtn function is called instead.

mirror_logs Pointer to the name of the directory containing offline mirror trans-
action logs. Corresponds to the dbremote -ml option.

The dbremote tool sets the following defaults before processing any command-line options:

♦ version = DB_TOOLS_VERSION_NUMBER
♦ argv = (argument vector passed to application)
♦ deleted = TRUE
♦ apply = TRUE
♦ more = TRUE
♦ link_debug = FALSE
♦ max_length = 50000

Database Tools Interface

756 Copyright © 2007, iAnywhere Solutions, Inc.

♦ memory = 2 * 1024 * 1024
♦ frequency = 1
♦ threads = 0
♦ receive_delay = 60
♦ send_delay = 0
♦ log_size = 0
♦ patience_retry = 1
♦ resend_urgency = 0
♦ log_file_name = (set from command line)
♦ truncate_remote_output_file = FALSE
♦ remote_output_file_name = NULL
♦ no_user_interaction = TRUE (if user interface is not available)
♦ errorrtn = (address of an appropriate routine)
♦ msgrtn = (address of an appropriate routine)
♦ confirmrtn = (address of an appropriate routine)
♦ msgqueuertn = (address of an appropriate routine)
♦ logrtn = (address of an appropriate routine)
♦ warningrtn = (address of an appropriate routine)
♦ set_window_title_rtn = (address of an appropriate routine)
♦ progress_msg_rtn = (address of an appropriate routine)
♦ progress_index_rtn = (address of an appropriate routine)

See also
♦ “DBRemoteSQL function” on page 735
♦ “DBTools Interface for dbmlsync” [MobiLink - Client Administration]

a_sync_db structure

Holds information needed for the dbmlsync utility using the DBTools library.

Syntax
typedef struct a_sync_db {
 unsigned short version;
 char * connectparms;
 char * publication;
 const char * offline_dir;
 char * extended_options;
 char * script_full_path;
 const char * include_scan_range;
 const char * raw_file;
 MSG_CALLBACK confirmrtn;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 MSG_CALLBACK logrtn;
 a_sql_uint32 debug_dump_size;
 a_sql_uint32 dl_insert_width;
 a_bit_field verbose : 1;
 a_bit_field debug : 1;
 a_bit_field debug_dump_hex : 1;
 a_bit_field debug_dump_char : 1;
 a_bit_field debug_page_offsets : 1;

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 757

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbmnen10.pdf

 a_bit_field use_hex_offsets : 1;
 a_bit_field use_relative_offsets : 1;
 a_bit_field output_to_file : 1;
 a_bit_field output_to_mobile_link : 1;
 a_bit_field dl_use_put : 1;
 a_bit_field dl_use_upsert : 1;
 a_bit_field kill_other_connections : 1;
 a_bit_field retry_remote_behind : 1;
 a_bit_field ignore_debug_interrupt : 1;
 SET_WINDOW_TITLE_CALLBACK set_window_title_rtn;
 char * default_window_title;
 MSG_QUEUE_CALLBACK msgqueuertn;
 MSG_CALLBACK progress_msg_rtn;
 SET_PROGRESS_CALLBACK progress_index_rtn;
 char ** argv;
 char ** ce_argv;
 a_bit_field connectparms_allocated : 1;
 a_bit_field entered_dialog : 1;
 a_bit_field used_dialog_allocation : 1;
 a_bit_field ignore_scheduling : 1;
 a_bit_field ignore_hook_errors : 1;
 a_bit_field changing_pwd : 1;
 a_bit_field prompt_again : 1;
 a_bit_field retry_remote_ahead : 1;
 a_bit_field rename_log : 1;
 a_bit_field hide_conn_str : 1;
 a_bit_field hide_ml_pwd : 1;
 a_sql_uint32 dlg_launch_focus;
 char * mlpassword;
 char * new_mlpassword;
 char * verify_mlpassword;
 a_sql_uint32 pub_name_cnt;
 char ** pub_name_list;
 USAGE_CALLBACK usage_rtn;
 a_sql_uint32 log_size;
 a_sql_uint32 hovering_frequency;
 a_bit_short ignore_hovering : 1;
 a_bit_short verbose_upload : 1;
 a_bit_short verbose_upload_data : 1;
 a_bit_short verbose_download : 1;
 a_bit_short verbose_download_data : 1;
 a_bit_short autoclose : 1;
 a_bit_short ping : 1;
 a_bit_short _unused : 9;
 char * encryption_key;
 a_syncpub * upload_defs;
 char * log_file_name;
 char * user_name;
 a_bit_short verbose_minimum : 1;
 a_bit_short verbose_hook : 1;
 a_bit_short verbose_row_data : 1;
 a_bit_short verbose_row_cnts : 1;
 a_bit_short verbose_option_info : 1;
 a_bit_short strictly_ignore_trigger_ops : 1;
 a_bit_short _unused2 : 10;
 a_sql_uint32 est_upld_row_cnt;
 STATUS_CALLBACK status_rtn;
 MSG_CALLBACK warningrtn;
 char ** ce_reproc_argv;
 a_bit_short upload_only : 1;
 a_bit_short download_only : 1;

Database Tools Interface

758 Copyright © 2007, iAnywhere Solutions, Inc.

 a_bit_short allow_schema_change : 1;
 a_bit_short dnld_gen_num : 1;
 a_bit_short _unused3 :12;
 const char * apply_dnld_file;
 const char * create_dnld_file;
 char * sync_params;
 const char * dnld_file_extra;
 COMServer * com_server;
 a_bit_short trans_upload : 1;
 a_bit_short continue_download : 1;
 a_bit_short lite_blob_handling : 1;
 a_sql_uint32 dnld_read_size;
 a_sql_uint32 dnld_fail_len;
 a_sql_uint32 upld_fail_len;
 a_bit_short persist_connection :1;
 a_bit_short verbose_protocol :1;
 a_bit_short no_stream_compress :1;
 a_bit_short _unused4 :13;
 char _unused5;
} a_sync_db;

Members

Member Description

version DBTools version number.

connectparms Parameters needed to connect to the database. They take the form
of connection strings, such as the following:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db"

The database server would be started by the connection string
START parameter. For example:

"START=d:\sqlany10\win32\dbeng10.exe"

A full example connection string including the START parameter:

"UID=DBA;PWD=sql;DBF=samples-dir
\demo.db;START=d:\sqlany10\win32\dbeng10.exe"

For a list of connection parameters, see “Connection parame-
ters” [SQL Anywhere Server - Database Administration].

publication Deprecated; use NULL.

offline_dir Log directory, as specified on the command line after the options.

extended_options Extended options, as specified with -e.

script_full_path Deprecated; use NULL.

include_scan_range Reserved; use NULL.

raw_file Reserved; use NULL.

confirmrtn Reserved; use NULL.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 759

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Member Description

errorrtn Function to display error messages.

msgrtn Function to write messages to the user interface and, optionally,
to the log file.

logrtn Function to write messages only to the log file.

debug_dump_size Reserved; use 0.

dl_insert_width Reserved; use 0.

verbose Deprecated; use 0.

debug Reserved; use 0.

debug_dump_hex Reserved; use 0.

debug_dump_char Reserved; use 0.

debug_page_offsets Reserved; use 0.

use_hex_offsets Reserved; use 0.

use_relative_offsets Reserved; use 0.

output_to_file Reserved; use 0.

output_to_mobile_link Reserved; use 1.

dl_use_put Reserved; use 0.

dl_use_upsert Reserved; use 0.

kill_other_connections TRUE if -d option is specified.

retry_remote_behind TRUE if -r or -rb is specified.

ignore_debug_interrupt Reserved; use 0.

set_window_title_rtn Function to call to change the title of the dbmlsync window (Win-
dows only).

default_window_title Name of the program to display in the window caption (for ex-
ample, DBMLSync).

Database Tools Interface

760 Copyright © 2007, iAnywhere Solutions, Inc.

Member Description

msgqueuertn Function called by DBMLSync when it wants to sleep. The pa-
rameter specifies the desired sleep period in milliseconds. The
function should return the following, as defined in dllapi.h.

♦ MSGQ_SLEEP_THROUGH indicates that the routine slept
for the requested number of milliseconds. In most cases this is
the value you should return.

♦ MSGQ_SHUTDOWN_REQUESTED indicates that you
would like the synchronization to terminate as soon as possi-
ble.

♦ MSGQ_SYNC_REQUESTED indicates that the routine slept
for less than the requested number of milliseconds and that the
next synchronization should begin immediately if a synchro-
nization is not currently in progress.

progress_msg_rtn Function to change the text in the status window, above the
progress bar.

progress_index_rtn Function to update the state of the progress bar.

argv argv array for this run; the last element of the array must be NULL.

ce_argv Reserved; use NULL.

connectparms_allocated Reserved; use 0.

entered_dialog Reserved; use 0.

used_dialog_allocation Reserved; use 0.

ignore_scheduling TRUE if -is was specified.

ignore_hook_errors TRUE if -eh was specified.

changing_pwd TRUE if -mn was specified.

prompt_again Reserved—use 0.

retry_remote_ahead TRUE if -ra was specified.

rename_log TRUE if -x was specified, in which case the log file is renamed
and restarted.

hide_conn_str TRUE unless -vc was specified.

hide_ml_pwd TRUE unless -vp was specified.

dlg_launch_focus Reserved; use 0.

mlpassword MobiLink password specified with -mp; NULL otherwise.

new_mlpassword New MobiLink password specified with -mn; NULL otherwise.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 761

Member Description

verify_mlpassword Reserved; use NULL.

pub_name_cnt Deprecated; use 0.

pub_name_list Deprecated; use NULL.

usage_rtn Reserved; use NULL.

log_size Log size in bytes, as specified with -x; otherwise 0.

hovering_frequency Hovering frequency in seconds; as set with -pp.

ignore_hovering True if -p was specified.

verbose_upload True if -vu was specified.

verbose_upload_data Reserved; use 0.

verbose_download Reserved; use 0.

verbose_download_data Reserved; use 0.

autoclose TRUE if -k was specified.

ping TRUE if -pi was specified.

encryption_key Database key, as specified with -ek.

upload_defs Linked list of publications to be uploaded together—see
a_syncpub.

log_file_name output log file name specified with -o or -ot.

user_name MobiLink user name, specified with -u.

verbose_minimum TRUE if -v was specified.

verbose_hook TRUE if -vs was specified.

verbose_row_data TRUE if -vr was specified.

verbose_row_cnts TRUE if -vn was specified.

verbose_option_info TRUE if -vo was specified.

strictly_ignore_trigger_ops Reserved; use 0.

est_upld_row_cnt Estimated number of rows to upload, specified with -urc.

status_rtn Reserved; use NULL.

warningrtn Function to display warning messages.

Database Tools Interface

762 Copyright © 2007, iAnywhere Solutions, Inc.

Member Description

ce_reproc_argv Reserved, use NULL.

upload_only True if -uo was specified.

download_only TRUE if -ds was specified.

allow_schema_change TRUE if -sc was specified.

dnld_gen_num TRUE if -bg was specified.

apply_dnld_file File specified with -ba; otherwise NULL.

create_dnld_file File specified with -bc; otherwise NULL.

sync_params User authentication parameters—specified with -ap.

dnld_file_extra String specified with -be.

com_server Reserved; use NULL.

trans_upload TRUE if -tu was specified.

continue_download TRUE if -dc is specified.

dnld_read_size Value specified by -drs option.

dnld_fail_len Reserved; use 0.

upld_fail_len Reserved; use 0.

persist_connection TRUE if -pp is specified on commandline.

verbose_protocol Reserved; use 0.

no_stream_compress Reserved; use 0.

Some members correspond to features accessible from the dbmlsync command line utility. Unused members
should be assigned the value 0, FALSE, or NULL, depending on data type.

See the dbtools.h header file for additional comments.

For more information, see “dbmlsync syntax” [MobiLink - Client Administration].

See also
♦ “DBTools Interface for dbmlsync” [MobiLink - Client Administration]
♦ “DBSynchronizeLog function” on page 735

a_syncpub structure

Holds information needed for the dbmlsync utility.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 763

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbmnen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbmnen10.pdf

Syntax
typedef struct a_syncpub {
 struct a_syncpub * next;
 char * pub_name;
 char * ext_opt;
 a_bit_field alloced_by_dbsync: 1;
} a_syncpub;

Members

Member Description

a_syncpub Pointer to the next node in the list, NULL for the last node.

pub_name Publication name(s) specified for this -n option. This is the exact string
following -n on the command line.

ext_opt Extended options specified using the -eu option.

alloced_by_dbsync Reserved; use FALSE.

See also
♦ “DBTools Interface for dbmlsync” [MobiLink - Client Administration]

a_sysinfo structure

Holds information needed for dbinfo and dbunload utilities using the DBTools library.

typedef struct a_sysinfo {
 a_bit_field valid_data : 1;
 a_bit_field blank_padding : 1;
 a_bit_field case_sensitivity : 1;
 a_bit_field encryption : 1;
 char default_collation[11];
 unsigned short page_size;
} a_sysinfo;

Members

Member Description

valid_date Bit-field indicating whether the following values are set.

blank_padding 1 if blank padding is used in this database, 0 otherwise.

case_sensitivity 1 if the database is case sensitive, 0 otherwise.

encryption 1 if the database is encrypted, 0 otherwise.

default_collation The collation sequence for the database.

page_size The page size for the database.

Database Tools Interface

764 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbmnen10.pdf

See also
♦ “a_db_info structure” on page 746

a_table_info structure

Holds information about a table needed as part of the a_db_info structure.

Syntax
typedef struct a_table_info {
 struct a_table_info *next;
 a_sql_uint32 table_id;
 a_sql_uint32 table_pages;
 a_sql_uint32 index_pages;
 a_sql_uint32 table_used;
 a_sql_uint32 index_used;
 char * table_name;
 a_sql_uint32 table_used_pct;
 a_sql_uint32 index_used_pct;
} a_table_info;

Members

Member Description

next Next table in the list.

table_id ID number for this table.

table_pages Number of table pages.

index_pages Number of index pages.

table_used Number of bytes used in table pages.

index_used Number of bytes used in index pages.

table_name Name of the table.

table_used_pct Table space utilization as a percentage.

index_used_pct Index space utilization as a percentage.

See also
♦ “a_db_info structure” on page 746

a_translate_log structure

Holds information needed for transaction log translation using the DBTools library.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 765

Syntax
typedef struct a_translate_log {
 unsigned short version;
 const char * logname;
 const char * sqlname;
 p_name userlist;
 MSG_CALLBACK confirmrtn;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 char userlisttype;

 a_bit_field remove_rollback : 1;
 a_bit_field ansi_sql : 1;
 a_bit_field since_checkpoint: 1;
 a_bit_field omit_comments : 1;
 a_bit_field replace : 1;
 a_bit_field debug : 1;
 a_bit_field include_trigger_trans : 1;
 a_bit_field comment_trigger_trans : 1;
 a_sql_uint32 since_time;
 const char * connectparms;
 MSG_CALLBACK logrtn;

 const char * _unused1;
 const char * _unused2;
 a_sql_uint32 debug_dump_size;
 a_bit_field debug_sql_remote : 1;
 a_bit_field debug_dump_hex : 1;
 a_bit_field debug_dump_char : 1;
 a_bit_field debug_page_offsets : 1;
 a_bit_field _unused3 : 1;
 a_bit_field use_hex_offsets : 1;
 a_bit_field use_relative_offsets : 1;
 a_bit_field include_audit : 1;
 a_bit_field chronological_order : 1;
 a_bit_field force_recovery : 1;
 a_bit_field include_subsets : 1;
 a_bit_field force_chaining : 1;
 a_sql_uint32 recovery_ops;
 a_sql_uint32 recovery_bytes;

 const char * include_source_sets;
 const char * include_destination_sets;
 const char * include_scan_range;
 const char * repserver_users;
 const char * include_tables;
 const char * include_publications;
 const char * queueparms;
 a_bit_field generate_reciprocals :1;
 a_bit_field match_mode :1;
 const char * match_pos;
 MSG_CALLBACK statusrtn;
 const char * encryption_key;
 a_bit_field show_undo :1;
 a_bit_field quiet :1;
 const char * logs_dir;
} a_translate_log;

Database Tools Interface

766 Copyright © 2007, iAnywhere Solutions, Inc.

Members

Member Description

version DBTools version number.

logname Name of the transaction log file. If NULL, there is no log.

sqlname Name of the SQL output file. If NULL, then name is based on transaction log
file name (-n sets this string).

userlist A linked list of user names. Equivalent to -u user1,... or -x user1,... Select or
omit transactions for listed users.

confirmrtn Callback routine for confirming an action.

errorrtn Callback routine for handling an error message.

msgrtn Callback routine for handling an information message.

userlisttype Set to DBTRAN_INCLUDE_ALL unless you want to include or exclude a
list of users. DBTRAN_INCLUDE_SOME for -u, or
DBTRAN_EXCLUDE_SOME for -x.

remove_rollback Normally set to TRUE; Set to FALSE if you want to include rollback trans-
actions in output (equivalent to -a).

ansi_sql Set to TRUE if you want to produce ANSI standard SQL transactions (equiv-
alent to -s).

since_checkpoint Set to TRUE if you want output from most recent checkpoint (equivalent to -
f).

omit_comments Reserved; set to FALSE.

replace Replace existing SQL file without confirmation (equivalent to -y).

debug Reserved; set to FALSE.

include_trigger_trans Set TRUE to include trigger-generated transactions (equivalent to -g, -sr or -
t).

comment_trigger_trans Set TRUE to include trigger-generated transactions as comments (equivalent
to -z).

since_time Output from most recent checkpoint prior to time (-j <time> sets this). The
number of minutes since January 1, 0001.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 767

Member Description

connectparms Parameters needed to connect to the database. They take the form of connec-
tion strings, such as the following:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db"

The database server would be started by the connection string START pa-
rameter. For example:

"START=d:\sqlany10\win32\dbeng10.exe"

A full example connection string including the START parameter:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db;START=d:
\sqlany10\win32\dbeng10.exe"

For a list of connection parameters, see “Connection parameters” [SQL Any-
where Server - Database Administration].

logrtn Callback routine to write messages only to the log file.

debug_dump_size Reserved, use 0.

debug_sql_remote Reserved, use FALSE.

debug_dump_hex Reserved, use FALSE.

debug_dump_char Reserved, use FALSE.

debug_page_offsets Reserved, use FALSE.

use_hex_offsets Reserved, use FALSE.

use_relative_offsets Reserved, use FALSE.

include_audit Reserved, use FALSE.

chronological_order Reserved, use FALSE.

force_recovery Reserved, use FALSE.

include_subsets Reserved, use FALSE.

force_chaining Reserved, use FALSE.

recovery_ops Reserved, use 0.

recovery_bytes Reserved, use 0.

include_source_sets Reserved, use NULL.

include_destination_sets Reserved, use NULL.

include_scan_range Reserved, use NULL.

Database Tools Interface

768 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Member Description

repserver_users Reserved, use NULL.

include_tables Reserved, use NULL.

include_publications Reserved, use NULL.

queueparms Reserved, use NULL.

generate_reciprocals Reserved, use FALSE.

match_mode Reserved, use FALSE.

match_pos Reserved, use NULL.

statusrtn Callback routine for handling a status message.

encryption_key Specify database encryption key (-ek sets string).

show_undo Reserved, use FALSE.

quiet Set to TRUE to operate without printing messages (-y).

logs_dir Transaction logs directory (-m dir sets string); sqlname must be set and
connect_parms must be NULL.

The members correspond to features accessible from the dbtran utility.

See the dbtools.h header file for additional comments.

See also
♦ “DBTranslateLog function” on page 737
♦ “a_name structure” on page 751
♦ “dbtran_userlist_type enumeration” on page 779
♦ “Using callback functions” on page 725.

a_truncate_log structure

Holds information needed for transaction log truncation using the DBTools library.

Syntax
typedef struct a_truncate_log {
 unsigned short version;
 const char * connectparms;
 const char * _unused1;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 a_bit_field quiet : 1;
 a_bit_field server_backup : 1;
 char truncate_interrupted;
} a_truncate_log;

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 769

Members

Member Description

version DBTools version number.

connectparms Parameters needed to connect to the database. They take the form of con-
nection strings, such as the following:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db"

The database server would be started by the connection string START pa-
rameter. For example:

"START=d:\sqlany10\win32\dbeng10.exe"

A full example connection string including the START parameter:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db;START=d:
\sqlany10\win32\dbeng10.exe"

For a list of connection parameters, see “Connection parameters” [SQL
Anywhere Server - Database Administration].

errorrtn Callback routine for handling an error message.

msgrtn Callback routine for handling an information message.

quiet Operate without printing messages (1), or print messages (0).

server_backup When set to 1, indicates backup on server using BACKUP DATABASE.
Equivalent to dbbackup -s option.

truncate_interrupted Indicates that the operation was interrupted.

See also
♦ “DBTruncateLog function” on page 738
♦ “Using callback functions” on page 725.

an_unload_db structure

Holds information needed to unload a database using the DBTools library or extract a remote database for
SQL Remote. Those fields used by the dbxtract SQL Remote Extraction utility are indicated.

Syntax
typedef struct an_unload_db {
 unsigned short version;
 const char * connectparms;
 const char * startline;
 const char * temp_dir;
 const char * reload_filename;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 MSG_CALLBACK statusrtn;

Database Tools Interface

770 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

 MSG_CALLBACK confirmrtn;
 char unload_type;
 char verbose;

 a_bit_field unordered : 1;
 a_bit_field no_confirm : 1;
 a_bit_field use_internal_unload : 1;
 a_bit_field _unused1 : 1;
 a_bit_field extract : 1;
 a_bit_field table_list_provided : 1;
 a_bit_field exclude_tables : 1;
 a_bit_field more_flag_bits_present : 1;
 a_sysinfo sysinfo;

 const char * remote_dir;
 const char * _unused2;
 const char * subscriber_username;
 const char * _unused3;
 const char * _unused4;
 unsigned short isolation_level;
 a_bit_field start_subscriptions : 1;
 a_bit_field exclude_foreign_keys : 1;
 a_bit_field exclude_procedures : 1;
 a_bit_field exclude_triggers : 1;
 a_bit_field exclude_views : 1;
 a_bit_field isolation_set : 1;
 a_bit_field include_where_subscribe : 1;
 a_bit_field debug : 1;
 p_name table_list;
 a_bit_short escape_char_present : 1;
 a_bit_short _unused5 : 1;
 a_bit_short use_internal_reload : 1;
 unsigned short _unused6;

 char escape_char;
 char * reload_connectparms;
 char * reload_db_filename;
 a_bit_field _unused7 : 1;
 char unload_interrupted;
 a_bit_field replace_db : 1;
 const char * locale;
 const char * site_name;
 const char * template_name;
 a_bit_field preserve_ids : 1;
 a_bit_field exclude_hooks : 1;
 char * reload_db_logname;
 const char * encryption_key;
 const char * encryption_algorithm;
 a_bit_field _unused8 : 1;
 a_bit_field _unused9 : 1;
 unsigned short reload_page_size;
 a_bit_field recompute : 1;
 a_bit_field make_auxiliary : 1;
 a_bit_field encrypted_tables : 1;
 a_bit_field remove_encrypted_tables : 1;
} an_unload_db;

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 771

Members

Members Description

version DBTools version number.

connectparms Parameters needed to connect to the database. They take the form of
connection strings, such as the following:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db"

The database server would be started by the connection string START
parameter. For example:

"START=d:\sqlany10\win32\dbeng10.exe"

A full example connection string including the START parameter:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db;START=d:
\sqlany10\win32\dbeng10.exe"

For a list of connection parameters, see “Connection parameters” [SQL
Anywhere Server - Database Administration].

startline Obsolete. The startline field is no longer used. The database server would
be started by the connection string START parameter. Refer to connect-
parms for details.

temp_dir Directory for unloading data files.

reload_filename The dbunload -r option, something like "reload.sql".

errorrtn Callback routine for handling an error message.

msgrtn Callback routine for handling an information message.

statusrtn Callback routine for handling a status message.

confirmrtn Callback routine for confirming an action.

unload_type See “dbunload type enumeration” on page 780.

verbose See “Verbosity enumeration” on page 781.

unordered dbunload -u sets TRUE.

no_confirm dbunload -y sets TRUE.

use_internal_unload dbunload -i? sets TRUE.

extract TRUE if dbxtract, otherwise FALSE.

table_list_provided dbunload -e list or -i sets TRUE.

exclude_tables dbunload -e sets TRUE. dbunload -i (undocumented) sets FALSE.

Database Tools Interface

772 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Members Description

more_flag_bits_present Usually set TRUE.

sysinfo (internal use)

remote_dir (like temp_dir) but for internal unloads // on server side.

subscriber_username Argument to dbxtract.

isolation_level dbxtract -l sets value.

start_subscriptions dbxtract TRUE by default, -b sets FALSE.

exclude_foreign_keys dbxtract -xf sets TRUE.

exclude_procedures dbxtract -xp sets TRUE.

exclude_triggers dbxtract -xt sets TRUE.

exclude_views dbxtract -xv sets TRUE.

isolation_set dbxtract -l sets TRUE.

include_where_subscribe dbxtract -f sets TRUE.

debug (internal use)

table_list Selective table list.

escape_char_present -p sets TRUE and escape_char must be set.

use_internal_reload Usually set TRUE; -ix/-xx sets FALSE; -ii/-xi sets TRUE.

escape_char Used when escape_char_present is TRUE.

reload_connectparms User ID, password, database for reload database.

reload_db_filename The file name of reload database to create.

unload_interrupted Set if unload interrupted.

replace_db dbunload -ar sets TRUE.

locale (internal use) locale (language and charset).

site_name For dbxtract: specify a site name.

template_name For dbxtract: specify a template name.

preserve_ids dbunload sets TRUE/-m sets FALSE .

exclude_hooks dbxtract -hx sets TRUE.

reload_db_logname Log file name for the reload database.

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 773

Members Description

encryption_key -ek sets string.

encryption_algorithm -ea sets, "aes" or "aes_fips".

reload_page_size dbunload -ap sets value. Set page size of rebuilt database.

recompute dbunload -dc sets TRUE. Re-compute all computed columns.

make_auxiliary dbunload -k sets TRUE. Make auxiliary catalog (for use with diagnostic
tracing).

encrypted_tables dbunload -et sets TRUE. Enable encrypted tables in new database (used
with -an or -ar).

remove_encrypted_tables dbunload -er sets TRUE. Remove encryption from encrypted tables.

The members correspond to features accessible from the dbunload and dbxtract utilities.

See the dbtools.h header file for additional comments.

See also
♦ “DBUnload function” on page 738
♦ “a_name structure” on page 751
♦ “dbunload type enumeration” on page 780
♦ “Verbosity enumeration” on page 781
♦ “Using callback functions” on page 725.

an_upgrade_db structure

Holds information needed to upgrade a database using the DBTools library.

Syntax
typedef struct an_upgrade_db {
 unsigned short version;
 const char * connectparms;
 const char * _unused1;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 MSG_CALLBACK statusrtn;
 a_bit_field quiet : 1;
 a_bit_field _unused2 : 1;
 const char * _unused3;
 a_bit_field _unused4 : 1;
 a_bit_field jconnect : 1;
 a_bit_field _unused5 : 1;
 a_bit_field _unused6 : 1;
 const char * _unused7;
} an_upgrade_db;

Database Tools Interface

774 Copyright © 2007, iAnywhere Solutions, Inc.

Members

Member Description

version DBTools version number.

connectparms Parameters needed to connect to the database. They take the form of connection
strings, such as the following:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db"

The database server would be started by the connection string START parameter.
For example:

"START=d:\sqlany10\win32\dbeng10.exe"

A full example connection string including the START parameter:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db;START=d:\sqlany10
\win32\dbeng10.exe"

For a list of connection parameters, see “Connection parameters” [SQL Anywhere
Server - Database Administration].

errorrtn Callback routine for handling an error message.

msgrtn Callback routine for handling an information message.

statusrtn Callback routine for handling a status message.

quiet Operate without printing messages (1), or print messages (0).

jconnect Upgrade the database to include jConnect procedures.

See also
♦ “DBUpgrade function” on page 738
♦ “Using callback functions” on page 725.

a_validate_db structure

Holds information needed for database validation using the DBTools library.

Syntax
typedef struct a_validate_db {
 unsigned short version;
 const char * connectparms;
 const char * _unused1;
 p_name tables;
 MSG_CALLBACK errorrtn;
 MSG_CALLBACK msgrtn;
 MSG_CALLBACK statusrtn;
 a_bit_field quiet : 1;
 a_bit_field index : 1;
 a_validate_type type;
} a_validate_db;

DBTools structures

Copyright © 2007, iAnywhere Solutions, Inc. 775

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Members

Member Description

version DBTools version number.

connectparms Parameters needed to connect to the database. They take the form of connection
strings, such as the following:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db"

The database server would be started by the connection string START parameter.
For example:

"START=d:\sqlany10\win32\dbeng10.exe"

A full example connection string including the START parameter:

"UID=DBA;PWD=sql;DBF=samples-dir\demo.db;START=d:\sqlany10
\win32\dbeng10.exe"

For a list of connection parameters, see “Connection parameters” [SQL Anywhere
Server - Database Administration].

tables Pointer to a linked list of table names.

errorrtn Callback routine for handling an error message.

msgrtn Callback routine for handling an information message.

statusrtn Callback routine for handling a status message.

quiet Operate without printing messages (1), or print messages (0).

index Validate indexes.

type See “a_validate_type enumeration” on page 780.

See also
♦ “DBValidate function” on page 739
♦ “a_name structure” on page 751
♦ “a_validate_type enumeration” on page 780
♦ For more information on callback functions, see “Using callback functions” on page 725.

Database Tools Interface

776 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

DBTools enumeration types
This section lists the enumeration types that are used by the DBTools library. The enumerations are listed
alphabetically.

Blank padding enumeration

Used in the “a_create_db structure” on page 743, to specify the value of blank_pad.

Syntax
enum {
 NO_BLANK_PADDING,
 BLANK_PADDING
};

Parameters

Value Description

NO_BLANK_PADDING Does not use blank padding.

BLANK_PADDING Uses blank padding.

See also
♦ “a_create_db structure” on page 743

a_chkpt_log_type enumeration

Used in the “a_backup_db structure” on page 740, to control copying of checkpoint log.

Syntax
typedef enum {
 BACKUP_CHKPT_LOG_COPY = 0,
 BACKUP_CHKPT_LOG_NOCOPY,
 BACKUP_CHKPT_LOG_RECOVER,
 BACKUP_CHKPT_LOG_AUTO,
 BACKUP_CHKPT_LOG_DEFAULT
} a_chkpt_log_type;

Parameters

Value Description

BACKUP_CHKPT_LOG_COPY Use to generate WITH CHECKPOINT LOG COPY clause.

BACKUP_CHKPT_LOG_NOCOPY Use to generate WITH CHECKPOINT LOG NOCOPY
clause.

DBTools enumeration types

Copyright © 2007, iAnywhere Solutions, Inc. 777

Value Description

BACKUP_CHKPT_LOG_RECOVER Use to generate WITH CHECKPOINT LOG RECOVER
clause.

BACKUP_CHKPT_LOG_AUTO Use to generate WITH CHECKPOINT LOG AUTO clause.

BACKUP_CHKPT_LOG_DEFAULT Use to omit WITH CHECKPOINT clause.

See also
♦ “a_backup_db structure” on page 740

a_db_version enumeration

Used in the “a_db_version_info structure” on page 748, to indicate the version of SQL Anywhere that initially
created the database.

Syntax
enum {
 VERSION_UNKNOWN,
 VERSION_PRE_10,
 VERSION_10
 };

Parameters

Value Description

VERSION_UNKNOWN Unable to determine the version of SQL Anywhere that cre-
ated the database.

VERSION_PRE_10 Database was created using a pre-10 version of SQL Any-
where.

VERSION_10 Database was created using SQL Anywhere 10.

See also
♦ “DBCreatedVersion function” on page 732
♦ “a_db_version_info structure” on page 748

Database size unit enumeration

Used in the “a_create_db structure” on page 743, to specify the value of db_size_unit.

Syntax
enum {
 DBSP_UNIT_NONE,
 DBSP_UNIT_PAGES,
 DBSP_UNIT_BYTES,

Database Tools Interface

778 Copyright © 2007, iAnywhere Solutions, Inc.

 DBSP_UNIT_KILOBYTES,
 DBSP_UNIT_MEGABYTES,
 DBSP_UNIT_GIGABYTES,
 DBSP_UNIT_TERABYTES
};

Parameters

Value Description

DBSP_UNIT_NONE Units not specified.

DBSP_UNIT_PAGES Size is specified in pages.

DBSP_UNIT_BYTES Size is specified in bytes.

DBSP_UNIT_KILOBYTES Size is specified in kilobytes.

DBSP_UNIT_MEGABYTES Size is specified in megabytes.

DBSP_UNIT_GIGAYTES Size is specified in gigabytes.

DBSP_UNIT_TERABYTES Size is specified in terabytes.

See also
♦ “a_create_db structure” on page 743

dbtran_userlist_type enumeration

The type of a user list, as used by an “a_translate_log structure” on page 765.

Syntax
typedef enum dbtran_userlist_type {
 DBTRAN_INCLUDE_ALL,
 DBTRAN_INCLUDE_SOME,
 DBTRAN_EXCLUDE_SOME
} dbtran_userlist_type;

Parameters

Value Description

DBTRAN_INCLUDE_ALL Include operations from all users.

DBTRAN_INCLUDE_SOME Include operations only from the users listed in the sup-
plied user list.

DBTRAN_EXCLUDE_SOME Exclude operations from the users listed in the supplied
user list.

See also
♦ “a_translate_log structure” on page 765

DBTools enumeration types

Copyright © 2007, iAnywhere Solutions, Inc. 779

dbunload type enumeration

The type of unload being performed, as used by the “an_unload_db structure” on page 770.

Syntax
enum {
 UNLOAD_ALL,
 UNLOAD_DATA_ONLY,
 UNLOAD_NO_DATA,
 UNLOAD_NO_DATA_FULL_SCRIPT
};

Parameters

Value Description

UNLOAD_ALL Unload both data and schema.

UNLOAD_DATA_ONLY Unload data. Do not unload schema. Equivalent to
dbunload -d option.

UNLOAD_NO_DATA No data. Unload schema only. Equivalent to dbun-
load -n option.

UNLOAD_NO_DATA_FULL_SCRIPT No data. Include LOAD/INPUT statements in
reload script. Equivalent to dbunload -nl option.

See also
♦ “an_unload_db structure” on page 770

a_validate_type enumeration

The type of validation being performed, as used by the “a_validate_db structure” on page 775.

Syntax
typedef enum {
 VALIDATE_NORMAL = 0,
 VALIDATE_DATA,
 VALIDATE_INDEX,
 VALIDATE_EXPRESS,
 VALIDATE_FULL,
 VALIDATE_CHECKSUM,
 VALIDATE_DATABASE
} a_validate_type;

Parameters

Value Description

VALIDATE_NORMAL Validate with the default check only.

VALIDATE_DATA (obsolete)

Database Tools Interface

780 Copyright © 2007, iAnywhere Solutions, Inc.

Value Description

VALIDATE_INDEX (osbolete)

VALIDATE_EXPRESS Validate with express check. Equivalent to dbvalid -fx option.

VALIDATE_FULL (obsolete)

VALIDATE_CHECKSUM Validate database checksums. Equivalent to dbvalid -s option.

VALIDATE_DATABASE Validate database. Equivalent to dbvalid -d option.

See also
♦ “Validation utility (dbvalid)” [SQL Anywhere Server - Database Administration]
♦ “VALIDATE statement” [SQL Anywhere Server - SQL Reference]

Verbosity enumeration

Specifies the volume of output.

Syntax
enum {
 VB_QUIET,
 VB_NORMAL,
 VB_VERBOSE
};

Parameters

Value Description

VB_QUIET No output.

VB_NORMAL Normal amount of output.

VB_VERBOSE Verbose output, useful for debugging.

See also
♦ “a_create_db structure” on page 743
♦ “an_unload_db structure” on page 770

DBTools enumeration types

Copyright © 2007, iAnywhere Solutions, Inc. 781

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbrfen10.pdf

782

CHAPTER 20

Exit Codes

Contents
Software component exit codes .. 784

Copyright © 2007, iAnywhere Solutions, Inc. 783

Software component exit codes
All database tools are provided as entry points in a DLL. These entry points use the following exit codes.
The SQL Anywhere utilities (dbbackup, dbspawn, dbeng10, and so on) also use these exit codes.

Code Status Explanation

0 EXIT_OKAY Success

1 EXIT_FAIL General failure

2 EXIT_BAD_DATA Invalid file format

3 EXIT_FILE_ERROR File not found, unable to open

4 EXIT_OUT_OF_MEMORY Out of memory

5 EXIT_BREAK Terminated by the user

6 EXIT_COMMUNICATIONS_FAIL Failed communications

7 EXIT_MISSING_DATABASE Missing a required database name

8 EXIT_PROTOCOL_MISMATCH Client/server protocol mismatch

9 EXIT_UNABLE_TO_CONNECT Unable to connect to the database server

10 EXIT_ENGINE_NOT_RUNNING Database server not running

11 EXIT_SERVER_NOT_FOUND Database server not found

12 EXIT_BAD_ENCRYPT_KEY Missing or bad encryption key

13 EXIT_DB_VER_NEWER Server must be upgraded to run database

14 EXIT_FILE_INVALID_DB File is not a database

15 EXIT_LOG_FILE_ERROR Log file was missing or other error

16 EXIT_FILE_IN_USE File in use

17 EXIT_FATAL_ERROR Fatal error or assertion occurred

255 EXIT_USAGE Invalid parameters on the command line

These exit codes are contained in the install-dir\h\sqldef.h file.

Exit Codes

784 Copyright © 2007, iAnywhere Solutions, Inc.

Part VI. Deploying SQL Anywhere

This part introduces you to deployment strategies for SQL Anywhere.

CHAPTER 21

Deploying Databases and Applications

Contents
Introduction to deployment .. 788
Understanding installation directories and file names ... 790
Using the Deployment wizard .. 793
Using a silent installation for deployment .. 795
Deploying client applications ... 798
Deploying administration tools ... 816
Deploying SQL script files ... 837
Deploying database servers .. 838
Deploying security ... 842
Deploying embedded database applications ... 843

Copyright © 2007, iAnywhere Solutions, Inc. 787

Introduction to deployment
When you have completed a database application, you must deploy the application to your end users.
Depending on the way in which your application uses SQL Anywhere (as an embedded database, in a client/
server fashion, and so on) you may have to deploy components of the SQL Anywhere software along with
your application. You may also have to deploy configuration information, such as data source names, that
enable your application to communicate with SQL Anywhere.

Check your license agreement
Redistribution of files is subject to your license agreement with Sybase. No statements in this document
override anything in your license agreement. Please check your license agreement before considering
deployment.

The following deployment steps are examined in this chapter:

♦ Determining required files based on the choice of application platform and architecture.

♦ Configuring client applications.

Much of the chapter deals with individual files and where they need to be placed. However, the recommended
way of deploying SQL Anywhere components is to use the Deployment wizard or to use a silent installation.
For information, see “Using the Deployment wizard” on page 793, and “Using a silent installation for
deployment” on page 795.

Types of deployment
The files you need to deploy depend on the type of deployment you choose. Here are some possible
deployment models:

♦ Client deployment You may deploy only the client portions of SQL Anywhere to your end users, so
that they can connect to a centrally located network database server.

♦ Network server deployment You may deploy network servers to offices, and then deploy clients to
each of the users within those offices.

♦ Embedded database deployment You may deploy an application that runs with the personal
database server. In this case, both client and personal server need to be installed on the end-user's
computer.

♦ SQL Remote deployment Deploying a SQL Remote application is an extension of the embedded
database deployment model.

♦ MobiLink deployment For information about deploying MobiLink servers, see “Deploying
MobiLink Applications” [MobiLink - Server Administration].

♦ Administration tools deployment You may deploy Interactive SQL, Sybase Central and other
management tools.

Deploying Databases and Applications

788 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbmlen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbmlen10.pdf

Ways to distribute files

There are two ways to deploy SQL Anywhere:

♦ Use the SQL Anywhere installer You can make the installer available to your end users. By selecting
the proper option, each end user is guaranteed to receive the files they need.

This is the simplest solution for many deployment cases. In this case, you must still provide your end
users with a method for connecting to the database server (such as an ODBC data source).

For more information, see “Using a silent installation for deployment” on page 795.

♦ Develop your own installation There may be reasons for you to develop your own installation
program that includes SQL Anywhere files. This is a more complicated option, and most of this chapter
addresses the needs of those who are developing their own installation.

If SQL Anywhere has already been installed for the server type and operating system required by the
client application architecture, the required files can be found in the appropriately-named subdirectory,
located in the SQL Anywhere installation directory. For example, the win32 subdirectory of your
installation directory contains the files required to run the server for 32-bit Windows operating systems.

Whichever option you choose, you must not violate the terms of your license agreement.

Introduction to deployment

Copyright © 2007, iAnywhere Solutions, Inc. 789

Understanding installation directories and file names
For a deployed application to work properly, the database server and client applications must each be able
to locate the files they need. The deployed files should be located relative to each other in the same fashion
as your SQL Anywhere installation.

In practice, this means that on Windows, most files belong in a single directory. For example, on Windows
both client and database server required files are installed in a single directory, which is the win32
subdirectory of the SQL Anywhere installation directory.

For a full description of the places where the software looks for files, see “How SQL Anywhere locates
files” [SQL Anywhere Server - Database Administration].

Linux/Unix/Mac OS X deployment issues

Unix deployments are different from Windows deployments in some ways:

♦ Directory structure For Linux/Unix/Mac OS X installations, the directory structure is as follows:

Directory Contents

/opt/sqlanywhere10/bin Executable files, License files

/opt/sqlanywhere10/lib Shared objects and libraries

/opt/sqlanywhere10/res String files

On AIX, the default root directory is /usr/lpp/sqlanywhere10 instead of /opt/sqlanywhere10.

On Mac OS X, the default root directory is /Applications/SQLAnywhere10/System instead of /opt/
sqlanywhere10.

♦ File suffixes In the tables in this chapter, the shared objects are listed with a suffix of .so or .so.1. The
version number, 1, could be higher as updates are released. For simplicity, the version number is often
not listed.

For HP-UX, the suffix can be .sl.1 or .so.1. For AIX, the suffix does not contain a version number so it
is simply .so.

♦ Symbolic links Each shared object is installed as a symbolic link (symlink) to a file of the same name
with the additional suffix .1 (one). For example, libdblib10.so is a symbolic link to the file libdblib10.so.
1 in the same directory. For HP-UX, the symbolic link suffix is .sl.

The version suffix .1 could be higher as updates are released and the symbolic link must be redirected,
accordingly.

♦ Threaded and non-threaded applications Most shared objects are provided in two forms, one of
which has the additional characters _r before the file suffix. For example, in addition to libdblib10.so.
1, there is a file named libdblib10_r.so.1. In this case, threaded applications must be linked to the shared

Deploying Databases and Applications

790 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

object whose name has the _r suffix, while non-threaded applications must be linked to the shared object
whose name does not have the _r suffix. Occasionally, there is a third form of shared object with _n
before the file suffix. This is a version of the shared object that is used with non-threaded applications.

♦ Character set conversion If you want to use database server character set conversion, you need to
include the following files:

♦ libdbicu10.so.1
♦ libdbicu10_r.so.1
♦ libdbicudt10.so.1
♦ sqlany.cvf

♦ Environment variables
On Linux/Unix, environment variables must be set for the system to be able to locate SQL Anywhere
applications and libraries. It is recommended that you use the appropriate file for your shell, either
sa_config.sh or sa_config.csh (located in the directory /opt/sqlanywhere10/bin) as a template for setting
the required environment variables. Some of the environment variables set by these files include PATH,
LD_LIBRARY_PATH, SQLANY10, and SQLANYSH10.

For a description of how SQL Anywhere looks for files, see “How SQL Anywhere locates files” [SQL
Anywhere Server - Database Administration].

File naming conventions

SQL Anywhere uses consistent file naming conventions to help identify and group system components.

These conventions include:

♦ Version number The SQL Anywhere version number is indicated in the file name of the main server
components (executable files, dynamic link libraries, shared objects, license files, and so on).

For example, the file dbeng10.exe is a version 10 executable for Windows.

♦ Language The language used in a language resource library is indicated by a two-letter code within
its file name. The two characters before the version number indicate the language used in the library.
For example, dblgen10.dll is the message resource library for the English language. These two-letter
codes are specified by ISO standard 639.

For more information about language labels, see “Language Selection utility (dblang)” [SQL Anywhere
Server - Database Administration].

For a list of the languages available in SQL Anywhere, see “Localized versions of SQL
Anywhere” [SQL Anywhere Server - Database Administration].

Identifying other file types
The following table identifies the platform and function of SQL Anywhere files according to their file
extension. SQL Anywhere follows standard file extension conventions where possible.

Understanding installation directories and file names

Copyright © 2007, iAnywhere Solutions, Inc. 791

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

File extension Platform File type

.bat, .cmd Windows Command files

.chm, .chw Windows Help system file

.dll Windows Dynamic Link Library

.exe Windows Executable file

.ini All Initialization file

.lic All License file

.lib Varies by development tool Static runtime libraries for the
creation of embedded SQL exe-
cutables

.nlm Novell NetWare NetWare Loadable Module

.res NetWare, Linux/Unix, Mac OS
X

Language resource file for non-
Windows environments

.so, .sl,.a Linux/Unix Shared object or shared library
file. The equivalent of a Win-
dows DLL

.bundle, .dylib Mac OS X Shared object file. The equivalent
of a Windows DLL

Database file names

SQL Anywhere databases are composed of two elements:

♦ Database file This is used to store information in an organized format. By default, this file uses
a .db file extension. There may also be additional dbspace files. These files could have any file extension
including none.

♦ Transaction log file This is used to record all changes made to data stored in the database file. By
default, this file uses a .log file extension, and is generated by SQL Anywhere if no such file exists and
a log file is specified to be used. A mirrored transaction log has the default extension of .mlg.

These files are updated, maintained and managed by the SQL Anywhere relational database management
system.

Deploying Databases and Applications

792 Copyright © 2007, iAnywhere Solutions, Inc.

Using the Deployment wizard
The SQL Anywhere Deployment wizard is the preferred tool for creating deployments of SQL Anywhere
for Windows. The Deployment wizard can create installer files that include some or all of the following
components:

♦ Client interfaces such as ODBC

♦ SQL Anywhere server, including remote data access, database tools, and encryption

♦ MobiLink server, client, Monitor, and encryption

♦ Administration tools such as Interactive SQL and Sybase Central

You can use the Deployment wizard to create a Microsoft Windows Installer Package file or a Microsoft
Windows Installer Merge Module file:

♦ Microsoft Windows Installer Package file A storage file containing the instructions and data
required to install an application. An Installer Package file has the extension .msi.

♦ Microsoft Windows Installer Merge Module file A simplified type of Microsoft Installer Package
file that includes all files, resources, registry entries, and setup logic to install a shared component. A
merge module has the extension .msm.

A merge module cannot be installed alone because it lacks some vital database tables that are present in
an installer package file. Merge modules also contain additional tables that are unique to themselves. To
install the information delivered by a merge module with an application, the module must first be merged
into the application's Installer Package (.msi) file. A merge module consists of the following parts:

♦ A merge module database containing the installation properties and setup logic being delivered by the
merge module.

♦ A merge module Summary Information Stream describing the module.

♦ A MergeModule.CAB cabinet file stored as a stream inside the merge module. This cabinet contains
all the files required by the components delivered by the merge module. Every file delivered by the
merge module must be stored inside of a cabinet file that is embedded as a stream in the merge module's
structured storage. In a standard merge module, the name of this cabinet is always:
MergeModule.CAB.

Note
Redistribution of files is subject to your license agreement. You must acknowledge that you are properly
licensed to redistribute SQL Anywhere files. Please check your license agreement before proceeding.

♦ To create a deployment

1. Start the Deployment wizard:

♦ From the Start menu, choose Program Files ► SQL Anywhere 10 ► Deploy SQL Anywhere for
Windows.

Using the Deployment wizard

Copyright © 2007, iAnywhere Solutions, Inc. 793

or

♦ From the deployment subdirectory of your SQL Anywhere installation, run setup.exe.

2. Follow the instructions in the wizard.

Deploying Databases and Applications

794 Copyright © 2007, iAnywhere Solutions, Inc.

Using a silent installation for deployment
Silent installations run without user input and with no indication to the user that an installation is occurring.
On Windows operating systems you can call the SQL Anywhere InstallShield installer from your own setup
program in such a way that the SQL Anywhere installation is silent.

You can use a silent installation for any of the deployment models described in “Types of
deployment” on page 788. You can also use a silent installation for deploying MobiLink servers.

Creating a silent install
The installation options used by a silent installation are obtained from a response file. The response file is
created by running the SQL Anywhere setup program from the installation disk using the –r option. A silent
install is performed by running setup using the –s option.

Do not use the browse buttons
When creating a silent install do not use the browse buttons. The recording of the browse buttons is not
reliable.

♦ To create a silent install

1. Remove any existing installations of SQL Anywhere. Failure to do so may affect the responses recorded
to the response file.

2. Open a system command prompt, and change to the directory containing the install image (including
setup.exe, setup.ins, and so on).

3. Install the software, using Record mode.

Enter the following command:

setup –r

This command runs the SQL Anywhere installer and creates the response file from your selections. The
response file is named setup.iss, and is located in your Windows directory. This file contains the
responses you made to the dialog boxes during installation.

When run in record mode, the installation program does not offer to restart your operating system, even
if a restart is needed.

4. Install SQL Anywhere using the options, and settings that you want to be used when you deploy SQL
Anywhere on the end-user's computer for use with your application. Note that you will be able to
override the selected paths for subsequent silent installs.

Running a silent install
Your own installation program must call the SQL Anywhere silent install using the –s option. This section
describes how to use a silent install.

Using a silent installation for deployment

Copyright © 2007, iAnywhere Solutions, Inc. 795

♦ To use a silent install

1. Add the command to invoke the SQL Anywhere silent install to your installation procedure.

The most likely scenario is that the response file is located in the install image directory and this directory
is write-protected (for example, the install image directory is on a compact disk). You can run the silent
install by specifying the location of the response file and log file. The log file location must be on a
writeable medium. You specify the response file location using the -f1 option. There must be no space
between f1 and the quotation mark in the following command line. The -f2 option can be used to specify
the location of the log file. Again, there must be no space between f2 and the quotation mark. With
InstallShield, it is necessary to specify the full path to the files.

The following example assumes that the install image directory is in the install directory on the CD in
drive d:. The log file is directed to the Windows directory.

d:\install\setup –s –f1"d:\install\setup.iss" -f2"c:\windows\setup.log"

To invoke the install from another InstallShield script, you could use the something like the following:

DoInstall("sql_anywhere_install_image_path\setup.inx",
 "-s –f1"d:\install\setup.iss" -f2"c:\windows\setup.log"", WAIT);

You can use options to override the choices of paths for both the SQL Anywhere installation directory
and the shared directory:

setup TARGET_DIR=dirname SHARED_DIR=shared_dir
–s –f1"d:\install\setup.iss" -f2"c:\windows\setup.log"

The TARGET_DIR and SHARED_DIR arguments must precede all other options.

2. Check whether the target computer needs to restart.

Setup creates a file named silent.log in the target directory. This file contains a single section called
ResponseResult containing the following line:

Reboot=value

This line indicates whether the target computer needs to be restarted to complete the installation, and
has a value of 0 or 1, with the following meanings.

♦ Reboot=0 No restart is needed.

♦ Reboot=1 The BATCH_INSTALL option was set during the installation, and the target computer
needs to be restarted. The installation procedure that called the silent install is responsible for
checking the Reboot entry and for restarting the target computer, if necessary.

3. Check that the setup completed properly.

Setup creates a log file named setup.log by default. The log file contains a report on the silent install.
A section of this file is called ResponseResult and it contains the following line:

ResultCode=value

This line indicates whether the installation was successful. A non-zero ResultCode indicates an error
occurred during installation. Here is a list of some of the result codes.

Deploying Databases and Applications

796 Copyright © 2007, iAnywhere Solutions, Inc.

ResultCode value Description

0 Successful

-1 General error.

-2 Invalid mode.

-3 Required data not found in the Setup.iss file.

-4 Not enough memory available.

-5 File does not exist.

-6 Cannot write to the response file.

-7 Unable to write to the log file.

-8 Invalid path to the InstallShield Silent response file.

-9 Not a valid list type (string or number).

-10 Data type is invalid.

-11 Unknown error during setup.

-12 Dialog boxes are out of order.

-51 Cannot create the specified folder.

-52 Cannot access the specified file or folder.

-53 Invalid option selected.

For a more information on result codes, see your InstallShield documentation.

Using a silent installation for deployment

Copyright © 2007, iAnywhere Solutions, Inc. 797

Deploying client applications
To deploy a client application that runs against a network database server, you must provide each end user
with the following items:

♦ Client application The application software itself is independent of the database software, and so is
not described here.

♦ Database interface files The client application requires the files for the database interface it uses
(.NET, ADO, OLE DB, ODBC, JDBC, embedded SQL, or Open Client).

♦ Connection information Each client application needs database connection information.

The interface files and connection information required varies with the interface your application is using.
Each interface is described separately in the following sections.

The simplest way to deploy clients is to use the Deployment wizard. For more information, see “Using the
Deployment wizard” on page 793.

Deploying .NET clients

The simplest way to deploy .NET assemblies is to use the Deployment wizard. For more information, see
“Using the Deployment wizard” on page 793.

If you want to create your own installation, this section describes the files to deploy to the end users.

Each .NET client computer must have the following:

♦ A working .NET installation Microsoft .NET assemblies and instructions for their redistribution are
available from Microsoft Corporation. They are not described in detail here.

♦ The SQL Anywhere .NET Data Provider The following table shows the files needed for a working
SQL Anywhere .NET data provider. These files should be placed in a single directory. The SQL
Anywhere installation places the Windows assemblies in the Assembly subdirectory of your SQL
Anywhere installation directory, for example, Assembly\v1(for .NET 1.0) or Assembly\v2 (for .NET 2.0).
The others are placed in the operating-system subdirectory of your SQL Anywhere installation directory
(for example, win32 or x64).

The SQL Anywhere installation places versions of the Windows CE assemblies for .NET Compact
Framework version 2.0 in ce\Assembly\v2 under each supported Windows CE hardware platform.

The SQL Anywhere installation places versions of the Windows CE assemblies for .NET Compact
Framework version 1.x in ce\Assembly\v1 under each supported Windows CE hardware platform.

Description Windows Windows CE

.NET driver file iAnywhere.Data.SQLAnywhere.dll iAnywhere.Data.SQLAnywhere.dll

Deploying Databases and Applications

798 Copyright © 2007, iAnywhere Solutions, Inc.

Description Windows Windows CE

.NET Global Assembly
Cache

N/A iAnywhere.Data.SQLAnywhere.gac

Language-resource li-
brary

dblg[en]10.dll dblg[en]10.dll

Connect dialog dbcon10.dll N/A

For more information about deploying the SQL Anywhere .NET provider, see “Deploying the SQL
Anywhere .NET Data Provider” on page 133.

Deploying OLE DB and ADO clients

The simplest way to deploy OLE DB client libraries is to use the Deployment wizard. For more information,
see “Using the Deployment wizard” on page 793.

If you want to create your own installation, this section describes the files to deploy to the end users.

Each OLE DB client computer must have the following:

♦ A working OLE DB installation OLE DB files and instructions for their redistribution are available
from Microsoft Corporation. They are not described in detail here.

♦ The SQL Anywhere OLE DB provider The following table shows the files needed for a working
SQL Anywhere OLE DB provider. These files should be placed in a single directory. The SQL Anywhere
installation places them all in the operating-system subdirectory of your SQL Anywhere installation
directory (for example, win32 or x64). For Windows, there are two provider DLLs. The second DLL
(dboledba10) is an assist DLL used to provide schema support. There is no second DLL for Windows
CE.

Description Windows Windows CE

OLE DB driver file dboledb10.dll dboledb10.dll

OLE DB driver file dboledba10.dll N/A

Language-resource library dblg[en]10.dll dblg[en]10.dll

Connect dialog dbcon10.dll N/A

OLE DB providers require many registry entries. You can make these by self-registering the DLLs using
the regsvr32 utility on Windows or the regsvrce utility on Windows CE.

For Windows clients, it is recommended that you use Microsoft MDAC 2.7 or later.

When deploying OLE DB applications to Windows CE devices, you must also include Microsoft's ADOCE
version 3.1 (or later). At minimum, the following files are required.

Deploying client applications

Copyright © 2007, iAnywhere Solutions, Inc. 799

adoce31.dll
adocedb31.dll
adoceoledb31.dll
msdadc.dll
msdaer.dll
msdaerXX.dll (where XX is the 2 letter country code, EN for English)

The Microsoft Data Access Components (MDAC) files msdadc.dll and msdaer.dll must be registered on the
device.

For more information, see “Creating a Windows CE database” [SQL Anywhere Server - Database
Administration].

Customizing the OLE DB provider

When installing the OLE DB provider, the Windows Registry must modified. Typically, this is done using
the self-registration capability built into the OLE DB provider. For example. you would use the Windows
regsvr32 tool to do this. A standard set of registry entries are created by the provider.

In a typical connection string, one of the components is the Provider attribute. To indicate that the SQL
Anywhere OLE DB provider is to be used, you specify the name of the provider. Here is a Visual Basic
example:

connectString = "Provider=SAOLEDB;DSN=SQL Anywhere 10 Demo"

With ADO and/or OLE DB, there are many other ways to reference the provider by name. Here is a C++
example in which you specify not only the provider name but also the version to use.

hr = db.Open(_T("SAOLEDB.10"), &dbinit);

The provider name is looked up in the registry. If you were to examine the registry on your computer system,
you would find an entry in HKEY_CLASSES_ROOT for SAOLEDB.

[HKEY_CLASSES_ROOT\SAOLEDB]
@="SQL Anywhere OLE DB Provider"

It has two subkeys that contain a class identifier (ClsId) and current version (CurVer) for the provider. Here
is an example.

[HKEY_CLASSES_ROOT\SAOLEDB\Clsid]
@="{41dfe9ef-db91-11d2-8c43-006008d26a6f}"
[HKEY_CLASSES_ROOT\SAOLEDB\CurVer]
@="SAOLEDB.10"

There are several more similar entries. They are used to identify a specific instance of an OLE DB provider.
If you look up the ClsId in the registry under HKEY_CLASSES_ROOT\CLSID and examine the subkeys,
you will see that one of the entries identifies the location of the provider DLL.

[HKEY_CLASSES_ROOT\CLSID\
{41dfe9ef-db91-11d2-8c43-006008d26a6f}\
InprocServer32]
@="c:\\sa10\\x64\\dboledb10.dll"
"ThreadingModel"="Both"

Deploying Databases and Applications

800 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

The problem here is that the structure is very monolithic. If you were to uninstall the SQL Anywhere software
from your system, the OLE DB provider registry entries would be removed from your registry and then the
provider DLL would be removed from your hard drive. Any applications that depend on the provider would
no longer work.

Similarly, if applications from different vendors all use the same OLE DB provider, then each installation
of the same provider would overwrite the common registry settings. The version of the provider that you
intended your application to work with would be supplanted by another newer (or older!) version of the
provider.

Clearly, the instability that could arise from this situation is undesirable. To address this problem, the SQL
Anywhere OLE DB provider can be customized.

In the following exercise, you will be doing three things. You will generate a unique set of GUIDs. You will
chose a unique provider name. Finally, you will chose unique DLL names. These three things will help you
create a unique OLE DB provider which you can deploy with your application.

Here are the steps involved in creating a custom version of the OLE DB provider.

♦ To customize the OLE DB provider:

1. Make a copy of the sample registration file shown below. It is listed after these steps because it is quite
lengthy. The file name should have a .reg suffix. Please note that the names of the registry values are
case sensitive.

2. Create 4 sequential UUIDs (GUIDs).

Use the uuidgen tool from Microsoft's Visual Studio.

uuidgen -n4 -s -x >oledbguids.txt
3. The 4 UUIDs or GUIDs are assigned in sequence as follows.

a. The Provider class ID (GUID1 below).

b. The Enum class ID (GUID2 below).

c. The ErrorLookup class ID (GUID3 below).

d. The Provider Assist class ID (GUID4 below). This last GUID is not used in Windows CE
deployments.

It is important that they be sequential (that is what -x in the uuidgen command line does for you). Each
GUID should look something like the following.

Name GUID

GUID1 41dfe9eb-db92-11d2-8c43-006008d26a6f

GUID2 41dfe9ec-db92-11d2-8c43-006008d26a6f

GUID3 41dfe9ed-db92-11d2-8c43-006008d26a6f

Deploying client applications

Copyright © 2007, iAnywhere Solutions, Inc. 801

Name GUID

GUID4 41dfe9ee-db92-11d2-8c43-006008d26a6f

Note that it is the first part of the GUID (for example, 41dfe9eb) that is incrementing.

4. Use the search/replace capability of an editor to change all the GUID1, GUID2, GUID3, and GUID4
in the text to the corresponding GUID (for example, GUID1 would be replaced by 41dfe9eb-
db92-11d2-8c43-006008d26a6f if that was the GUID generated for you by uuidgen).

5. Decide on your Provider name. This is the name that you will use in your application in connection
strings, and so on (for example, Provider=SQLAny). Do not use any of the following names. These
names are used by SQL Anywhere.

Version 10 Version 9 or earlier

SAOLEDB ASAProv

SAErrorLookup ASAErrorLookup

SAEnum ASAEnum

SAOLEDBA ASAProvA

6. Use the search/replace capability of an editor to change all the occurrences of the string SQLAny to
the provider name that you have chosen. This includes all those places where SQLAny may be a
substring of a longer string (for example, SQLAnyEnum).

Suppose you chose Acme for your provider name. The names that will appear in the
HKEY_CLASSES_ROOT registry hive are shown in the following table along with the SQL Anywhere
names (for comparison).

SQL Anywhere provider Your custom provider

SAOLEDB Acme

SAErrorLookup AcmeErrorLookup

SAEnum AcmeEnum

SAOLEDBA AcmeA

7. Make copies of the SQL Anywhere provider DLLs (dboledb10.dll and dboledba10.dll) under different
names. Note that there is no dboledba10.dll for Windows CE.

copy dboledb10.dll myoledb10.dll
copy dboledba10.dll myoledba10.dll

A special registry key will be created by the script that is based on the DLL name that you choose. It
is important that the name be different from the standard DLL names (such as dboledb10.dll or
dboledba10.dll). If you name the provider DLL myoledb10 then the provider will look up a registry
entry in HKEY_CLASSES_ROOT with that same name. The same is true of the provider assist DLL.
If you name the DLL myoledba10 then the provider will look up a registry entry in

Deploying Databases and Applications

802 Copyright © 2007, iAnywhere Solutions, Inc.

HKEY_CLASSES_ROOT with that same name. It is important that the name you choose is unique and
is unlikely to be chosen by anyone else. Here are some examples.

DLL name(s) chosen Corresponding HKEY_CLASSES_ROOT\name

myoledb10.dll HKEY_CLASSES_ROOT\myoledb10

myoledba10.dll HKEY_CLASSES_ROOT\myoledba10

acmeOledb.dll HKEY_CLASSES_ROOT\acmeOledb

acmeOledba.dll HKEY_CLASSES_ROOT\acmeOledba

SAcustom.dll HKEY_CLASSES_ROOT\SAcustom

SAcustomA.dll HKEY_CLASSES_ROOT\SAcustomA

8. Use the search/replace capability of an editor to change all the occurrences of myoledb10 and
myoledba10 in the registry script to the two DLL names you have chosen.

9. Use the search/replace capability of an editor to change all the occurrences of d:\\mypath\\win32\\ in
the registry script to the installed location for the DLLs. Be sure to use a pair of slashes to represent a
single slash. This step will have to be customized at the time of your application install.

10. Save the registry script to disk and run it.

11. Give your new provider a try. Do not forget to change your ADO / OLE DB application to use the new
provider name.

Here is the listing of the registry script that is to be modified.

REGEDIT4
; Special registry entries for a private OLE DB provider.
[HKEY_CLASSES_ROOT\myoledb10]
@="Custom SQL Anywhere OLE DB Provider 10.0"
[HKEY_CLASSES_ROOT\myoledb10\Clsid]
@="{GUID1}"
; Data1 of the following GUID must be 3 greater than the
; previous, for example, 41dfe9eb + 3 => 41dfe9ee.
[HKEY_CLASSES_ROOT\myoledba10]
@="Custom SQL Anywhere OLE DB Provider 10.0"
[HKEY_CLASSES_ROOT\myoledba10\Clsid]
@="{GUID4}"

; Current version (or version independent prog ID)
; entries (what you get when you have "SQLAny"
; instead of "SQLAny.10")
[HKEY_CLASSES_ROOT\SQLAny]
@="SQL Anywhere OLE DB Provider"
[HKEY_CLASSES_ROOT\SQLAny\Clsid]
@="{GUID1}"

Deploying client applications

Copyright © 2007, iAnywhere Solutions, Inc. 803

[HKEY_CLASSES_ROOT\SQLAny\CurVer]
@="SQLAny.10"
[HKEY_CLASSES_ROOT\SQLAnyEnum]
@="SQL Anywhere OLE DB Provider Enumerator"
[HKEY_CLASSES_ROOT\SQLAnyEnum\Clsid]
@="{GUID2}"
[HKEY_CLASSES_ROOT\SQLAnyEnum\CurVer]
@="SQLAnyEnum.10"
[HKEY_CLASSES_ROOT\SQLAnyErrorLookup]
@="SQL Anywhere OLE DB Provider Extended Error Support"
[HKEY_CLASSES_ROOT\SQLAnyErrorLookup\Clsid]
@="{GUID3}"
[HKEY_CLASSES_ROOT\SQLAnyErrorLookup\CurVer]
@="SQLAnyErrorLookup.10"
[HKEY_CLASSES_ROOT\SQLAnyA]
@="SQL Anywhere OLE DB Provider Assist"
[HKEY_CLASSES_ROOT\SQLAnyA\Clsid]
@="{GUID4}"
[HKEY_CLASSES_ROOT\SQLAnyA\CurVer]
@="SQLAnyA.10"
; Standard entries (Provider=SQLAny.10)
[HKEY_CLASSES_ROOT\SQLAny.10]
@="Sybase SQL Anywhere OLE DB Provider 10.0"
[HKEY_CLASSES_ROOT\SQLAny.10\Clsid]
@="{GUID1}"
[HKEY_CLASSES_ROOT\SQLAnyEnum.10]
@="Sybase SQL Anywhere OLE DB Provider Enumerator 10.0"
[HKEY_CLASSES_ROOT\SQLAnyEnum.10\Clsid]
@="{GUID2}"
[HKEY_CLASSES_ROOT\SQLAnyErrorLookup.10]
@="Sybase SQL Anywhere OLE DB Provider Extended Error Support 10.0"
[HKEY_CLASSES_ROOT\SQLAnyErrorLookup.10\Clsid]
@="{GUID3}"
[HKEY_CLASSES_ROOT\SQLAnyA.10]
@="Sybase SQL Anywhere OLE DB Provider Assist 10.0"
[HKEY_CLASSES_ROOT\SQLAnyA.10\Clsid]
@="{GUID4}"
; SQLAny (Provider=SQLAny.10)
[HKEY_CLASSES_ROOT\CLSID\{GUID1}]
@="SQLAny.10"
"OLEDB_SERVICES"=dword:ffffffff
[HKEY_CLASSES_ROOT\CLSID\{GUID1}\ExtendedErrors]

Deploying Databases and Applications

804 Copyright © 2007, iAnywhere Solutions, Inc.

@="Extended Error Service"
[HKEY_CLASSES_ROOT\CLSID\{GUID1}\ExtendedErrors\{GUID3}]
@="Sybase SQL Anywhere OLE DB Provider Error Lookup"
[HKEY_CLASSES_ROOT\CLSID\{GUID1}\InprocServer32]
@="d:\\mypath\\win32\\myoledb10.dll"
"ThreadingModel"="Both"
[HKEY_CLASSES_ROOT\CLSID\{GUID1}\OLE DB Provider]
@="Sybase SQL Anywhere OLE DB Provider 10.0"
[HKEY_CLASSES_ROOT\CLSID\{GUID1}\ProgID]
@="SQLAny.10"
[HKEY_CLASSES_ROOT\CLSID\{GUID1}\VersionIndependentProgID]
@="SQLAny"
; SQLAnyErrorLookup
[HKEY_CLASSES_ROOT\CLSID\{GUID3}]
@="Sybase SQL Anywhere OLE DB Provider Error Lookup 10.0"
@="SQLAnyErrorLookup.10"
[HKEY_CLASSES_ROOT\CLSID\{GUID3}\InprocServer32]
@="d:\\mypath\\win32\\myoledb10.dll"
"ThreadingModel"="Both"
[HKEY_CLASSES_ROOT\CLSID\{GUID3}\ProgID]
@="SQLAnyErrorLookup.10"
[HKEY_CLASSES_ROOT\CLSID\{GUID3}\VersionIndependentProgID]
@="SQLAnyErrorLookup"
; SQLAnyEnum
[HKEY_CLASSES_ROOT\CLSID\{GUID2}]
@="SQLAnyEnum.10"
[HKEY_CLASSES_ROOT\CLSID\{GUID2}\InprocServer32]
@="d:\\mypath\\win32\\myoledb10.dll"
"ThreadingModel"="Both"
[HKEY_CLASSES_ROOT\CLSID\{GUID2}\OLE DB Enumerator]
@="Sybase SQL Anywhere OLE DB Provider Enumerator"
[HKEY_CLASSES_ROOT\CLSID\{GUID2}\ProgId]
@="SQLAnyEnum.10"
[HKEY_CLASSES_ROOT\CLSID\{GUID2}\VersionIndependentProgID]
@="SQLAnyEnum"
; SQLAnyA
[HKEY_CLASSES_ROOT\CLSID\{GUID4}]
@="SQLAnyA.10"
[HKEY_CLASSES_ROOT\CLSID\{GUID4}\InprocServer32]
@="d:\\mypath\\win32\\myoledba10.dll"
"ThreadingModel"="Both"
[HKEY_CLASSES_ROOT\CLSID\{GUID4}\ProgID]
@="SQLAnyA.10"

Deploying client applications

Copyright © 2007, iAnywhere Solutions, Inc. 805

[HKEY_CLASSES_ROOT\CLSID\{GUID4}\VersionIndependentProgID]
@="SQLAnyA"

Deploying ODBC clients

The simplest way to deploy ODBC clients is to use the Deployment wizard. For more information, see
“Using the Deployment wizard” on page 793.

Each ODBC client computer must have the following:

♦ Microsoft provides an ODBC Driver Manager for Windows operating systems. SQL Anywhere includes
an ODBC Driver Manager for Unix. There is no ODBC Driver Manager for Windows CE. ODBC
applications can run without a driver manager but, on platforms for which an ODBC driver manager is
available, this is not recommended.

♦ Connection information The client application must have access to the information needed to
connect to the server. This information is typically included in an ODBC data source.

♦ The SQL Anywhere ODBC driver The files that must be included in a deployment of an ODBC
client application are described next in ODBC driver required files.

ODBC driver required files

The following table shows the files needed for a working SQL Anywhere ODBC driver. These files should
be placed in a single directory. The SQL Anywhere installation places them all in the operating-system
subdirectory of your SQL Anywhere installation directory (for example, win32 or x64).

The multithreaded version of the ODBC driver for Unix platforms is indicated by "MT".

Platform Required files

Windows dbodbc10.dll

dbcon10.dll

dbicu10.dll

dbicudt10.dll

dblg[en]10.dll

Windows CE dbodbc10.dll

dblg[en]10.dll

Deploying Databases and Applications

806 Copyright © 2007, iAnywhere Solutions, Inc.

Platform Required files

Linux/Solaris libdbodbc10.so.1

libdbodbc10_n.so.1

libdbodm10.so.1

libdbtasks10.so.1

libdbicu10.so.1

libdbicudt10.so.1

dblg[en]10.res

Linux/Solaris MT libdbodbc10.so.1

libdbodbc10_r.so.1

libdbodm10.so.1

libdbtasks10_r.so.1

libdbicu10_r.so.1

libdbicudt10.so.1

dblg[en]10.res

HP-UX libdbodbc10.sl.1

libdbodbc10_n.sl.1

libdbodm10.sl.1

libdbtasks10.sl.1

libdbicu10.sl.1

libdbicudt10.sl.1

dblg[en]10.res

HP-UX MT libdbodbc10.sl.1

libdbodbc10_r.sl.1

libdbodm10.sl.1

libdbtasks10_r.sl.1

libdbicu10_r.sl.1

libdbicudt10.sl.1

dblg[en]10.res

Deploying client applications

Copyright © 2007, iAnywhere Solutions, Inc. 807

Platform Required files

AIX libdbodbc10.so

libdbodbc10_n.so

libdbodm10.so

libdbtasks10.so

libdbicu10.so

libdbicudt10.so

dblg[en]10.res

AIX MT libdbodbc10.so

libdbodbc10_r.so

libdbodm10.so

libdbtasks10_r.so

libdbicu10_r.so

libdbicudt10..so

dblg[en]10.res

Mac OS X dbodbc10.bundle

libdbodbc10.dylib

libdbodbc10_n.dylib

libdbodm10.dylib

libdbtasks10.dylib

libdbicu10.dylib

libdbicudt10.dylib

dblg[en]10.res

Mac OS X MT dbodbc10_r.bundle

libdbodbc10.dylib

libdbodbc10_r.dylib

libdbodm10.dylib

libdbtasks10_r.dylib

libdbicu10_r.dylib

libdbicudt10.dylib

dblg[en]10.res

Deploying Databases and Applications

808 Copyright © 2007, iAnywhere Solutions, Inc.

Notes
♦ There are multithreaded (MT) versions of the ODBC driver for Unix platforms. The file names contain

the "_r" suffix. Deploy these files if your application requires them. Also, for Unix platforms, you should
create a link to these files. The link name should match the file name with the ".1" version suffix removed.

♦ For Windows, a driver manager is included with the operating system. For Unix, SQL Anywhere provides
a driver manager. The file name begins with libdbodm10.

♦ A language resource library file should also be included. The table lists the English "en" version. Deploy
the language resource libraries that correspond to the languages you want to support.

♦ For Windows, the Connect dialog support code (dbcon10.dll) is needed if your end users will create their
own data sources, if they need to enter user IDs and passwords when connecting to the database, or if
they need to display the Connect dialog for any other purpose.

Configuring the ODBC driver

In addition to copying the ODBC driver files onto disk, your setup program must also make a set of registry
entries to install the ODBC driver properly.

Windows
The SQL Anywhere installer makes changes to the Windows Registry to identify and configure the ODBC
driver. If you are building a setup program for your end users, you should make the same settings. Please
note that the names of the registry values are case sensitive.

You can use the regedit utility to inspect registry entries.

The SQL Anywhere ODBC driver is identified to the system by a set of registry values in the following
registry key:

HKEY_LOCAL_MACHINE\
 SOFTWARE\
 ODBC\
 ODBCINST.INI\
 SQL Anywhere 10

Sample values for 32-bit Windows are shown below:

Value name Value type Value data

Driver String install-dir\win32\dbodbc10.dll

Setup String install-dir\win32\dbodbc10.dll

There is also a registry value in the following key:

HKEY_LOCAL_MACHINE\
 SOFTWARE\
 ODBC\
 ODBCINST.INI\
 ODBC Drivers

The value is as follows:

Deploying client applications

Copyright © 2007, iAnywhere Solutions, Inc. 809

Value name Value type Value data

SQL Anywhere 10 String Installed

Third party ODBC drivers
If you are using a third-party ODBC driver on an operating system other than Windows, consult the
documentation for that driver on how to configure the ODBC driver.

Deploying connection information

ODBC client connection information is generally deployed as an ODBC data source. You can deploy an
ODBC data source in one of the following ways:

♦ Programmatically Add a data source description to your end-user's registry or ODBC initialization
files.

♦ Manually Provide your end users with instructions, so that they can create an appropriate data source
on their own computer.

You create a data source manually using the ODBC Administrator, from the User DSN tab or the System
DSN tab. The SQL Anywhere ODBC driver displays the configuration dialog for entering settings. Data
source settings include the location of the database file, the name of the database server, as well as any
start up parameters and other options.

This section provides you with the information you need to know for either approach.

Types of data source
There are three kinds of data sources: User data sources, System data sources, and File data sources.

User data source definitions are stored in the part of the registry containing settings for the specific user
currently logged on to the system. System data sources, however, are available to all users and to Windows
services, which run regardless of whether a user is logged onto the system or not. Given a correctly configured
System data source named MyApp, any user can use that ODBC connection by providing DSN=MyApp in
the ODBC connection string.

File data sources are not held in the registry, but are held in a special directory. A connection string must
provide a FileDSN connection parameter to use a File data source.

Data source registry entries
Each user data source is identified to the system by registry entries.

You must enter a set of registry values in a particular registry key. For User data sources the key is as follows:

HKEY_CURRENT_USER\
 SOFTWARE\
 ODBC\
 ODBC.INI\
 userdatasourcename

For System data sources the key is as follows:

Deploying Databases and Applications

810 Copyright © 2007, iAnywhere Solutions, Inc.

HKEY_LOCAL_MACHINE\
 SOFTWARE\
 ODBC\
 ODBC.INI\
 systemdatasourcename

The key contains a set of registry values, each of which corresponds to a connection parameter. For example,
the SQL Anywhere 10 Demo key corresponding to the SQL Anywhere 10 Demo user Data Source Name
(DSN) contains the following settings:

Value name Value type Value data

Autostop String yes

DatabaseFile String samples-dir\demo.db

Description String SQL Anywhere 10 Sample Database

Driver String install-dir\win32\dbodbc10.dll

EngineName String demo10

PWD String sql

Start String install-dir\win32\dbeng10.exe

UID String dba

Note
It is recommended that you include the EngineName parameter in connection strings for deployed
applications. This ensures that the application connects to the correct server in the event that a computer is
running multiple SQL Anywhere database servers and can help prevent timing-dependent connection
failures.

In these entries, install-dir is the SQL Anywhere installation directory. For Windows x64-based systems,
win32 would be x64.

In addition, you must add the data source name to the list of data sources in the registry. For User data
sources, you use the following key:

HKEY_CURRENT_USER\
 SOFTWARE\
 ODBC\
 ODBC.INI\
 ODBC Data Sources

For System data sources, use the following key:

HKEY_LOCAL_MACHINE\
 SOFTWARE\
 ODBC\
 ODBC.INI\
 ODBC Data Sources

Deploying client applications

Copyright © 2007, iAnywhere Solutions, Inc. 811

The value associates each data source with an ODBC driver. The value name is the data source name, and
the value data is the ODBC driver name. For example, the User data source installed by SQL Anywhere is
named SQL Anywhere 10 Demo, and has the following value:

Value name Value type Value data

SQL Anywhere 10 Demo String SQL Anywhere 10

Caution: ODBC settings are easily viewed
User data source configurations can contain sensitive database settings such as a user's ID and password.
These settings are stored in the registry in plain text, and can be viewed using the Windows Registry editors
regedit.exe or regedt32.exe, which are provided by Microsoft with the operating system. You can choose to
encrypt passwords, or require users to enter them on connecting.

Required and optional connection parameters
You can identify the data source name in an ODBC configuration string in this manner,

DSN=UserDataSourceName

When a DSN parameter is provided in the connection string, the Current User data source definitions in the
Windows Registry are searched, followed by System data sources. File data sources are searched only when
FileDSN is provided in the ODBC connection string.

The following table illustrates the implications to the user and developer when a data source exists and is
included in the application's connection string as a DSN or FileDSN parameter.

When the data source… The connection string must also
identify…

The user must supply…

Contains the ODBC driver name
and location; the name of the
database file/server; startup pa-
rameters; and the user ID and
password.

No additional information No additional information.

Contains the ODBC driver name
and location; the name of the
database file/server; startup pa-
rameters.

No additional information User ID and password if not
provided in the DSN.

Contains only the name and lo-
cation of the ODBC driver.

The name of the database file
(DBF=) and/or the database server
(ENG=). Optionally, it may con-
tain other connection parameters
such as Userid (UID=) and PASS-
WORD (PWD=).

User ID and password if not
provided in the DSN or ODBC
connection string.

Deploying Databases and Applications

812 Copyright © 2007, iAnywhere Solutions, Inc.

When the data source… The connection string must also
identify…

The user must supply…

Does not exist The name of the ODBC driver to be
used (Driver=) and the database
name (DBN=), the database file
(DBF=), and/or the database server
(ENG=). Optionally, it may con-
tain other connection parameters
such as Userid (UID=) and PASS-
WORD (PWD=).

User ID and password if not
provided in the ODBC connec-
tion string.

For more information on ODBC connections and configurations, see the following:

♦ “Connecting to a Database” [SQL Anywhere Server - Database Administration].

♦ The Open Database Connectivity (ODBC) SDK, available from Microsoft.

Deploying embedded SQL clients

The simplest way to deploy embedded SQL clients is to use the Deployment wizard. For more information,
see “Using the Deployment wizard” on page 793.

Deploying embedded SQL clients involves the following:

♦ Installed files Each client computer must have the files required for a SQL Anywhere embedded SQL
client application.

♦ Connection information The client application must have access to the information needed to
connect to the server. This information may be included in an ODBC data source.

Installing files for embedded SQL clients

The following table shows which files are needed for embedded SQL clients.

Description Windows Unix

Interface library dblib10.dll libdblib10.so,
libdbtasks10.so

Language resource library dblg[en]10.dll dblg[en]10.res

Connect dialog dbcon10.dll N/A

Notes
♦ If the client application uses encryption then the appropriate encryption support (dbecc10.dll,

dbfips10.dll, or dbrsa10.dll) should also be included.

Deploying client applications

Copyright © 2007, iAnywhere Solutions, Inc. 813

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

♦ If the client application uses an ODBC data source to hold the connection parameters, your end user
must have a working ODBC installation. Instructions for deploying ODBC are included in the Microsoft
ODBC SDK.

For more information on deploying ODBC information, see “Deploying ODBC clients” on page 806.

♦ The Connect dialog support (dbcon10.dll) is needed if your end users will be creating their own data
sources, if they will need to enter user IDs and passwords when connecting to the database, or if they
need to display the Connect dialog for any other purpose.

♦ For multi-threaded applications on Unix, use libdblib10_r.so and libdbtasks10_r.so.

Connection information

You can deploy embedded SQL connection information in one of the following ways:

♦ Manual Provide your end users with instructions for creating an appropriate data source on their
computer.

♦ File Distribute a file that contains connection information in a format that your application can read.

♦ ODBC data source You can use an ODBC data source to hold connection information.

Deploying JDBC clients

You must install a Java Runtime Environment to use JDBC.

You may need to define the JAVA_HOME environment variable, if it has not already been defined, so that
the database server can locate the Java VM. The JAVA_HOME or JAVAHOME environment variables are
commonly created when installing a Java VM. This environment variable should point to the root directory
of your Java VM.

The database server searches for the Java VM in the following order:

1. Check the java_location database option.

2. Check the JAVA_HOME environment variable.

3. Check the JAVAHOME environment variable.

4. Check the path.

5. If these searches fail, then the database server fails to load the Java VM.

If the JAVAHOME environment variable is defined and the client computer has JAVA_HOME already
defined, the server uses JAVA_HOME.

In addition to a Java Runtime Environment, each JDBC client requires the iAnywhere JDBC driver or
jConnect.

To deploy the iAnywhere JDBC driver, you must deploy the following files:

Deploying Databases and Applications

814 Copyright © 2007, iAnywhere Solutions, Inc.

♦ jodbc.jar This must be in the application's classpath.

♦ dbjodbc10.dll This must be in the system path. On Unix environments, the file is a shared library
(libdbjodbc10.so).

♦ The ODBC driver files. For more information, see “ODBC driver required files” on page 806.

For a version of the jConnect software and the jConnect documentation, see http://www.sybase.com/
products/informationmanagement/softwaredeveloperkit/jconnect.

Your Java application needs a URL to connect to the database. This URL specifies the driver, the computer
to use, and the port on which the database server is listening.

For more information on URLs, see “Supplying a URL to the driver” on page 477.

Deploying Open Client applications

To deploy Open Client applications, each client computer needs the Sybase Open Client product. You must
purchase the Open Client software separately from Sybase. It contains its own installation instructions.

Connection information for Open Client clients is held in the interfaces file. For information on the interfaces
file, see the Open Client documentation and “Configuring Open Servers” [SQL Anywhere Server - Database
Administration].

Deploying client applications

Copyright © 2007, iAnywhere Solutions, Inc. 815

http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect
http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Deploying administration tools
Subject to your license agreement, you can deploy a set of administration tools including Interactive SQL,
Sybase Central, and the SQL Anywhere Console utility.

The simplest way to deploy the administration tools is to use the Deployment wizard. For more information,
see “Using the Deployment wizard” on page 793.

For information on system requirements for administration tools, see the Administration Tools table in SQL
Anywhere Components by Platform.

Note
When you are deploying applications, the personal database server (dbeng10) is required for creating
databases using the dbinit utility. It is also required if you are creating databases from Sybase Central on the
local computer when no other database servers are running.

Deploying administration tools on Windows without InstallShield

This section explains how to install Interactive SQL (dbisql), Sybase Central (including the SQL Anywhere,
MobiLink, QAnywhere and UltraLite plug-ins), and the SQL Anywhere Console utility (dbconsole) on a
Windows computer without using InstallShield. It is intended for those who want to create an installer for
these administration tools.

This information applies to all Windows platforms except Windows CE. The instructions given here are
specific to version 10.0.1 and cannot be applied to earlier or later versions of the software.

Check your license agreement
Redistribution of files is subject to your license agreement. No statements in this document override anything
in your license agreement. Check your license agreement before considering deployment.

Before you begin
Before reading this section, you should have an understanding of the Windows Registry, including the
REGEDIT application. Please note that the names of the registry values are case sensitive.

Modifying your registry is dangerous
Modify your registry at your own risk. It is recommended that you back up your system before modifying
the registry.

The following steps are required to deploy the administration tools:

1. Decide what you want to deploy.

2. Copy the required files.

3. Register the administration tools with Windows.

Deploying Databases and Applications

816 Copyright © 2007, iAnywhere Solutions, Inc.

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/components_platforms_1001.html
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/components_platforms_1001.html

4. Update the system path.

5. Register the plug-ins with Sybase Central.

6. Register the SQL Anywhere ODBC driver with Windows.

7. Register the online help files with Windows.

Each of these steps is explained in detail in the following sections.

Step 1: Deciding what software to deploy

You can install any combination of the following software bundles:

♦ Interactive SQL

♦ Sybase Central with the SQL Anywhere plug-in

♦ Sybase Central with the MobiLink plug-in

♦ Sybase Central with the QAnywhere plug-in

♦ Sybase Central with the UltraLite plug-in

♦ SQL Anywhere Console utility (dbconsole)

The following components are also required when installing any of the above software bundles:

♦ The SQL Anywhere ODBC Driver

♦ The Java Runtime Environment (JRE) version 1.5.0

Note
To check your JRE version on Mac OS X, to go to the Apple menu, and then choose System
Preferences ► Software Updates. Click Installed Updates for a list of updates that have been applied. If Java
1.5.0 is not in the list, go to www.developer.apple.com/java/download/.

The instructions in the following sections are structured so that you can install any (or all) of these six bundles
without conflicts.

Step 2: Copying the required files

The administration tools require a specific directory structure. You are free to put the directory tree in any
directory, on any drive. Throughout the following discussion, C:\SA10 is used as the example installation
folder. The software must be installed into a directory tree structure having the following layout:

Deploying administration tools

Copyright © 2007, iAnywhere Solutions, Inc. 817

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/www.developer.apple.com/java/download/

Directory Description

SA10 The root folder. While the following steps assume
you are installing into C:\SA10, you are free to put
the directory anywhere (for example, C:\Program
Files\SQLAny10).

SA10\java Holds Java program JAR files.

SA10\win32 Holds the native 32-bit Windows components used
by the program, including the programs that launch
the applications.

SA10\Sun\JavaHelp-1_1 The JavaHelp runtime library.

SA10\Sun\JAXB1.0 The Java Architecture for XML Binding.

SA10\Sun\jre150 The Java Runtime Environment.

x64
The Java-based administration tools are 32-bit applications. There are no 64-bit versions. The 32-bit
administration tools can be deployed on the Windows x64-based platform.

Itanium 64
There are no Java-based administration tools available for deployment on the Itanium (ia64) platform.
However, there is a native version of Interactive SQL which is not as feature-rich as the Java version. See
“Deploying dbisqlc” on page 836.

The following table lists the files required for each of the software bundles. Make a list of the files you need,
and then copy them into the directory structure outlined above. In general, you should take the files from an
already-installed copy of SQL Anywhere.

File Inter-
active
SQL

Sybase
Central
with the
SQL
Any-
where
plug-in

Sybase
Central
with the
Mo-
biLink
plug-in

Sybase
Central
with the
QAny-
where
plug-in

Sybase
Central
with the
Ultralite
plug-in

SQL
Any-
where
Con-
sole

docs\en\htmlhelp\dbma[en]10.chm X X X X X X

c:\windows\system32\keyHH.exe 1 X X X X X X

java\dbma[en]10.jar X X X X X X

java\jodbc.jar X X X X X X

1 The exact name of the Windows system directory differs depending on which operating system you are using.

Deploying Databases and Applications

818 Copyright © 2007, iAnywhere Solutions, Inc.

File Inter-
active
SQL

Sybase
Central
with the
SQL
Any-
where
plug-in

Sybase
Central
with the
Mo-
biLink
plug-in

Sybase
Central
with the
QAny-
where
plug-in

Sybase
Central
with the
Ultralite
plug-in

SQL
Any-
where
Con-
sole

java\JComponents1001.jar X X X X X X

java\jlogon.jar X X X X X X

java\SCEditor500.jar X X X X X X

java\jsyblib500.jar X X X X X X

win32\jsyblib500.dll X X X X X X

Sun\JavaHelp-1_1\jh.jar X X X X X X

Sun\JAXB1.0\... X X X X X X

Sun\jre150\... X X X X X X

win32\dblib10.dll X X X X X X

win32\dbjodbc10.dll X X X X X X

win32\dbodbc10.dll X X X X X X

win32\dbcon10.dll X X X X X X

win32\dblg[en]10.dll X X X X X X

win32\dbtool10.dll X X X

win32\dbisql.exe X

win32\dbisqlg.exe X

win32\dbisql.cls X

java\isql.jar X X X X

Sybase Central 5.0.0\win32
\scjview.exe

X X X X

Sybase Central 5.0.0\win32
\scjview.cls

X X X X

Sybase Central 5.0.0\win32\scjlg
[en].dll

X X X X

Sybase Central 5.0.0\scvw[en]
500.chm

X X X X

Deploying administration tools

Copyright © 2007, iAnywhere Solutions, Inc. 819

File Inter-
active
SQL

Sybase
Central
with the
SQL
Any-
where
plug-in

Sybase
Central
with the
Mo-
biLink
plug-in

Sybase
Central
with the
QAny-
where
plug-in

Sybase
Central
with the
Ultralite
plug-in

SQL
Any-
where
Con-
sole

Sybase Central 5.0.0\scvw[en]
500.jar

X X X X

Sybase Central 5.0.0
\sybasecentral500.jar

X X X X

java\salib.jar X X X X

java\saplugin.jar X

java\debugger.jar X

win32\dbput10.dll X X

java\apache_files.txt X X

java\apache_license_1.1.txt X X

java\apache_license_2.0.txt X X

java\log4j.jar X X

java\mlplugin.jar X

java\mldesign.jar X

java\stax-api-1.0.jar X

java\wstx-asl-2.0.5.jar X

java\velocity.jar X

java\velocity-dep.jar X

java\qaplugin.jar X

java\qaconnector.jar X

java\mlstream.jar X

win32\qaagent.exe X

win32\dbicu10.dll X

win32\dbicudt10.dll X

win32\dbghelp.dll X

Deploying Databases and Applications

820 Copyright © 2007, iAnywhere Solutions, Inc.

File Inter-
active
SQL

Sybase
Central
with the
SQL
Any-
where
plug-in

Sybase
Central
with the
Mo-
biLink
plug-in

Sybase
Central
with the
QAny-
where
plug-in

Sybase
Central
with the
Ultralite
plug-in

SQL
Any-
where
Con-
sole

win32\dbinit.exe X

java\ulplugin.jar X

win32\dbconsole.exe X

java\DBConsole.jar X

The table above shows a number of files with the designation [en]. These files are available in a number of
different languages with English (en) being just one of them. For more information, see the following section
International message and help files.

Some file paths above end with "...". This indicates that the entire tree, including subdirectories, should be
copied.

The administration tools require JRE 1.5.0_10. You should not substitute a later patch version of the JRE
unless you have a specific need to do so. Copy the JRE files from an installed copy of SQL Anywhere 10
from the C:\Program Files\SQL Anywhere 10\Sun\jre150 directory. Copy the entire jre150 tree, including
subdirectories.

For reference, the SQLAnywhere.jpr file contains a list of the required component files for the SQL Anywhere
plug-in of Sybase Central.

The MobiLink.jpr file contains a list of the required component files for the MobiLink plug-in of Sybase
Central.

The QAnywhere.jpr file contains a list of the required component files for the QAnywhere plug-in of Sybase
Central. When deploying the QAnywhere plug-in, dbinit is required. For information on deploying database
tools, see “Deploying database utilities” on page 843.

The Ultralite.jpr file contains a list of the required component files for the UltraLite plug-in of Sybase
Central.

International message and help files
All displayed text and online help for the administration tools is translated from English into French, German,
Japanese, and Simplified Chinese. The resources for each language are held in separate files. The English
files contain en in the file names. French files have similar names, but use fr instead of en. German file
names contain de, Japanese file names contain ja, and Chinese files contain zh.

If you want to install support for different languages, you have to add the resource and help files for those
other languages. The translated files are as follows:

dbma??10.jar – SQL Anywhere Help Files
dbmaen10.jar English
dbmafr10.jar French

Deploying administration tools

Copyright © 2007, iAnywhere Solutions, Inc. 821

dbmade10.jar German
dbmaja10.jar Japanese
dbmazh10.jar Chinese

dblg??10.res – SQL Anywhere Messages Files
dblgen10.res English
dblgfr10.res French
dblgde10.res German
dblgja10.res Japanese
dblgzh10.res Chinese

scvw??500.jar – Sybase Central Help Files
scvwen500.jar English
scvwfr500.jar French
scvwde500.jar German
scvwja500.jar Japanese
scvwzh500.jar Chinese

These files are included with localized versions of SQL Anywhere.

Step 3: Registering the administration tools with Windows

You must set the following registry values for the administration tools. Please note that the names of the
registry values are case sensitive.

♦ In HKEY_LOCAL_MACHINE\SOFTWARE\Sybase\Sybase Central\5.0.0

♦ Location The fully-qualified path to the folder (C:\Program Files\Sybase Central 5.0.0 by default)
containing the Sybase Central files.

♦ Shared Location The fully-qualified path to the folder (C:\Program Files\SQL Anywhere 10 by
default) containing the Sybase Central folder.

♦ Language The two-letter code for the language used by Sybase Central. This must be one of the
following: en, fr, de, ja, or zh for English, French, German, Japanese, and Simplified Chinese,
respectively.

♦ In HKEY_LOCAL_MACHINE\SOFTWARE\Sybase\SQL Anywhere\10.0

♦ Location The fully-qualified path to the root of the installation folder (C:\Program Files\SQL
Anywhere 10 by default) containing the Sybase Central files.

♦ Shared Location The fully-qualified path to the folder (C:\Program Files\SQL Anywhere 10 by
default) containing the Sybase Central folder.

♦ Language The two-letter code for the language used by SQL Anywhere. This must be one of the
following: en, fr, de, ja, or zh for English, French, German, Japanese, and Simplified Chinese,
respectively.

On Windows x64-based systems, these registry entries are in the 32-bit registry (SOFTWARE
\Wow6432Node\Sybase).

Paths should not end in a backslash.

Deploying Databases and Applications

822 Copyright © 2007, iAnywhere Solutions, Inc.

Your installer can encapsulate all this information by creating a .reg file and then executing it. Using our
example installation folder of C:\SA10, the following is a sample .reg file:

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Sybase\Sybase Central\5.0.0]
"Location"="c:\\sa10\\Sybase Central 5.0.0"
"Shared Location"="c:\\sa10"
"Language"="EN"
[HKEY_LOCAL_MACHINE\SOFTWARE\Sybase\SQL Anywhere\10.0]
"Location"="c:\\sa10"
"Shared Location"="c:\\sa10"
"Language"="EN"

Backslashes in file paths must be escaped by another backslash in a .reg file.

Step 4: Updating the system path

To run the administration tools, the directories with .exe and .dll files must be included in the path. You must
add the C:\SA10\win32 and C:\SA10\Sybase Central 5.0.0\win32 directories to the system path.

On Windows, the system path is stored in the following registry key:

HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Control\
 Session Manager\
 Environment\
 Path

When you deploy Interactive SQL or Sybase Central, add the following directories to the end of the existing
path:

c:\sa10\win32;c:\sa10\Sybase Central 5.0.0\win32

Step 5: Registering the Sybase Central plug-ins

This step involves the configuration of Sybase Central. If you are not installing Sybase Central, you can skip
it.

Sybase Central requires a configuration file that lists the installed plug-ins. Your installer must create this
file. Note that it contains full paths to a number of JAR files that may change depending on where the software
is installed.

The file is called .scRepository. On Windows XP/200x, it resides in the %allusersprofile%\Sybase Central
5.0.0 folder. On Windows Vista, it resides in the %ProgramData%\Sybase Central 5.0.0 folder. It is a plain
text file that contains some basic information about the plug-ins that Sybase Central should load.

On Windows Vista, all users should have read access to the directory that contains the .scRepository file.
This can be done using the following command. To do this manually, open an administrator command prompt
window (right-click Command Prompt and click Run As Administrator).

icacls "%ProgramData%\Sybase Central 5.0.0" /grant everyone:F

Deploying administration tools

Copyright © 2007, iAnywhere Solutions, Inc. 823

The provider information for SQL Anywhere is created in the repository file using the following commands.

scjview.exe -register "C:\Program Files\SQL Anywhere 10\java\SQLAnywhere.jpr"

The contents of the SQLAnywhere.jpr file looks like this (some entries have been split across multiple lines
for display purposes). The AdditionalClasspath lines must be entered on a single line in the .jpr file.

PluginName=SQL Anywhere 10
PluginId=sqlanywhere1000
PluginClass=com.sybase.asa.plugin.SAPlugin
PluginFile=C:\Program Files\SQL Anywhere 10\java\saplugin.jar
AdditionalClasspath=
 C:\Program Files\SQL Anywhere 10\java\isql.jar;
 C:\Program Files\SQL Anywhere 10\java\salib.jar;
 C:\Program Files\SQL Anywhere 10\java\JComponents1001.jar;
 C:\Program Files\SQL Anywhere 10\java\jlogon.jar;
 C:\Program Files\SQL Anywhere 10\java\debugger.jar;
 C:\Program Files\SQL Anywhere 10\java\jodbc.jar
ClassloaderId=SA1000
InitialLoadOrder=0

The SQLAnywhere.jpr file was created in the java folder of the SQL Anywhere installation when you
originally installed SQL Anywhere. Use it as the model for the .jpr file that you must create as part of the
install process. There are also versions of this file for MobiLink, QAnywhere, and UltraLite called
MobiLink.jpr, QAnywhere.jpr, and UltraLite.jpr respectively. They are also located in the java folder.

Here is a portion of the .scRepository file that was created using the process described above. Some entries
have been split across multiple lines for display purposes. In the file, each entry appears on a single line:

Version: 5.0.0.3245
Fri Feb 23 13:09:14 EST 2007
#
SCRepositoryInfo/Version=4
#
Providers/sqlanywhere1000/Version=10.0.1.3390
Providers/sqlanywhere1000/UseClassloader=true
Providers/sqlanywhere1000/ClassloaderId=SA1000
Providers/sqlanywhere1000/Classpath=
 C:\\Program Files\\SQL Anywhere 10\\java\\saplugin.jar
Providers/sqlanywhere1000/Name=SQL Anywhere 10
Providers/sqlanywhere1000/AdditionalClasspath=
 C:\\Program Files\\SQL Anywhere 10\\java\\isql.jar;
 C:\\Program Files\\SQL Anywhere 10\\java\\salib.jar;
 C:\\Program Files\\SQL Anywhere 10\\java\\JComponents1001.jar;
 C:\\Program Files\\SQL Anywhere 10\\java\\jlogon.jar;
 C:\\Program Files\\SQL Anywhere 10\\java\\debugger.jar;
 C:\\Program Files\\SQL Anywhere 10\\java\\jodbc.jar
Providers/sqlanywhere1000/Provider=com.sybase.asa.plugin.SAPlugin
Providers/sqlanywhere1000/ProviderId=sqlanywhere1000
Providers/sqlanywhere1000/InitialLoadOrder=0
#

Notes
♦ Your installer should create a file similar to this one using the techniques described above. The only

changes required are the fully-qualified paths to the JAR files in the Classpath and AdditionalClasspath
lines.

Deploying Databases and Applications

824 Copyright © 2007, iAnywhere Solutions, Inc.

♦ The AdditionalClasspath lines shown above have wrapped to take up additional lines. They must be on
a single line in the .scRepository file.

♦ Backslash characters (\) are represented with an escape sequence of \\ in the .scRepository file.

♦ The first line indicates the version of the .scRepository file.

♦ The lines beginning with # are comments.

Step 6: Creating Connection Profiles for Sybase Central

This step involves the configuration of Sybase Central. If you are not installing Sybase Central, you can skip
it.

When Sybase Central is installed on your system, a connection profile for SQL Anywhere 10 Demo is
created in the .scRepository file. If you do not wish to create one or more connection profiles, then you can
skip this step.

The following commands were used to create the SQL Anywhere 10 Demo connection profile. Use this as
a model for creating your own connection profiles.

scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/Name" "SQL Anywhere
10 Demo"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/FirstTimeStart"
"false"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/Description"
"Suitable Description"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/ProviderId"
"sqlanywhere1000"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/Provider" "SQL
Anywhere 10"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/Data/
ConnectionProfileSettings" "DSN\eSQL^0020Anywhere^002010^0020Demo;UID
\eDBA;PWD\e35c624d517fb"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/Data/
ConnectionProfileName" "SQL Anywhere 10 Demo"

The connection profile strings and values can be extracted from the .scRepository file. Define a connection
profile using Sybase Central and then look at the .scRepository file for the corresponding lines.

Here is a portion of the .scRepository file that was created using the process described above. Some entries
have been split across multiple lines for display purposes. In the file, each entry appears on a single line:

Version: 5.0.0.3245
Fri Feb 23 13:09:14 EST 2007
#
ConnectionProfiles/SQL Anywhere 10 Demo/Name=SQL Anywhere 10 Demo
ConnectionProfiles/SQL Anywhere 10 Demo/FirstTimeStart=false
ConnectionProfiles/SQL Anywhere 10 Demo/Description=Suitable Description
ConnectionProfiles/SQL Anywhere 10 Demo/ProviderId=sqlanywhere1000
ConnectionProfiles/SQL Anywhere 10 Demo/Provider=SQL Anywhere 10
ConnectionProfiles/SQL Anywhere 10 Demo/Data/ConnectionProfileSettings=
 DSN\eSQL^0020Anywhere^002010^0020Demo;UID\eDBA;PWD\e35c624d517fb;
 UID\eDBA;
 PWD\e35c624d517fb;
ConnectionProfiles/SQL Anywhere 10 Demo/Data/ConnectionProfileName=
 SQL Anywhere 10 Demo

Deploying administration tools

Copyright © 2007, iAnywhere Solutions, Inc. 825

Step 7: Registering the SQL Anywhere ODBC driver

You must install the SQL Anywhere ODBC driver before they can be used by the iAnywhere JDBC Driver
in the administration tools.

For more information, see “Configuring the ODBC driver” on page 809.

Step 8: Registering the online help files

The administration tools come with HTML Help files for the online help. These files must be registered with
Windows before they can be used. Registering them requires a registry string to be written that names the
help file and gives its fully-qualified path.

For the English SQL Anywhere help file, you need to define a string value called HKEY_LOCAL_MACHINE
\SOFTWARE\Microsoft\Windows\HTML Help\dbmaen10.chm. Its value should be install-dir\docs\en
\htmlhelp. Help files for the other supported language versions are registered in a similar manner.

For the Sybase Central English help file, you must also define a string value called
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\HTML Help\scvwen500.chm. Its value
should be install-dir\Sybase Central 5.0.0. Help files for the other supported language versions are registered
in a similar manner.

Similar settings must be made for each of the French, German, Japanese, and Simplified Chinese help files
if you wish to deploy them.

On Windows x64-based systems, these registry entries are in the 32-bit registry (SOFTWARE
\Wow6432Node\Microsoft).

The computer must already have the HTML Help viewer installed. It is included with current versions of
Windows, but may not be present on some older computers. You can check for its existence by looking for
the hh.exe file that is installed in the Windows directory.

For more information on deploying databases and database applications, see “Deploying Databases and
Applications” on page 787.

Deploying administration tools on Linux/Unix/Mac OS X

This section explains how to install Interactive SQL (dbisql), Sybase Central (including the SQL Anywhere,
MobiLink and QAnywhere plug-ins), and the SQL Anywhere Console utility (dbconsole) on Linux, Solaris,
and Mac OS X computers. It is intended for those who want to create an installer for these administration
tools.

The instructions given here are specific to version 10.0.1 and cannot be applied to earlier or later versions
of the software.

Note also that the dbisqlc command line utility is supported on Linux, Solaris, Mac OS X, HP-UX, and AIX.
See “Deploying dbisqlc” on page 836.

Deploying Databases and Applications

826 Copyright © 2007, iAnywhere Solutions, Inc.

Check your license agreement
Redistribution of files is subject to your license agreement. No statements in this document override anything
in your license agreement. Please check your license agreement before considering deployment.

Before you begin
Before you begin, you must install SQL Anywhere on one computer as a source for program files. This is
the reference installation for your deployment.

The general steps involved are as follows:

1. Decide which programs you want to deploy.

2. Copy the required files.

3. Set environment variables.

4. Register the Sybase Central plug-ins.

Each of these steps is explained in detail in the following sections.

Step 1: Deciding what you want to deploy

You can install any combination of the following software bundles:

♦ Interactive SQL

♦ Sybase Central with the SQL Anywhere plug-in

♦ Sybase Central with the MobiLink plug-in

♦ Sybase Central with the QAnywhere plug-in

♦ SQL Anywhere Console utility (dbconsole)

The following components are also required when installing any of the above software bundles:

♦ The SQL Anywhere ODBC Driver

♦ The Java Runtime Environment (JRE) version 1.5.0

The instructions in the next section are structured so that you can install any (or all) of these five bundles
without conflicts.

Step 2: Copying the required files

Your installer should copy a subset of the files that are installed by the SQL Anywhere installer. You must
keep the same directory structure. All files must be installed below the /opt/sqlanywhere10/ directory.

You should preserve the permissions on the files when you copy them from your reference SQL Anywhere
installation. In general, all users and groups are allowed to read and execute all files.

Deploying administration tools

Copyright © 2007, iAnywhere Solutions, Inc. 827

The following table lists the files required for each of the software bundles. Make a list of the files you need,
and then copy them into the directory structure outlined above. In general, you should take the files from an
already-installed copy of SQL Anywhere.

File Interac-
tive SQL

Sybase
Central
with the
SQL Any-
where
plug-in

Sybase
Central
with the
MobiLink
plug-in

Sybase
Central
with the
QAny-
where
plug-in

SQL Any-
where
Console

java/dbma[en]10.jar X X X X X

java/jodbc.jar X X X X X

java/JComponents1001.jar X X X X X

java/jlogon.jar X X X X X

java/SCEditor500.jar X X X X X

java/jsyblib500.jar X X X X X

lib32/libjsyblib500_r.so.1 X X X X X

sun/javahelp-1_1/jh.jar X X X X X

sun/JAXB1.0/... X X X X X

jre_1.5.0_linux_sun_i586/... (Linux
only)

X X X X X

jre_1.5.0_solaris_sun_sparc/... (So-
laris only)

X X X X X

lib32/libdblib10_r.so.1 X X X X X

lib32/libdbjodbc10.so.1 X X X X X

lib32/libdbodbc10_r.so.1 X X X X X

lib32/libdbodm10.so.1 X X X X X

lib32/libdbtasks10_r.so.1 X X X X X

res/dblg[en]10.res X X X X X

lib32/libdbtool10_r.so.1 X X X

bin32/dbisql X X

java/isql.jar X X X

sybcentral500/scjview X X X

Deploying Databases and Applications

828 Copyright © 2007, iAnywhere Solutions, Inc.

File Interac-
tive SQL

Sybase
Central
with the
SQL Any-
where
plug-in

Sybase
Central
with the
MobiLink
plug-in

Sybase
Central
with the
QAny-
where
plug-in

SQL Any-
where
Console

sybcentral500/scvw[en]500.jar X X X

sybcentral500/sybasecentral500.jar X X X

java/salib.jar X X X

java/saplugin.jar X

java/debugger.jar X

lib32/libdbput10_r.so.1 X

java/apache_files.txt X X

java/apache_license_1.1.txt X X

java/apache_license_2.0.txt X X

java/log4j.jar X X

java/mlplugin.jar X

java/mldesign.jar X

java/stax-api-1.0.jar X

java/wstx-asl-2.0.5.jar X

java/velocity.jar X

java/velocity-dep.jar X

drivers/... X

java/qaplugin.jar X

java/qaconnector.jar X

java/mlstream.jar X

bin32/qaagent X

lib32/libdbicu10_r.so X

lib32/libdbicudt10.so X

bin32/dbinit X

Deploying administration tools

Copyright © 2007, iAnywhere Solutions, Inc. 829

File Interac-
tive SQL

Sybase
Central
with the
SQL Any-
where
plug-in

Sybase
Central
with the
MobiLink
plug-in

Sybase
Central
with the
QAny-
where
plug-in

SQL Any-
where
Console

bin32/dbconsole X

java/DBConsole.jar X

The table above shows a number of files with the designation [en]. For Linux, these files are available in a
number of different languages with English (en) being just one of them. For more information, see the
following section “International message and help files” on page 831.

Some file paths above end with "...". This indicates that the entire tree, including subdirectories, should be
copied.

Note that on Mac OS X, shared objects have a .dylib extension, and symlink (symbolic link) creation is not
necessary.

The administration tools require JRE 1.5.0_10. You should not substitute a later patch version of the JRE
unless you have a specific need to do so. Not all platform versions of the JRE are bundled with SQL
Anywhere. The platforms that are included with SQL Anywhere support Linux on x86/x64 and Solaris
SPARC. Other platforms versions must be obtained from the appropriate vendor. Copy the entire jre150
tree, including subdirectories.

If the platform that you require is included with with SQL Anywhere, copy the JRE files from an installed
copy of SQL Anywhere 10. Copy the entire tree, including subdirectories.

The sqlanywhere.jpr file contains a list of the required component files for the SQL Anywhere plug-in of
Sybase Central.

The mobilink.jpr file contains a list of the required component files for the MobiLink plug-in of Sybase
Central.

The qanywhere.jpr file contains a list of the required component files for the QAnywhere plug-in of Sybase
Central. When deploying the QAnywhere plug-in, dbinit is required. For information on deploying database
tools, see “Deploying database utilities” on page 843.

All five bundles in the table above require a number of links to be created. The following sections provide
details.

Base component files
All five bundles require the links listed in this section.

Create the following symbolic links in /opt/sqlanywhere10/lib:

libdbicu10_r.so -> libdbicu10_r.so.1
libdbicudt10.so -> libdbicudt10.so.1
libdbjodbc10.so -> libdbjodbc10.so.1
libjsyblib500_r.so -> libjsyblib500_r.so.1
libdbodbc10_r.so -> libdbodbc10_r.so.1

Deploying Databases and Applications

830 Copyright © 2007, iAnywhere Solutions, Inc.

libdbodm10.so -> libdbodm10.so.1
libdbtasks10_r.so -> libdbtasks10_r.so.1

Create the following symbolic links in /opt/sqlanywhere10:

jre150 -> /opt/sqlanywhere10/jre_1.5.0_linux_sun_i586 (Linux)
jre150 -> /opt/sqlanywhere10/jre_1.5.0_solaris_sun_sparc (Solaris)
shared -> /opt/sqlanywhere10

Interactive SQL files
Create the following symbolic links in /opt/sqlanywhere10/lib:

libdblib10_r.so -> libdblib10_r.so.1
libdbtool10_r.so -> libdbtool10_r.so.1

Sybase Central with the SQL Anywhere plug-in
Create the following symbolic links in /opt/sqlanywhere10/lib:

libdblib10_r.so -> libdblib10_r.so.1
libdbput10_r.so -> libdbput10_r.so.1
libdbtool10_r.so -> libdbtool10_r.so.1

Create the following links in /opt/sqlanywhere10/sybcentral500:

jre150 -> /opt/sqlanywhere10/jre_1.5.0_linux_sun_i586 (Linux)
jre150 -> /opt/sqlanywhere10/jre_1.5.0_solaris_sun_sparc (Solaris)

Sybase Central with the MobiLink plug-in
Create the following symbolic links in /opt/sqlanywhere10/lib:

libdblib10_r.so -> libdblib10_r.so.1
libdbmlput10_r.so -> libdbmlput10_r.so.1
libdbtool10_r.so -> libdbtool10_r.so.1

Create the following symbolic links in /opt/sqlanywhere10/sybcentral500:

jre150 -> /opt/sqlanywhere10/jre_1.5.0_linux_sun_i586 (Linux)
jre150 -> /opt/sqlanywhere10/jre_1.5.0_solaris_sun_sparc (Solaris)

Sybase Central with the QAnywhere plug-in
Create the following symbolic links in /opt/sqlanywhere10/lib:

libdblib10_r.so -> libdblib10_r.so.1

Create the following symbolic links in /opt/sqlanywhere10/sybcentral500:

jre150 -> /opt/sqlanywhere10/jre_1.5.0_linux_sun_i586 (Linux)
jre150 -> /opt/sqlanywhere10/jre_1.5.0_solaris_sun_sparc (Solaris)

The SQL Anywhere Console
Create the following symbolic links in /opt/sqlanywhere10/lib:

libdblib10_r.so -> libdblib10_r.so.1

International message and help files
For Linux systems only, all displayed text and online help for the administration tools have been translated
from English into German, Japanese, and Simplified Chinese. The resources for each language are in separate

Deploying administration tools

Copyright © 2007, iAnywhere Solutions, Inc. 831

files. The English files contain en in the file names. German file names contain de, Japanese file names
contain ja, and Chinese files contain zh.

If you want to install support for different languages, you have to add the resource and help files for those
other languages. The translated files are as follows:

dbma??10.jar – SQL Anywhere Help Files
dbmaen10.jar English
dbmade10.jar German
dbmaja10.jar Japanese
dbmazh10.jar Chinese

dblg??10.res – SQL Anywhere Messages Files
dblgen10.res English
dblgde10.res German
dblgja10.res Japanese
dblgzh10.res Chinese

scvw??500.jar – Sybase Central Help Files
scvwen500.jar English
scvwde500.jar German
scvwja500.jar Japanese
scvwzh500.jar Chinese

These files are included with localized versions of SQL Anywhere.

Step 3: Setting environment variables

To run the administration tools, a number of environment variables must be defined or modified. This is
usually done in the sa_config.sh file, which is created by the SQL Anywhere installer, but you have the
flexibility to do this however is most appropriate for your application.

1. Set the PATH to include the following:

/opt/sqlanywhere10/bin32

or

/opt/sqlanywhere10/bin32s

(whichever is appropriate).

If you are deploying Sybase Central, you must also add

/opt/sqlanywhere10/sybcentral500
2. Set LD_LIBRARY_PATH to include the following:

/opt/sqlanywhere10/jre150/lib/i386/client
/opt/sqlanywhere10/jre150/lib/i386
/opt/sqlanywhere10/jre150/lib/i386/native_threads

3. Set the following environment variables:

SQLANY10="/opt/sqlanywhere10"
SQLANYSH10="/opt/sqlanywhere10"

Deploying Databases and Applications

832 Copyright © 2007, iAnywhere Solutions, Inc.

Step 4: Registering the Sybase Central plug-ins

This step involves the configuration of Sybase Central. If you are not installing Sybase Central, you can skip
it.

Sybase Central requires a configuration file that lists the installed plug-ins. Your installer must create this
file. Note that it contains full paths to a number of JAR files that may change depending on where the software
is installed.

The file is called .scRepository. It resides in the /opt/sqlanywhere10/sybcentral500 directory. It is a plain
text file that contains some basic information about the plug-ins that Sybase Central should load.

The provider information for SQL Anywhere is created in the repository file using the following commands.

scjview -register "/opt/sa10/java/sqlanywhere.jpr"

The contents of the sqlanywhere.jpr file looks like this (some entries have been split across multiple lines
for display purposes). The AdditionalClasspath lines must be entered on a single line in the .jpr file.

PluginName=SQL Anywhere 10
PluginId=sqlanywhere1000
PluginClass=com.sybase.asa.plugin.SAPlugin
PluginFile=_opt_sa10_java_saplugin.jar
AdditionalClasspath=_opt_sa10_java_isql.jar:
 _opt_sa10_java_salib.jar:
 _opt_sa10_java_JComponents1001.jar:
 _opt_sa10_java_jlogon.jar:
 _opt_sa10_java_debugger.jar:
 _opt_sa10_java_jodbc.jar
ClassloaderId=SA1000

The sqlanywhere.jpr file was created in the java folder of the SQL Anywhere installation when you originally
installed SQL Anywhere. Use it as the model for the .jpr file that you must create as part of the install process.
There are also versions of this file for MobiLink and QAnywhere called mobilink.jpr and qanywhere.jpr
respectively. They are also located in the java folder.

Here is a sample .scRepository file that was created using the process described above. Some entries have
been split across multiple lines for display purposes. In the file, each entry appears on a single line:

Version: 5.0.0.3245
Fri Feb 23 13:09:14 EST 2007
#
SCRepositoryInfo/Version=4
#
Providers/sqlanywhere1000/Version=10.0.1.3390
Providers/sqlanywhere1000/UseClassloader=true
Providers/sqlanywhere1000/ClassloaderId=SA1000
Providers/sqlanywhere1000/Classpath=
 _opt_sa10_java_saplugin.jar
Providers/sqlanywhere1000/Name=SQL Anywhere 10
Providers/sqlanywhere1000/AdditionalClasspath=
 _opt_sa10_java_isql.jar:
 _opt_sa10_java_salib.jar:
 _opt_sa10_java_JComponents1001.jar:
 _opt_sa10_java_jlogon.jar:
 _opt_sa10_java_debugger.jar:
 _opt_sa10_java_jodbc.jar
Providers/sqlanywhere1000/Provider=com.sybase.asa.plugin.SAPlugin

Deploying administration tools

Copyright © 2007, iAnywhere Solutions, Inc. 833

Providers/sqlanywhere1000/ProviderId=sqlanywhere1000
Providers/sqlanywhere1000/InitialLoadOrder=0
#

Notes
♦ Your installer should create a file similar to this one using the techniques described above. The only

changes required are the fully-qualified paths to the JAR files in the Classpath and AdditionalClasspath
lines.

♦ The AdditionalClasspath lines shown above have wrapped to take up additional lines. They must be on
a single line in the .scRepository file.

♦ Forward slash characters (/) are represented with an escape sequence of _ in the .scRepository file.

♦ The first line indicates the version of the .scRepository file.

♦ The lines beginning with # are comments.

For more information about deploying databases and database applications, see “Deploying Databases and
Applications” on page 787.

Step 5: Creating Connection Profiles for Sybase Central

This step involves the configuration of Sybase Central. If you are not installing Sybase Central, you can skip
it.

When Sybase Central is installed on your system, a connection profile for SQL Anywhere 10 Demo is
created in the .scRepository file. If you do not wish to create one or more connection profiles, then you can
skip this step.

The following commands were used to create the SQL Anywhere 10 Demo connection profile. Use this as
a model for creating your own connection profiles.

scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/Name" "SQL Anywhere
10 Demo"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/FirstTimeStart"
"false"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/Description"
"Suitable Description"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/ProviderId"
"sqlanywhere1000"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/Provider" "SQL
Anywhere 10"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/Data/
ConnectionProfileSettings" "DSN\eSQL^0020Anywhere^002010^0020Demo;UID
\eDBA;PWD\e35c624d517fb"
scjview -write "ConnectionProfiles/SQL Anywhere 10 Demo/Data/
ConnectionProfileName" "SQL Anywhere 10 Demo"

The connection profile strings and values can be extracted from the .scRepository file. Define a connection
profile using Sybase Central and then look at the .scRepository file for the corresponding lines.

Here is a portion of the .scRepository file that was created using the process described above. Some entries
have been split across multiple lines for display purposes. In the file, each entry appears on a single line:

Deploying Databases and Applications

834 Copyright © 2007, iAnywhere Solutions, Inc.

Version: 5.0.0.3245
Fri Feb 23 13:09:14 EST 2007
#
ConnectionProfiles/SQL Anywhere 10 Demo/Name=SQL Anywhere 10 Demo
ConnectionProfiles/SQL Anywhere 10 Demo/FirstTimeStart=false
ConnectionProfiles/SQL Anywhere 10 Demo/Description=Suitable Description
ConnectionProfiles/SQL Anywhere 10 Demo/ProviderId=sqlanywhere1000
ConnectionProfiles/SQL Anywhere 10 Demo/Provider=SQL Anywhere 10
ConnectionProfiles/SQL Anywhere 10 Demo/Data/ConnectionProfileSettings=
 DSN\eSQL^0020Anywhere^002010^0020Demo;UID\eDBA;PWD\e35c624d517fb;
 UID\eDBA;
 PWD\e35c624d517fb;
ConnectionProfiles/SQL Anywhere 10 Demo/Data/ConnectionProfileName=
 SQL Anywhere 10 Demo

Configuring the administration tools

You can control which features are shown or enabled by the administration tools. Control is done through
an initialization file named OEM.ini. This file must be in the same directory as the JAR files used by the
administration tools (for example, C:\Program Files\SQL Anywhere 10\java). If the file is not found, default
values will be used. Also, defaults will be used for values that are missing from OEM.ini.

Here is the structure for OEM.ini:

[errors]
reportErrors type is boolean, default = true
reportErrors=false
[updates]
checkForUpdates type is boolean, default = true
checkForUpdates=false
[help]
The help file name is made up of
path + file separator + prefix + current language + suffix + ".jar".
Here is an example: c:\sa10\java\dbmaen10.jar
The file separator is the appropriate file separator for the current
operating system, for example, "\" for Windows or "/" for UNIX.
The current language is the two letter ISO code for language.
For example, en for English.
directory type is string, default is an empty string
directory='c:\sa10\java\'
prefix type is string, default is an empty string
prefix='dbma'
suffix type is string, default is an empty string
suffix='10'

If reportErrors is false, the administration tool does not present a dialog to the user inviting them to submit
error information to iAnywhere if the software crashes. Instead, the traditional, simpler dialog is be displayed.
If checkForUpdates is false, the administration tool does not check for SQL Anywhere software updates
automatically, nor does it give the user the option to do it at their discretion.

Directory, prefix, and suffix allow you to override the location and name of the help file.

Deploying administration tools

Copyright © 2007, iAnywhere Solutions, Inc. 835

Deploying dbisqlc

If your customer application is running on computers with limited resources, you may want to deploy the
dbisqlc executable instead of Interactive SQL (dbisql). However, you should note that dbisqlc does not
contain all the features of Interactive SQL and compatibility between the two is not guaranteed.

The dbisqlc executable requires the standard embedded SQL client-side libraries.

Deploying Databases and Applications

836 Copyright © 2007, iAnywhere Solutions, Inc.

Deploying SQL script files
If you want to be able to create databases as part of your application, you must include components from
the scripts directory (for example, C:\Program Files\SQL Anywhere 10\scripts). The following is a list of
files that are essential to creating new databases.

boottabs.sql
dboviews.sql
migrat.sql
mkexclud.sql
mksadb.sql
oleschem.sql
rstab.sql
sadebug.sql
saopts.sql
sybprocs.sql
syscap.sql
systabviews.sql
sysviews.sql

If you are deploying an application that uses the authenticated version of the database server, then you must
also include the following file.

authenticate.sql

For more information about authenticated applications, see “Running authenticated SQL Anywhere
applications” [SQL Anywhere Server - Database Administration].

If you require jConnect support in the databases that you will create, then you must also include the following
file.

jcatalog.sql

The following files are required to unload a SQL Anywhere 10 database.

unload.sql
optdeflt.sql
opttemp.sql

The following files are required to unload databases built with earlier versions of SQL Anywhere.

unloadold.sql

Deploying SQL script files

Copyright © 2007, iAnywhere Solutions, Inc. 837

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Deploying database servers
You can deploy a database server by making the SQL Anywhere installer available to your end users. By
selecting the proper option, each end user is guaranteed of getting the files they need.

The simplest way to deploy a personal database server or a network database server is to use the Deployment
wizard. For more information, see “Using the Deployment wizard” on page 793.

To run a database server, you need to install a set of files. The files are listed in the following table. All
redistribution of these files is governed by the terms of your license agreement. You must confirm whether
you have the right to redistribute the database server files before doing so.

Windows Linux/Unix Mac OS X NetWare

dbeng10.exe dbeng10 dbeng10 N/A

dbeng10.lic dbeng10.lic dbeng10.lic N/A

dbsrv10.exe dbsrv10 dbsrv10 dbsrv10.nlm

dbsrv10.lic dbsrv10.lic dbsrv10.lic dbsrv10.lic

dbserv10.dll libdbserv10_r.so,
libdbtasks10_r.so

libdbserv10_r.dylib,
libdbtasks10_r.dylib

N/A

dblg[en]10.dll dblg[en]10.res dblg[en]10.res dblg[en]10.res

dbctrs10.dll N/A N/A N/A

dbextf.dll 1 libdbextf.so 1 libdbextf.dylib 1 dbextf.nlm 1

dbicu10.dll2 libdbicu10_r.so2 libdbicu10_r.dylib2 dbicu10.nlm2

dbicudt10.dll2 libdbicudt10.so2 libdbicudt10.dylib2 dbicud10.nlm2

sqlany.cvf sqlany.cvf sqlany.cvf sqlany.cvf

dbodbc10.dll 3 libdbodbc10.so 3 libdbodbc10.dylib 3 N/A

N/A libdbodbc10_n.so 3 libdbodbc10_n.dylib 3 N/A

N/A libdbodbc10_r.so 3 libdbodbc10_r.dylib 3 N/A

dbjodbc10.dll 3 libdbjodbc10.so 3 libdbjodbc10.dylib 3 N/A

java\jconn2.jar 3 java/jconn2.jar 3 java/jconn2.jar 3 java\jconn2.jar 3

java\jodbc.jar 3 java/jodbc.jar 3 java/jodbc.jar 3 java\jdbcdrv.zip 3

java\sajvm.jar 3 java/sajvm.jar 3 java/sajvm.jar 3 java\sajvm.jar 3

java\cis.zip 4 java/cis.zip 4 java/cis.zip 4 java\cis.zip 4

Deploying Databases and Applications

838 Copyright © 2007, iAnywhere Solutions, Inc.

1 Required only if using system extended stored procedures and functions (xp_).
2 Required only if the database character set is multi-byte or if the UCA collation sequence is used.
3 Required only if using Java in the database.
4 Required only if using Java in the database and remote data access.

Notes
♦ Depending on your situation, you should choose whether to deploy the personal database server

(dbeng10) or the network database server (dbsrv10).

♦ You must include the separate corresponding license file (dbeng10.lic or dbsrv10.lic) when deploying
a database server. The license files are located in the same directory as the server executables.

♦ The Java VM jar file (sajvm.jar) is required only if the database server is to use the Java in the Database
functionality.

♦ The table does not include files needed to run utilities such as dbbackup.

For information about deploying utilities, see “Deploying administration tools” on page 816.

Windows Registry entries

To ensure that messages written by the server to the Event Log on Windows are formatted correctly, create
the following registry key.

HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Services\
 Eventlog\
 application\
 SQLANY 10.0

Within this key, add a REG_SZ value named EventMessageFile and assign it the data value of the fully
qualified location of dblgen10.dll, for example, C:\Program Files\SQL Anywhere 10\win32\dblgen10.dll.
The English language DLL, dblgen10.dll, can be specified regardless of the deployment language. Here is
a sample registry change file.

REGEDIT4
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Application
\SQLANY 10.0]
"EventMessageFile"="c:\\sa10\\win32\\dblgen10.dll"

To ensure that messages written by MESSAGE ... TO EVENT LOG statements to the Event Log on Windows
are formatted correctly, create the following registry key.

HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Services\
 Eventlog\
 application\
 SQLANY 10.0 Admin

Deploying database servers

Copyright © 2007, iAnywhere Solutions, Inc. 839

Within this key, add a REG_SZ value named EventMessageFile and assign it the data value of the fully
qualified location of dblgen10.dll, for example, C:\Program Files\SQL Anywhere 10\win32\dblgen10.dll.
The English language DLL, dblgen10.dll, can be specified regardless of the deployment language. Here is
a sample registry change file.

REGEDIT4
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Application
\SQLANY 10.0 Admin]
"EventMessageFile"="c:\\sa10\\win32\\dblgen10.dll"

You can suppress Windows event log entries by setting up a registry key. The registry key is

Software\Sybase\SQL Anywhere\10.0\EventLogMask

and it can be placed in either the HKEY_CURRENT_USER or HKEY_LOCAL_MACHINE hive. To
control event log entries, create a REG_DWORD value named EventLogMask and assign it a bit mask
containing the internal bit values for the different Windows event types. The three types supported by the
SQL Anywhere database server are:

EVENTLOG_ERROR_TYPE 0x0001
EVENTLOG_WARNING_TYPE 0x0002
EVENTLOG_INFORMATION_TYPE 0x0004

For example, if the EventLogMask key is set to zero, no messages appear at all. A better setting would be
1, so that informational and warning messages don't appear, but errors do. The default setting (no entry
present) is for all message types to appear. Here is a sample registry change file.

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Sybase\SQL Anywhere\10.0]
"EventLogMask"=dword:00000007

Registering DLLs on Windows

When deploying SQL Anywhere, there are DLL files that must be registered for SQL Anywhere to function
properly. There are many ways you can register these DLLs, including in an install script or using the regsvr32
utility on Windows or the regsvrce utility on Windows CE. You could also include a command, like the one
in the following procedure, in a batch file.

♦ To register a DLL

1. Open a command prompt.

2. Change to the directory where the DLL provider is installed.

3. Enter the following command to register the provider (in this example, the OLE DB provider is
registered):

regsvr32 dboledb10.dll

The following table lists the DLLs that must be registered when deploying SQL Anywhere:

Deploying Databases and Applications

840 Copyright © 2007, iAnywhere Solutions, Inc.

File Description

dbctrs10.dll The SQL Anywhere Performance Monitor counters.

dbmlsynccom.dll The Dbmlsync Integration Component (non-visual component).

dbmlsynccomg.dll The Dbmlsync Integration Component (visual component).

dbodbc10.dll The SQL Anywhere ODBC driver.

dboledb10.dll The SQL Anywhere OLE DB provider.

dboledba10.dll The SQL Anywhere OLE DB provider assist.

Windows\system32\msxml4.dll The Microsoft XML Parser.

Deploying databases

You deploy a database file by installing the database file onto your end-user's disk.

As long as the database server shuts down cleanly, you do not need to deploy a transaction log file with your
database file. When your end user starts running the database, a new transaction log is created.

For SQL Remote applications, the database should be created in a properly synchronized state, in which
case no transaction log is needed. You can use the Extraction utility for this purpose.

For information about extracting databases, see “Database Extraction utility” [SQL Remote].

Deploying databases on read-only media

You can distribute databases on read-only media, such as a CD-ROM, as long as you run them in read-only
mode.

For more information on running databases in read-only mode, see “-r server option” [SQL Anywhere Server
- Database Administration].

If you need to make changes to the database, you must copy the database from the CD-ROM to a location
where it can be modified, such as a hard drive.

Deploying database servers

Copyright © 2007, iAnywhere Solutions, Inc. 841

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbsren10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbdaen10.pdf

Deploying security
The following table summarizes the components that support security features in SQL Anywhere.

Security option Security type Included in module Licensable

Database encryption AES dbserv10.dll

libdbserv10_r.so

included1

Database encryption FIPS-approved AES dbfips10.dll separately licensed2

Transport layer security RSA dbrsa10.dll

libdbrsa10.so

libdbrsa10.dylib

libdbrsa10_r.dylib

included1

Transport layer security FIPS-approved RSA dbfips10.dll, sbgse2.dll separately licensed2

Transport layer security ECC dbecc10.dll

libdbecc10.so

separately licensed2

1 AES and RSA strong encryption are included with SQL Anywhere and do not require a separate license,
but these libraries are not FIPS-certified.
2 The software for strong encryption using ECC or FIPS-certified technology must be ordered separately.

Deploying Databases and Applications

842 Copyright © 2007, iAnywhere Solutions, Inc.

Deploying embedded database applications
This section provides information on deploying embedded database applications, where the application and
the database both reside on the same computer.

An embedded database application includes the following:

♦ Client application This includes the SQL Anywhere client requirements.

For information on deploying client applications, see “Deploying client applications” on page 798.

♦ Database server The SQL Anywhere personal database server.

For information on deploying database servers, see “Deploying database servers” on page 838.

♦ SQL Remote If your application uses SQL Remote replication, you must deploy the SQL Remote
Message Agent.

♦ The database You must deploy a database file holding the data the application uses.

Deploying personal servers

When you deploy an application that uses the personal server, you need to deploy both the client application
components and the database server components.

The language resource library (dblgen10.dll) is shared between the client and the server. You need only one
copy of this file.

It is recommended that you follow the SQL Anywhere installation behavior, and install the client and server
files in the same directory.

Remember to provide the Java zip files and the Java DLL if your application takes advantage of Java in the
Database.

Deploying database utilities

If you need to deploy database utilities (such as dbbackup) along with your application, then you need the
utility executable together with the following additional files:

Description Windows Linux/Unix Mac OS X

Database tools library dbtool10.dll libdbtool10.so,
libdbtasks10.so

libdbtool10.dylib,
libdbtasks10.dylib

Interface Library dblib10.dll libdblib10.so libdblib10.dylib

Language resource library dblg[en]10.dll dblg[en]10.res dblg[en]10.res

Connect dialog dbcon10.dll

Deploying embedded database applications

Copyright © 2007, iAnywhere Solutions, Inc. 843

Description Windows Linux/Unix Mac OS X

Pre-10 physical store library dboftsp.dll libdboftsp.so libdboftsp.dylib

Notes

♦ For multi-threaded applications on Linux/Unix, use libdbtool10_r.so, libdbtasks10_r.so, and
libdblib10_r.so.

♦ For multi-threaded applications on Mac OS X, use libdbtool10_r.dylib, libdbtasks10_r.dylib, and
libdblib10_r.dylib.

♦ The personal database server (dbeng10) is required for creating databases using the dbinit utility. It is
also required if you are creating databases from Sybase Central on the local computer when no other
database servers are running.

♦ The pre-10 physical store library is required by some utilities (dblog, dbtran, dberase) in order to access
pre-version 10.0 log files. If you are not deploying these utilities, then you do not require this library.

♦ Some database utilities like dbinit and dbunload will require the contents of the scripts directory to be
present. See “Deploying SQL script files” on page 837.

Deploying unload support for pre 10.0 databases

If, in your application, you need to the ability to convert older databases to the 10.0 format, then you need
the database unload utility, dbunload, together with the following additional files:

Description Windows Linux/Unix Mac OS X

Unload support for
pre-10.0 databases

dbunlspt.exe dbunlspt dbunlspt

Message resource library dbus[en].dll dbus[en].res dbus[en].res

The table above shows a file with the designation [en]. These files are available in a number of different
languages with English (en) being just one of them. For more information, see the following section
“International message files” on page 844.

In addition to these files, you also need the files described in “Deploying database utilities” on page 843 and
“Deploying SQL script files” on page 837.

International message files
All displayed text and online help for the administration tools is translated from English into French, German,
Japanese, and Simplified Chinese. The resources for each language are held in separate files. The English
files contain en in the file names. French files have similar names, but use fr instead of en. German file
names contain de, Japanese file names contain ja, and Chinese files contain zh.

If you want to install support for different languages, you have to add the resource files for those other
languages. The translated files are as follows:

Deploying Databases and Applications

844 Copyright © 2007, iAnywhere Solutions, Inc.

dbus??.dll – Windows Message Files
dbusen.dll English
dbusfr.dll French
dbusde.dll German
dbusja.dll Japanese
dbuszh.dll Chinese

dbus??.res – Linux/Unix/Mac OS X Message Files
dbusen.res English
dbusde.res German
dbusja.res Japanese
dbuszh.res Chinese

These files are included with localized versions of SQL Anywhere.

Deploying SQL Remote

If you are deploying the SQL Remote Message Agent, you need to include the following files:

Description Windows Linux/Unix

Message Agent dbremote.exe dbremote

Database tools library dbtool10.dll libdbtools10.so, libdbtasks10.so

Encryption/decryption module dbencod10.dll libdbencod10_r.so

Language resource library dblg[en]10.dll dblg[en]10.res

VIM message link library 1 dbvim10.dll

SMTP message link library 1 dbsmtp10.dll

FILE message link library 1 dbfile10.dll libdbfile10.so

FTP message link library 1 dbftp10.dll

MAPI message link library 1 dbmapi10.dll

Interface Library dblib10.dll

1 Only deploy the library for the message link you are using.

It is recommended that you follow the SQL Anywhere installation behavior, and install the SQL Remote
files in the same directory as the SQL Anywhere files.

For multi-threaded applications on Linux/Unix, use libdbtools10_r.so and libdbtasks10_r.so.

Deploying embedded database applications

Copyright © 2007, iAnywhere Solutions, Inc. 845

846

Index
Symbols
-d option

SQL preprocessor, 553
-e option

SQL preprocessor, 553
-gn option

threads, 95
-h option

SQL preprocessor, 553
-k option

SQL preprocessor, 553
-n option

SQL preprocessor, 553
-o option

SQL preprocessor, 553
-q option

SQL preprocessor, 553
-r option

SQL preprocessor, 553
-s option

SQL preprocessor, 553
-u option

SQL preprocessor, 553
-w option

SQL preprocessor, 553
-x option

SQL preprocessor, 553
-z option

SQL preprocessor, 553
.NET, xi

(see also ADO.NET)
deploying, 798
using the SQL Anywhere .NET Data Provider, 103

.NET 2.0
tracing support, 135

.NET Data Provider
about, 103
accessing data, 111
adding a reference to the DLL in a C# project, 106
adding a reference to the DLL in a Visual Basic .NET
project, 106
connecting to a database, 108
connection pooling, 109
deleting data, 111

deploying, 133
error handling, 132
executing stored procedures, 128
features, 104
files required for deployment, 133
inserting data, 111
location of ADO.NET 1.x Data Provider
documentation, 103
obtaining time values, 127
POOLING option, 109
referencing the provider classes in your source code,
107
registering, 134
running the sample projects, 105
supported languages, 4
system requirements, 133
transaction processing, 130
two versions supported, 103
updating data, 111
using the Simple code sample, 141
using the Table Viewer code sample, 145

.scRepository
deploying administration tools on Linux/Unix, 833
deploying administration tools on Windows, 823

A
a_backup_db structure

syntax, 740
a_change_log structure

syntax, 742
a_create_db structure

syntax, 743
a_db_info structure

syntax, 746
a_db_version_info structure

syntax, 748
a_dblic_info structure

syntax, 749
a_dbtools_info structure

syntax, 750
a_name structure

syntax, 751
a_remote_sql structure

syntax, 752
a_sync_db structure

syntax, 757
a_syncpub structure

Copyright © 2007, iAnywhere Solutions, Inc. 847

syntax, 763
a_sysinfo structure

syntax, 764
a_table_info structure

syntax, 765
a_translate_log structure

syntax, 765
a_truncate_log structure

syntax, 769
a_validate_db structure

syntax, 775
a_validate_type enumeration

syntax, 780
Abort property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 391
accessing and manipulating data

using the .NET Data Provider, 111
Accessing fields and methods

Java in the database, 88
Accessing Java methods

Java in the database, 88
accessing web services from Java JAX-RPC

tutorial, 652
accessing web services from Microsoft Visual C#

tutorial, 649, 665
ActiveX Data Objects

about, 427
Add methods [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 172,
371

Add(Int32, Int32) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 172

Add(Int32, String) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 173

Add(Object) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 371

Add(SABulkCopyColumnMapping) method [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 172
Add(SAParameter) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 372
Add(String, Int32) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 174
Add(String, Object) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 372
Add(String, SADbType) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 373
Add(String, SADbType, Int32) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 374
Add(String, SADbType, Int32, String) method
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 374
Add(String, String) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 174
adding

JAR files, 92
Java in the database classes, 91

adding database objects using the SQL Anywhere
Explorer

about, 17
AddRange methods [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 375
AddRange(Array) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 375
AddRange(SAParameter[]) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 376
administration tools

dbtools, 721
ADO

about, 427
Command object, 428
commands, 428
Connection object, 427
connections, 427
cursor types, 35
cursors, 51, 431
data control, 716
introduction to programming, 5
queries, 429, 430
Recordset object, 429, 430
transactions, 432
updates, 431
using SQL statements in applications, 20

ADO.NET
about, 4
autocommit mode, 55
controlling autocommit behavior, 55
cursor support, 51
deploying, 798
prepared statements, 23
SQL Anywhere Explorer, 13
using SQL statements in applications, 20
version 1.x Data Provider documentation, 103

ADO.NET API
about, 103

ADOCE

Index

848 Copyright © 2007, iAnywhere Solutions, Inc.

version, 799
ADOCE 3.1

deploying, 799
alignment of data

ODBC, 461
All property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 215
alloc_sqlda function

about, 557
alloc_sqlda_noind function

about, 557
allusersprofile

deploying administration tools on Windows, 823
an_erase_db structure

syntax, 750
an_unload_db structure

syntax, 770
an_upgrade_db structure

syntax, 774
Apache

choosing a PHP module, 593
API reference

PHP, 606
APIs

ADO API, 5
ADO.NET, 4
data access APIs, 3
JDBC API, 7
ODBC API, 6
OLE DB API, 5
Perl DBD::SQLAnywhere API, 10
Sybase Open Client API, 9

AppInfo property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 243

application programming interfaces, xi
(see also APIs)

applications
deploying, 787
deploying client applications, 798
deploying embedded SQL, 813
SQL, 20

ARRAY clause
FETCH statement, 540

array fetches
about, 540

asensitive cursors
about, 44
delete example, 38

introduction, 38
update example, 40

authenticate.sql
initializing databases, 837

autocommit
controlling, 55
implementation, 56
JDBC, 484
ODBC, 449
setting for transactions, 55

AUTOINCREMENT
finding most recent row inserted, 32

AutoStart property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 243

AutoStop property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 244

B
background processing

callback functions, 552
backups

DBBackup DBTools function, 731
DBTools example, 728
embedded SQL functions, 552

BatchSize property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 155

BeginExecuteNonQuery methods [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 188

BeginExecuteNonQuery() method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 188

BeginExecuteNonQuery(AsyncCallback, Object)
method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 189
BeginExecuteReader methods [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 190
BeginExecuteReader() method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 190
BeginExecuteReader(AsyncCallback, Object) method
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 191
BeginExecuteReader(AsyncCallback, Object,
CommandBehavior) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 192
BeginExecuteReader(CommandBehavior) method
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 190
BeginTransaction methods [SA .NET 2.0]

Copyright © 2007, iAnywhere Solutions, Inc. 849

iAnywhere.Data.SQLAnywhere namespace, 228
BeginTransaction() method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 228
BeginTransaction(IsolationLevel) method [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 229
BeginTransaction(SAIsolationLevel) method
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 229
benefits of using cursors

about, 26
BIGINT data type

embedded SQL, 512
BINARY data type

embedded SQL, 512
bind parameters

prepared statements, 23
bind variables

about, 525
BIT data type

embedded SQL, 512
bit fields

using, 727
blank padding

strings in embedded SQL, 507
blank padding enumeration

syntax, 777
BLOBs

embedded SQL, 545
retrieving in embedded SQL, 546
sending in embedded SQL, 547

block cursors
about, 31
ODBC, 36

bookmarks
ODBC cursors, 463

bookmarks and cursors
about, 36

boottabs.sql
initializing databases, 837

Borland C++
embedded SQL support, 497

Broadcast property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 412

BroadcastListener property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 412

bugs
providing feedback, xix

Bulk-Library
about, 622

BulkCopyTimeout property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 155

byte code
Java classes, 73

C
C programming language

data types, 512
embedded SQL applications, 495

C#
support in .NET Data Provider, 4

C++ applications
dbtools, 721
embedded SQL, 495

CALL statement
embedded SQL, 549

callback functions
embedded SQL, 552
registering, 568

callbacks
DB_CALLBACK_CONN_DROPPED, 569
DB_CALLBACK_DEBUG_MESSAGE, 568
DB_CALLBACK_FINISH, 568
DB_CALLBACK_MESSAGE, 569
DB_CALLBACK_START, 568
DB_CALLBACK_WAIT, 569

Cancel method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 193

canceling requests
embedded SQL, 552

CanCreateDataSourceEnumerator property [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 329
capabilities

supported, 629
case sensitivity

Java in the database and SQL, 79
CD-ROM

deploying databases on, 841
chained mode

controlling, 55
implementation, 56
transactions, 55

chained option
JDBC, 484

Index

850 Copyright © 2007, iAnywhere Solutions, Inc.

ChangeDatabase method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 230

ChangePassword method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 231

character data
character sets in Embedded SQL, 514
length in Embedded SQL, 514

character sets
HTTP requests, 709
setting CHAR character set, 562
setting NCHAR character set, 562

character strings
embedded SQL, 553

Charset property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 244

cis.zip
deploying database servers, 838

Class.forName method
loading iAnywhere JDBC driver, 473
loading jConnect, 476

classes
creating, 91
installing, 91
runtime, 78
supported, 75
unsupported, 100
updating, 93
versions, 93

CLASSPATH environment variable
Java in the database, 87
jConnect, 475
setting, 481

clauses
WITH HOLD, 30

Clear method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 377

ClearAllPools method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 231

ClearPool method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 232

client
time change, 574

Client-Library
Sybase Open Client, 622

client-side autocommit
about, 56

ClientPort property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 412

Close method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 158,
232, 283

CLOSE statement
using cursors in embedded SQL, 538

ColumnMappings property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 156

Columns field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 343

Command ADO object
ADO, 428

command line utilities
deploying, 843

Command property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 396,
399

commands
ADO Command object, 428

CommandText property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 184

CommandTimeout property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 184

CommandType property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 185

CommBufferSize property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 244

Commit method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 422

COMMIT statement
cursors, 57
JDBC, 484

committing
transactions from ODBC, 449

CommitTrans ADO method
ADO programming, 432
updating data, 431

CommLinks property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 245

compile and link process
about, 496

compilers
supported, 497

components
transaction attribute, 66

Compress property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 245

CompressionThreshold property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 245

Copyright © 2007, iAnywhere Solutions, Inc. 851

concurrency values
SQL_CONCUR_LOCK, 459
SQL_CONCUR_READ_ONLY, 459
SQL_CONCUR_ROWVER, 459
SQL_CONCUR_VALUES, 459

configuring
administration tools for deployment, 835
Interactive SQL for deployment, 835
Sybase Central for deployment, 835

configuring the SQL Anywhere Explorer
about, 16

conformance
ODBC, 440

Connection ADO object
ADO, 427
ADO programming, 432

connection handles
ODBC, 448

connection pooling
.NET Data Provider, 109

Connection property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 186,
420

connection state
.NET Data Provider, 109

CONNECTION_PROPERTY function
example, 708

ConnectionLifetime property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 246

ConnectionName property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 246

ConnectionReset property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 247

connections
ADO Connection object, 427
connecting to a database using the .NET Data
Provider, 108
functions, 573
iAnywhere JDBC driver URL, 473
jConnect, 477
jConnect URL, 477
JDBC, 472
JDBC client applications, 479
JDBC defaults, 484
JDBC example, 479, 481
JDBC in the server, 481
licensing web applications, 706
ODBC attributes, 453

ODBC functions, 451
ODBC programming, 451
SQL Anywhere Explorer, 15

ConnectionString property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 216,
224

ConnectionTimeout property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 225,
247

console utility [dbconsole]
deploying, 816
deploying on Linux and Unix, 826
deploying on Windows without InstallShield, 816

Contains method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 175

Contains methods [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 377

Contains(Object) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 377

Contains(String) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 378

ContainsKey method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 261

conventions
documentation, xiv
file names, 791
file names in documentation, xvi

conversion
data types, 518

cookie session ID
HTTP session, 704

copying
database objects in Visual Studio .NET, 17

CopyTo method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 176,
322, 378

Count property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 321,
367

Create Database wizard
deployment considerations, 816

create Java class wizard
using, 91

CREATE PROCEDURE statement
embedded SQL, 549

CreateCommand method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 233,
329

Index

852 Copyright © 2007, iAnywhere Solutions, Inc.

CreateCommandBuilder method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 330

CreateConnection method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 330

CreateConnectionStringBuilder method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 331

CreateDataAdapter method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 331

CreateDataSourceEnumerator method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 332

CreateParameter method
using, 23

CreateParameter method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 193,
332

CreatePermission method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 332,
389

CS-Library
about, 622

CS_CSR_ABS
not supported with Open Client, 629

CS_CSR_FIRST
not supported with Open Client, 629

CS_CSR_LAST
not supported with Open Client, 629

CS_CSR_PREV
not supported with Open Client, 629

CS_CSR_REL
not supported with Open Client, 629

CS_DATA_BOUNDARY
not supported with Open Client, 629

CS_DATA_SENSITIVITY
not supported with Open Client, 629

CS_PROTO_DYNPROC
not supported with Open Client, 629

CS_REG_NOTIF
not supported with Open Client, 629

CS_REQ_BCP
not supported with Open Client, 629

ct_command function
Open Client, 626, 628

ct_cursor function
Open Client, 626

ct_dynamic function
Open Client, 626

ct_results function
Open Client, 628

ct_send function
Open Client, 628

cursor positioning
troubleshooting, 30

cursor sensitivity and isolation levels
about, 50

cursor sensitivity and performance
about, 46

cursors
about, 25
ADO, 51
ADO.NET, 51
asensitive, 44
availability, 35
benefits, 26
canceling, 34
choosing ODBC cursor characteristics, 459
db_cancel_request function, 561
delete, 627
describing, 53
dynamic, 42
DYNAMIC SCROLL, 30, 35, 44
embedded SQL, 52, 538
example C code, 502
fat, 31
fetching multiple rows, 31
fetching rows, 29, 30
insensitive, 35, 42
inserting multiple rows, 32
inserting rows, 32
internals, 37
introduction, 25
isolation level, 30
keyset-driven, 45
membership, 37
NO SCROLL, 35, 42
ODBC, 51, 458
ODBC bookmarks, 463
ODBC deletes, 462
ODBC result sets, 460
ODBC updates, 462
OLE DB, 51
Open Client, 626
order, 37
performance, 46, 47
platforms, 35
positioning, 29
prepared statements, 28

Copyright © 2007, iAnywhere Solutions, Inc. 853

read-only, 35
requesting, 51
result sets, 25
savepoints, 58
SCROLL, 35, 45
scrollable, 31
sensitive, 42
sensitivity, 37, 38
sensitivity examples, 38, 40
static, 42
step-by-step, 28
stored procedures, 549
transactions, 57
unique, 35
unspecified sensitivity, 44
update, 627
updating, 431
updating and deleting rows, 32
uses, 25
using, 28
value-sensitive, 45
values, 37
visible changes, 37
work tables, 46

cursors and bookmarks
about, 36

D
data

accessing with the .NET Data Provider, 111
manipulating with the .NET Data Provider, 111

data type conversion
indicator variables, 518

data types
C data types, 512
dynamic SQL, 529
embedded SQL, 507
host variables, 512
in web services handlers, 660
mapping, 624
Open Client, 624
ranges, 624
SQLDA, 530

DataAdapter
about, 111
deleting data, 118
inserting data, 118

obtaining primary key values, 123
obtaining result set schema information, 123
retrieving data, 117
updating data, 118
using, 117

DataAdapter property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 205

database management
dbtools, 721

database options
set for jConnect, 478

database properties
db_get_property function, 564

Database property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 226

database servers
deploying, 838
functions, 573

database size enumeration
syntax, 778

database tools interface
a_backup_db structure, 740
a_change_log structure, 742
a_create_db structure, 743
a_db_info structure, 746
a_db_version_info structure, 748
a_dblic_info structure, 749
a_dbtools_info structure, 750
a_name structure, 751
a_remote_sql structure, 752
a_sync_db structure, 757
a_syncpub structure, 763
a_sysinfo structure, 764
a_table_info structure, 765
a_translate_log structure, 765
a_truncate_log structure, 769
a_validate_db structure, 775
a_validate_type enumeration, 780
about, 721
an_erase_db structure, 750
an_unload_db structure, 770
an_upgrade_db structure, 774
Blank padding enumeration, 777
database size enumeration, 778
Database version enumeration, 778
DBBackup function, 731
DBChangeLogName function, 731
DBCreate function, 732

Index

854 Copyright © 2007, iAnywhere Solutions, Inc.

DBCreatedVersion function, 732
DBErase function, 733
DBInfo function, 733
DBInfoDump function, 734
DBInfoFree function, 734
DBLicense function, 735
dbrmt.h, 740
dbtools.h, 740
DBToolsFini function, 736
DBToolsInit function, 736
DBToolsVersion function, 737
dbtran_userlist_type enumeration, 779
DBTranslateLog function, 737
DBTruncateLog function, 738
DBUnload function, 738
dbunload type enumeration, 780
DBUpgrade function, 738
DBValidate function, 739
dbxtract, 738
verbosity enumeration, 781

database tools library
about, 722

database version enumeration
syntax, 778

DatabaseFile property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 248

DatabaseKey property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 248

DatabaseName property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 249

databases
deploying, 841
storing Java classes, 73
URL, 477

DatabaseSwitches property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 249

DataSet
.NET Data Provider, 118

DataSource property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 225

DataSourceInformation field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 344

DataSourceName property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 247

DataTypes field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 344

DATETIME data type
embedded SQL, 512

DB-Library
about, 622

db_backup function
about, 552, 557

DB_BACKUP_CLOSE_FILE parameter
about, 557

DB_BACKUP_END parameter
about, 557

DB_BACKUP_INFO parameter
about, 557

DB_BACKUP_INFO_CHKPT_LOG parameter
about, 557

DB_BACKUP_INFO_PAGES_IN_BLOCK
parameter

about, 557
DB_BACKUP_OPEN_FILE parameter

about, 557
DB_BACKUP_PARALLEL_READ parameter

about, 557
DB_BACKUP_PARALLEL_START parameter

about, 557
DB_BACKUP_READ_PAGE parameter

about, 557
DB_BACKUP_READ_RENAME_LOG parameter

about, 557
DB_BACKUP_START parameter

about, 557
DB_CALLBACK_CONN_DROPPED callback
parameter

about, 569
DB_CALLBACK_DEBUG_MESSAGE callback
parameter

about, 568
DB_CALLBACK_FINISH callback parameter

about, 568
DB_CALLBACK_MESSAGE callback parameter

about, 569
DB_CALLBACK_START callback parameter

about, 568
DB_CALLBACK_WAIT callback parameter

about, 569
db_cancel_request function

about, 561
request management, 552

db_change_char_charset function
about, 562

db_change_nchar_charset function
about, 562

Copyright © 2007, iAnywhere Solutions, Inc. 855

db_delete_file function
about, 563

db_find_engine function
about, 563

db_fini function
about, 563

db_fini_dll
calling, 500

db_get_property function
about, 564

db_init function
about, 565

db_init_dll
calling, 500

db_is_working function
about, 565
request management, 552

db_locate_servers function
about, 566

db_locate_servers_ex function
about, 566

DB_LOOKUP_FLAG_ADDRESS_INCLUDES_PO
RT

about, 566
DB_LOOKUP_FLAG_DATABASES

about, 566
DB_LOOKUP_FLAG_NUMERIC

about, 566
db_register_a_callback function

about, 568
request management, 552

db_start_database function
about, 570

db_start_engine function
about, 570

db_stop_database function
about, 571

db_stop_engine function
about, 572

db_string_connect function
about, 573

db_string_disconnect function
about, 573

db_string_ping_server function
about, 574

db_time_change function
about, 574

DBBackup function

about, 731
DBChangeLogName function

about, 731
dbcon10.dll

deploying database utilities, 843
deploying embedded SQL clients, 813
deploying ODBC clients, 806
deploying OLE DB clients, 799

dbconsole utility
deploying, 816
deploying on Linux and Unix, 826
deploying on Windows without InstallShield, 816

DBCreate function
about, 732

DBCreatedVersion function
about, 732

dbctrs10.dll
deploying database servers, 838
deploying SQL Anywhere, 841

DBD::SQLAnywhere
about, 581
installing on Unix and Mac OS X, 585
installing on Windows, 583
writing Perl scripts, 587

dbecc10.dll
deploying embedded SQL clients, 813
ECC encryption, 842

dbeng10
deploying database servers, 838

dbeng10.exe
deploying database servers, 838

dbeng10.lic
deploying database servers, 838

DBErase function
about, 733

dbextf.dll
deploying database servers, 838

dbextf.nlm
deploying database servers, 838

dbfile10.dll
deploying SQL Remote, 845

dbfips10.dll
deploying embedded SQL clients, 813
FIPS-approved AES encryption, 842
FIPS-approved RSA encryption, 842

dbftp10.dll
deploying SQL Remote, 845

DBI module (see DBD::SQLAnywhere)

Index

856 Copyright © 2007, iAnywhere Solutions, Inc.

dbicu10.dll
deploying database servers, 838

dbicu10.nlm
deploying database servers, 838

dbicud10.nlm
deploying database servers, 838

dbicudt10.dll
deploying database servers, 838

DBInfo function
about, 733

DBInfoDump function
about, 734

DBInfoFree function
about, 734

dbinit utility
deployment considerations, 844

dbisqlc utility
deploying, 836
limited functionality, 836
Unix supported deployment platforms, 826

dbjodbc10.dll
deploying database servers, 838

dblgen10.dll
deploying database servers, 838
deploying database utilities, 843
deploying embedded SQL clients, 813
deploying ODBC clients, 806
deploying OLE DB clients, 799
deploying SQL Remote, 845

dblgen10.dll registry entry
about, 839

dblgen10.res
deploying database servers, 838
deploying database utilities, 843
deploying ODBC clients, 806
deploying SQL Remote, 845

dblib10.dll
deploying database utilities, 843
deploying embedded SQL clients, 813
interface libraries, 496

DBLicense function
about, 735

dbmapi10.dll
deploying SQL Remote, 845

dbmlsync utility
building your own, 757
C API for, 757

dbmlsynccom.dll

deploying SQL Anywhere, 841
dbmlsynccomg.dll

deploying SQL Anywhere, 841
dbodbc10

Mac OS X ODBC driver, 445
dbodbc10.bundle

deploying ODBC clients, 806
dbodbc10.dll

deploying database servers, 838
deploying ODBC clients, 806
deploying SQL Anywhere, 841
linking, 442

dbodbc10.lib
Windows CE ODBC import library, 444

dbodbc10_r.bundle
deploying ODBC clients, 806

dboftsp.dll
deploying database utilities, 843

dboledb10.dll
deploying OLE DB clients, 799
deploying SQL Anywhere, 841

dboledba10.dll
deploying OLE DB clients, 799
deploying SQL Anywhere, 841

dboviews.sql
initializing databases, 837

dbremote
deploying SQL Remote, 845

DBRemoteSQL function
about, 735

dbrmt.h
about, 722
database tools interface, 740

dbrsa10.dll
RSA encryption, 842

dbserv10.dll
AES encryption, 842
deploying database servers, 838

dbsmtp10.dll
deploying SQL Remote, 845

dbsrv10
deploying database servers, 838

dbsrv10.exe
deploying database servers, 838

dbsrv10.lic
deploying database servers, 838

dbsrv10.nlm
deploying database servers, 838

Copyright © 2007, iAnywhere Solutions, Inc. 857

DBSynchronizeLog function
about, 735

dbtool10.dll
about, 722
deploying database utilities, 843
deploying SQL Remote, 845
Windows CE, 722

DBTools interface
about, 721
alphabetical list of functions, 731
calling DBTools functions, 725
enumerations, 777
example program, 728
finishing, 724
introduction, 722
return codes, 784
starting, 724
using, 724

dbtools.h
about, 722
database tools interface, 740

DBToolsFini function
about, 736

DBToolsInit function
about, 736

DBToolsVersion function
about, 737

dbtran_userlist_type enumeration
syntax, 779

DBTranslateLog function
about, 737

DBTruncateLog function
about, 738

DbType property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 357

DBUnload function
about, 738

dbunload type enumeration
syntax, 780

dbunload utility
building your own, 770
deployment considerations, 844
deployment for pre 10.0 databases, 844
header file, 770

dbunlspt
deployment for pre 10.0 databases, 844

DBUpgrade function
about, 738

dbusen.dll
deployment for pre 10.0 databases, 844

dbusen.res
deployment for pre 10.0 databases, 844

DBValidate function
about, 739

dbvim10.dll
deploying SQL Remote, 845

dbxtract utility
building your own, 770
database tools interface, 738
header file, 770

DECIMAL data type
embedded SQL, 512

DECL_BIGINT macro
about, 512

DECL_BINARY macro
about, 512

DECL_BIT macro
about, 512

DECL_DATETIME macro
about, 512

DECL_DECIMAL macro
about, 512

DECL_FIXCHAR macro
about, 512

DECL_LONGBINARY macro
about, 512

DECL_LONGNVARCHAR macro
about, 512

DECL_LONGVARCHAR macro
about, 512

DECL_NCHAR macro
about, 512

DECL_NFIXCHAR macro
about, 512

DECL_NVARCHAR macro
about, 512

DECL_UNSIGNED_BIGINT macro
about, 512

DECL_VARCHAR macro
about, 512

declaration section
about, 511

DECLARE statement
using cursors in embedded SQL, 538

declaring
embedded SQL data types, 507

Index

858 Copyright © 2007, iAnywhere Solutions, Inc.

host variables, 511
DELETE statement

JDBC, 485
positioned, 32

DeleteCommand property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 271

DeleteDynamic method
JDBCExample, 488

DeleteStatic method
JDBCExample, 486

deploying
.NET data provider, 798
.NET Data Provider applications, 133
about, 787
administration tools, 816
administration tools on Linux and Unix, 826
administration tools on Windows without
InstallShield, 816
ADO.NET data provider, 798
applications and databases, 787
client applications, 798
console utility [dbconsole], 816, 826
console utility [dbconsole] on Windows without
InstallShield, 816
database servers, 838
databases, 841
databases on CD-ROM, 841
deployment wizard, 793
embedded databases, 843
embedded SQL, 813
file locations, 790
iAnywhere JDBC driver, 814
Interactive SQL, 816, 836
Interactive SQL on Linux and Unix, 826
Interactive SQL on Windows without InstallShield,
816
Java in the database, 838
jConnect, 814
JDBC clients, 814
MobiLink plug-in, 816
MobiLink server silent install, 795
ODBC, 806
ODBC driver, 806
ODBC settings, 806, 810
OLE DB provider, 799
Open Client, 815
overview, 788
personal database server, 843

QAnywhere plug-in, 816
read-only databases, 841
registering DLLs, 840
registry settings, 806, 810, 839
Scripts folder, 837
silent installation, 795
SQL Anywhere, 787
SQL Anywhere components on Windows, 793
SQL Anywhere plug-in, 816
SQL Remote, 845
SQL script files, 837
Sybase Central, 816
Sybase Central on Linux and Unix, 826
Sybase Central on Windows without InstallShield,
816
UltraLite plug-in, 816
Unix issues, 790
wizard, 793

deploying on Linux and Unix
SQL Anywhere Console [dbconsole] utility, 826

deploying the SQL Anywhere .NET Data Provider
about, 133

Deployment wizard
about, 793

Depth property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 280

DeriveParameters method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 206

DESCRIBE statement
about, 527
multiple result sets, 551
SQLDA fields, 530
sqllen field, 532
sqltype field, 532

describing
NCHAR columns in Embedded SQL, 532
result sets, 53

descriptors
describing result sets, 53

DesignTimeVisible property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 186

DestinationColumn property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 167

DestinationOrdinal property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 168

DestinationTableName property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 157

developer community

Copyright © 2007, iAnywhere Solutions, Inc. 859

newsgroups, xix
developing applications with the .NET Data Provider

about, 103
Direction property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 358
directory structure

Unix, 790
DisableMultiRowFetch property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 249
DISH services

about, 631
creating, 636, 646
Java JAX-RPC tutorial, 652
Microsoft .NET tutorial, 649, 665

Dispose method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 158

Distributed Transaction Coordinator
three-tier computing, 62

distributed transactions
about, 59, 60, 64
architecture, 62, 63
EAServer, 66
enlistment, 62
recovery, 64
three-tier computing, 61

DLL entry points
about, 557

DLL property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 405

DLLs
deployment, 840
multiple SQLCAs, 524
registering for deployment, 840

DoBroadcast property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 405,
413

documentation
conventions, xiv
SQL Anywhere, xii

drivers
iAnywhere JDBC driver, 470
jConnect JDBC driver, 470
SQL Anywhere ODBC driver, 442, 806

DSN-less connections
using ODBC, 812

DT_BIGINT embedded SQL data type
about, 507

DT_BINARY embedded SQL data type

about, 509
DT_BIT embedded SQL data type

about, 507
DT_DATE embedded SQL data type

about, 508
DT_DECIMAL embedded SQL data type

about, 507
DT_DOUBLE embedded SQL data type

about, 507
DT_FIXCHAR embedded SQL data type

about, 508
DT_FLOAT embedded SQL data type

about, 507
DT_INT embedded SQL data type

about, 507
DT_LONGBINARY embedded SQL data type

about, 509
DT_LONGNVARCHAR embedded SQL data type

about, 509
DT_LONGVARCHAR embedded SQL data type

about, 508
DT_NFIXCHAR embedded SQL data type

about, 508
DT_NSTRING embedded SQL data type

about, 508
DT_NVARCHAR embedded SQL data type

about, 508
DT_SMALLINT embedded SQL data type

about, 507
DT_STRING data type

about, 577
DT_STRING embedded SQL data type

about, 507
DT_TIME embedded SQL data type

about, 508
DT_TIMESTAMP embedded SQL data type

about, 508
DT_TIMESTAMP_STRUCT embedded SQL data
type

about, 509
DT_TINYINT embedded SQL data type

about, 507
DT_UNSBIGINT embedded SQL data type

about, 507
DT_UNSINT embedded SQL data type

about, 507
DT_UNSSMALLINT embedded SQL data type

about, 507

Index

860 Copyright © 2007, iAnywhere Solutions, Inc.

DT_VARCHAR embedded SQL data type
about, 508

DT_VARIABLE embedded SQL data type
about, 510

DTC
isolation levels, 64
three-tier computing, 62

DTC isolation levels
about, 64

dynamic cursors
about, 42
ODBC, 51
sample, 505

DYNAMIC SCROLL cursors
about, 35, 44
embedded SQL, 52
troubleshooting, 30

dynamic SQL
about, 525
SQLDA, 529

E
EAServer

component transaction attribute, 66
distributed transactions, 66
three-tier computing, 62
transaction coordinator, 66

embedded databases
deploying, 843

embedded SQL
about, 495
authorization, 553
autocommit mode, 55
character strings, 553
command summary, 578
compile and link process, 496
controlling autocommit behavior, 55
cursor types, 35
cursors, 52, 502, 538
development, 496
dynamic cursors, 505
dynamic statements, 525
example program, 499
FETCH FOR UPDATE, 50
fetching data, 537
functions, 557
header files, 498

host variables, 511
import libraries, 498
introduction to programming, 8
line numbers, 553
SQL statements, 20
static statements, 525

EncryptedPassword property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 250

Encryption property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 250

EndExecuteNonQuery method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 194

EndExecuteReader method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 196

Enlist property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 250

enlistment
distributed transactions, 62

Enterprise Application Server (see EAServer)
entry points

calling DBTools functions, 725
enumerations

DBTools interface, 777
environment handles

ODBC, 448
environment variables

for Java in the database, 86
error codes

SQL Anywhere exit codes, 783
error handling

.NET Data Provider, 132
Java, 77
ODBC, 466

error messages
embedded SQL function, 577

errors
codes, 519
HTTP codes, 710
SOAP faults, 710
SQLCODE, 519
sqlcode SQLCA field, 519

Errors property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 324,
335

escape characters
Java in the database, 80
SQL, 80

escape syntax

Copyright © 2007, iAnywhere Solutions, Inc. 861

Interactive SQL, 492
esqldll.c

about, 500
event log

EventLogMask, 840
registry entry, 839

exceptions
Java, 77

EXEC SQL
embedded SQL development, 499

EXECUTE statement
about, 525
stored procedures in embedded SQL, 549

ExecuteNonQuery method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 198

ExecuteReader method
SACommand class, 143, 148
using, 23, 112

ExecuteReader methods [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 198

ExecuteReader() method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 199

ExecuteReader(CommandBehavior) method [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 199
ExecuteScalar method

using, 113
ExecuteScalar method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 200
executeUpdate JDBC method

about, 24, 485
executing SQL statements in applications

about, 20
exit codes

about, 783
Explorer (see SQL Anywhere Explorer)

F
fat cursors

about, 31
feedback

documentation, xix
providing, xix

FETCH FOR UPDATE
embedded SQL, 50
ODBC, 50

fetch operation

cursors, 30
multiple rows, 31
scrollable cursors, 31

FETCH statement
about, 537
dynamic queries, 527
multi-row, 540
using cursors in embedded SQL, 538
wide, 540

fetching
embedded SQL, 537
limits, 29
ODBC, 460

FieldCount property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 280

fields
public, 81

file names
.db file extension, 792
.log file extension, 792
conventions, 791
language, 791
SQL Anywhere, 792
version number, 791

file naming conventions
about, 791

FileDataSourceName property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 251

files
deployment location, 790
naming conventions, 791

fill_s_sqlda function
about, 575

fill_sqlda function
about, 575

FillSchema method
using, 123

finding out more and providing feed back
technical support, xix

FIXCHAR data type
embedded SQL, 512

ForceStart connection parameter
db_start_engine, 571

ForceStart property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 251

ForeignKeys field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 345

free_filled_sqlda function

Index

862 Copyright © 2007, iAnywhere Solutions, Inc.

about, 575
free_sqlda function

about, 576
free_sqlda_noind function

about, 576
functions

calling DBTools functions, 725
DBTools, 731
embedded SQL, 557
parameters to web service clients, 678
refreshing from SQL Anywhere Explorer, 18
SQL Anywhere PHP module, 606

G
getAutoCommit method

JDBC, 484
GetBoolean method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 284
GetByte method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 284
GetBytes method

using, 126
GetBytes method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 285
GetChar method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 286
GetChars method

using, 126
GetChars method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 287
getConnection method

instances, 484
GetData method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 288
GetDataSources method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 309
GetDataTypeName method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 288
GetDateTime method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 289
GetDecimal method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 290
GetDeleteCommand methods [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 206
GetDeleteCommand() method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 207
GetDeleteCommand(Boolean) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 207
GetDouble method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 290
GetEnumerator method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 291,
322, 379

GetFieldType method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 292

GetFillParameters method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 274

GetFloat method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 292

GetGuid method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 293

GetInsertCommand methods [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 208

GetInsertCommand() method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 209

GetInsertCommand(Boolean) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 208

GetInt16 method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 294

GetInt32 method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 294

GetInt64 method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 295

GetKeyword method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 262

GetName method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 296

GetObjectData method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 326

GetOrdinal method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 296

GetSchema methods [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 233

GetSchema() method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 233

GetSchema(String) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 234

GetSchema(String, String[]) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 234

GetSchemaTable method
using, 116

GetSchemaTable method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 297

GetString method
SADataReader class, 143

Copyright © 2007, iAnywhere Solutions, Inc. 863

GetString method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 299

GetTimeSpan method
using, 127

GetTimeSpan method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 299

getting help
technical support, xix

GetUInt16 method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 300

GetUInt32 method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 301

GetUInt64 method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 302

GetUpdateCommand methods [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 210

GetUpdateCommand() method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 211

GetUpdateCommand(Boolean) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 210

GetUseLongNameAsKeyword method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 218,
263

GetValue methods [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 302

GetValue(Int32) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 302

GetValue(Int32, Int64, Int32) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 303

GetValues method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 304

GNU compiler
embedded SQL support, 497

GRANT statement
JDBC, 491

H
handles

about ODBC, 448
allocating ODBC, 448

HasRows property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 280

header files
embedded SQL, 498
ODBC, 442

help
technical support, xix

Host property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 406,
413

host variables
about, 511
data types, 512
declaring, 511
not supported in batches, 511
SQLDA, 530
uses, 515

HTTP
default services, 658

HTTP headers
in web services handlers, 688
modifying, 673
suppressing, 673

HTTP server
about, 631
character sets, 709
creating web services, 636
data types, 660
errors, 710
HTTP headers, 688
HTTP session, 703
interpreting URLs, 642
quick start, 633
request handlers, 657
variables, 686

HTTP services
listening for SOAP HTTP requests, 639

HTTP session
about, 703
connections, 705
errors, 706
semantics, 705
timeout, 706

HTTP_HEADER function
web services, 688

http_session_timeout option
web services, 706

HTTP_VARIABLE function
web services, 686

hypertext preprocessor
about, 591

I
iAnywhere developer community

Index

864 Copyright © 2007, iAnywhere Solutions, Inc.

newsgroups, xix
iAnywhere JDBC driver

choosing a JDBC driver, 470
connecting, 473
deploying JDBC clients, 814
loading, 473
required files, 473
URL, 473
using, 473

iAnywhere ODBC Driver Manager
Unix, 445

iAnywhere.Data.SQLAnywhere namespace [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 150
iAnywhere.Data.SQLAnywhere.dll

adding a reference to a C# project, 106
adding a reference to a Visual Studio .NET project,
106
deploying .NET clients, 798

iAnywhere.Data.SQLAnywhere.dll.config
deploying .NET clients, 798

iAnywhere.Data.SQLAnywhere.gac
deploying .NET clients, 798

icons
used in manuals, xvii

identifiers
needing quotes, 576

IdleTimeout property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 251

import libraries
alternatives, 500
DBTools, 724
embedded SQL, 498
introduction, 496
NetWare, 501
ODBC, 442
Windows CE ODBC, 444

import statement
Java in the database, 80
jConnect, 475

INCLUDE statement
SQLCA, 519

IndexColumns field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 345

Indexes field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 346

IndexOf method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 176

IndexOf methods [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 379

IndexOf(Object) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 379

IndexOf(String) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 380

indicator variables
about, 516
data type conversion, 518
NULL, 517
SQLDA, 530
summary of values, 518
truncation, 517

InfoMessage event [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 235

initialization utility [dbinit]
deployment considerations, 844

initializing databases
SQL script files, 837

InitString property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 226

INOUT parameters
Java in the database, 97

InProcess option
Linked Server, 433

insensitive cursors
about, 35, 42
delete example, 38
embedded SQL, 52
introduction, 38
update example, 40

Insert method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 381

INSERT statement
JDBC, 485
multi-row, 540
performance, 22
wide, 540

InsertCommand property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 271

InsertDynamic method
JDBCExample, 487

InsertStatic method
JDBCExample, 486

INSTALL JAVA statement
using when installing a class, 91
using when installing a JAR, 92

install-dir

Copyright © 2007, iAnywhere Solutions, Inc. 865

documentation usage, xvi
installation

silent, 795
installation programs

deploying, 789
installer

silent installation, 795
installing

JAR files into a database, 92
Java classes into a database, 91
SQL Anywhere Explorer, 15

InstallShield
silent installation, 795

Instance field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 328

Instance property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 308

Integrated property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 252

Interactive SQL
configuring for deployment, 835
deploying, 816, 836
deploying on Linux and Unix, 826
deploying on Windows without InstallShield, 816
JDBC escape syntax, 492
opening from Visual Studio .NET, 15
Unix supported deployment platforms, 826

Interactive SQL utility [dbisql]
Unix supported deployment platforms, 826

interface libraries
about, 496
dynamic loading, 500
filename, 496

interfaces, xi
(see also APIs)
SQL Anywhere embedded SQL, 8
SQL Anywhere web services, 12

IPV6 property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 414

IsClosed property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 281

IsDBNull method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 305

IsFixedSize property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 368

IsNullable property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 359

isolation levels

ADO programming, 432
applications, 57
cursor sensitivity, 50
cursors, 30
DTC, 64
lost updates, 48
SA_SQL_TXN_READONLY_STATEMENT_SN
APSHOT, 458
SA_SQL_TXN_SNAPSHOT, 458
SA_SQL_TXN_STATEMENT_SNAPSHOT, 458
setting for the SATransaction object, 130
SQL_TXN_READ_COMMITTED, 458
SQL_TXN_READ_UNCOMMITTED, 458
SQL_TXN_REPEATABLE_READ, 458
SQL_TXN_SERIALIZABLE, 458

IsolationLevel property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 420

ISOLATIONLEVEL_BROWSE
about, 64

ISOLATIONLEVEL_CHAOS
about, 64

ISOLATIONLEVEL_CURSORSTABILITY
about, 64

ISOLATIONLEVEL_ISOLATED
about, 64

ISOLATIONLEVEL_READCOMMITTED
about, 64

ISOLATIONLEVEL_READUNCOMMITTED
about, 64

ISOLATIONLEVEL_REPEATABLEREAD
about, 64

ISOLATIONLEVEL_SERIALIZABLE
about, 64

ISOLATIONLEVEL_UNSPECIFIED
about, 64

IsReadOnly property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 368

IsSynchronized property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 369

Item properties [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 281,
369

Item property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 171,
260, 321

Item(Int32) property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 282,
369

Index

866 Copyright © 2007, iAnywhere Solutions, Inc.

Item(String) property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 282,
370

J
Jaguar (see EAServer)
JAR and ZIP file creation wizard

using, 92
JAR files

adding, 92
installing, 91, 92
updating, 93
versions, 93

Java
JDBC, 469
storing classes, 73
unsupported classes, 100

Java class creation wizard
using, 483

Java classes
adding, 91
installing, 91

Java in the database
API, 78
choosing a Java VM, 86
deploying, 838
environment variables, 86
error handling, 77
escape characters, 80
installing classes, 91
introduction, 71
key features, 73
main method, 80, 95
NoSuchMethodException, 95
persistence, 80
Q & A, 73
returning result sets, 96
runtime environment, 78
security management, 98
starting the VM, 99
stopping the VM, 99
supported classes, 75
supported platforms, 74
tutorial, 84
using, 83
virtual machine, 73

Java JAX-RPC

web services tutorial, 652
Java Runtime Environment

using Java in the database, 86
Java stored procedures

about, 96
example, 96

Java VM
JAVA_HOME environment variable, 86
JAVAHOME environment variable, 86
selecting, 86
starting, 99
stopping, 99

Java Web Services Developer Pack
about, 653

java.applet package
unsupported classes, 100

java.awt package
unsupported classes, 100

java.awt.datatransfer package
unsupported classes, 100

java.awt.event package
unsupported classes, 100

java.awt.image package
unsupported classes, 100

JAVA_HOME environment variable
deploying JDBC clients, 814
starting the Java VM, 86

java_location option
using, 86

java_main_userid option
using, 86

java_vm_options option
using, 86

JAVAHOME environment variable
deploying JDBC clients, 814
starting the Java VM, 86

JAX-RPC and web services
about, 653

JAXB1.0
Java Architecture for XML Binding, 818

jcatalog.sql
initializing databases, 837

jcatalog.sql file
jConnect, 475

jconn2.jar
deploying database servers, 838
jConnect 5.5, 475

jconn3.jar

Copyright © 2007, iAnywhere Solutions, Inc. 867

jConnect 6.0.5, 475
jConnect

about, 475
choosing a JDBC driver, 470
CLASSPATH environment variable, 475
connecting, 477
connections, 479, 481
database setup, 475
deploying JDBC clients, 814
download, 475
jconn2.jar, 475
jconn3.jar, 475
loading, 476
packages, 475
system objects, 475
URL, 477
versions supplied, 475

JDBC
about, 469
applications overview, 471
autocommit, 484
autocommit mode, 55
client connections, 479
client-side, 472
connecting to a database, 477
connection code, 479
connection defaults, 484
connections, 472
controlling autocommit behavior, 55
cursor types, 35
data access, 485
deploying JDBC clients, 814
escape syntax in Interactive SQL, 492
examples, 470, 479
iAnywhere JDBC driver, 473
INSERT statement, 485
introduction to programming, 7
jConnect, 475
permissions, 491
prepared statements, 487
requirements, 470
result sets, 489
server-side, 472
server-side connections, 481
SQL statements, 20
ways to use, 470

JDBC drivers
choosing, 470

compatibility, 470
performance, 470

JDBC escape syntax
using in Interactive SQL, 492

JDBC-ODBC bridge
iAnywhere JDBC driver, 470

jdbcdrv.zip
deploying database servers, 838

JDBCExample class
about, 485

JDBCExample.java file
about, 485

jodbc.jar
deploying database servers, 838

JRE
checking version on Mac OS X, 817
using Java in the database, 86

jre150
Java Runtime Environment, 818

K
keep-alive request-header field

HTTP headers, 688
Kerberos property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 252
Keys property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 261
keyset-driven cursors

about, 45
ODBC, 51

L
Language property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 253
languages

file names, 791
LazyClose property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 253
LD_LIBRARY_PATH

deployment, 791
LDAP property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 414
length SQLDA field

about, 530, 532
libdbecc10.so

ECC encryption, 842
libdbencod10_r.so

Index

868 Copyright © 2007, iAnywhere Solutions, Inc.

deploying SQL Remote, 845
libdbextf.so

deploying database servers, 838
libdbfile10.so

deploying SQL Remote, 845
libdbicu10.dylib

deploying ODBC clients, 806
libdbicu10.sl

deploying ODBC clients, 806
libdbicu10.so

deploying ODBC clients, 806
libdbicu10_r.dylib

deploying ODBC clients, 806
libdbicu10_r.sl

deploying ODBC clients, 806
libdbicu10_r.so

deploying database servers, 838
deploying ODBC clients, 806

libdbicudt10.dylib
deploying ODBC clients, 806

libdbicudt10.sl
deploying ODBC clients, 806

libdbicudt10.so
deploying database servers, 838
deploying ODBC clients, 806

libdblib10.dylib
deploying database utilities, 843

libdblib10.so
deploying database utilities, 843
deploying embedded SQL clients, 813

libdblib10_r.dylib
deploying database utilities, 843

libdblib10_r.so
deploying database utilities, 843

libdbodbc10
Unix ODBC driver, 444

libdbodbc10.dylib
deploying ODBC clients, 806

libdbodbc10.sl
deploying ODBC clients, 806

libdbodbc10.so
deploying ODBC clients, 806

libdbodbc10_n.dylib
deploying ODBC clients, 806

libdbodbc10_n.sl
deploying ODBC clients, 806

libdbodbc10_n.so
deploying ODBC clients, 806

libdbodbc10_r.dylib
deploying ODBC clients, 806

libdbodbc10_r.sl
deploying ODBC clients, 806

libdbodbc10_r.so
deploying ODBC clients, 806

libdbodm10
about, 445
Unix ODBC driver manager, 445

libdbodm10.dylib
deploying ODBC clients, 806

libdbodm10.sl
deploying ODBC clients, 806

libdbodm10.so
deploying ODBC clients, 806

libdboftsp.dylib
deploying database utilities, 843

libdboftsp.so
deploying database utilities, 843

libdbrsa10.dylib
RSA encryption, 842

libdbrsa10.so
RSA encryption, 842

libdbrsa10_r.dylib
RSA encryption, 842

libdbserv10_r.so
AES encryption, 842
deploying database servers, 838

libdbtasks10.dylib
deploying database utilities, 843
deploying ODBC clients, 806

libdbtasks10.sl
deploying ODBC clients, 806

libdbtasks10.so
deploying database utilities, 843
deploying embedded SQL clients, 813
deploying ODBC clients, 806
deploying SQL Remote, 845

libdbtasks10_r.dylib
deploying database utilities, 843
deploying ODBC clients, 806

libdbtasks10_r.sl
deploying ODBC clients, 806

libdbtasks10_r.so
deploying database servers, 838
deploying database utilities, 843
deploying ODBC clients, 806

libdbtool10.dylib

Copyright © 2007, iAnywhere Solutions, Inc. 869

deploying database utilities, 843
libdbtool10.so

about, 722
deploying database utilities, 843

libdbtool10_r.dylib
deploying database utilities, 843

libdbtool10_r.so
about, 722
deploying database utilities, 843

libdbtools10.so
deploying SQL Remote, 845

libraries
dbtlstb.lib, 724
dbtlstm.lib, 724
dbtlstw.lib, 724
dbtools10.lib, 724
embedded SQL, 498
using the import libraries, 724

library
dblib10.lib, 498
dblibtb.lib, 498
dblibtm.lib, 498
dblibtw.lib, 498
libdblib10.so, 498
libdblib10_r.so, 498
libdbtasks10.so, 498
libdbtasks10_r.so, 498

library functions
embedded SQL, 557

licensing
DBLicense function, 735
web servers, 706

line length
SQL preprocessor output, 553

line numbers
SQL preprocessor, 553

Linked Servers
InProcess option, 433
OLE DB, 433
RPC option, 433
RPC Out option, 433

Linux
deployment issues, 790
directory structure, 790

liveness
connections, 569

LivenessTimeout property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 253

LocalOnly property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 414

LogFile property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 254

LONG BINARY data type
embedded SQL, 545
retrieving in embedded SQL, 546
sending in embedded SQL, 547

LONG NVARCHAR data type
embedded SQL, 545
retrieving in embedded SQL, 546
sending in embedded SQL, 547

LONG VARCHAR data type
embedded SQL, 545
retrieving in embedded SQL, 546
sending in embedded SQL, 547

LONGBINARY data type
embedded SQL, 512

LONGNVARCHAR data type
embedded SQL, 512

LONGVARCHAR data type
embedded SQL, 512

lost updates
about, 48

M
Mac OS X

checking JRE version, 817
deployment issues, 790
directory structure, 790

macros
_SQL_OS_NETWARE, 500
_SQL_OS_UNIX, 500
_SQL_OS_WINDOWS, 500

main method
Java in the database, 80, 95

management tools
dbtools, 721

manual commit mode
controlling, 55
implementation, 56
transactions, 55

MaxPoolSize property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 254

MDAC
deploying, 799
version, 799

Index

870 Copyright © 2007, iAnywhere Solutions, Inc.

membership
result sets, 37

MergeModule.CABinet
deployment wizard, 793

Message property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 318,
325, 335

messages
callback, 569
server, 569

MessageType property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 335

MetaDataCollections field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 346

Microsoft .NET
web services tutorial, 649, 665

Microsoft Transaction Server
three-tier computing, 62

Microsoft Visual Basic quick start
about, 715

Microsoft Visual C++
embedded SQL support, 497

migrat.sql
initializing databases, 837

MIME type
web service, 700

MinPoolSize property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 254

mixed cursors
ODBC, 51

mkexclud.sql
initializing databases, 837

mksadb.sql
initializing databases, 837

MobiLink.jpr
deploying administration tools on Windows, 821,
824

mobiLink.jpr
deploying administration tools on Linux/Unix, 830

mobilink.jpr
deploying administration tools on Linux/Unix, 833

MSDASQL
OLE DB provider, 426

msxml4.dll
deploying SQL Anywhere, 841

multi-row fetches
about, 540

multi-row inserts

about, 540
multi-row puts

about, 540
multi-row queries

cursors, 538
multi-threaded applications

embedded SQL, 521, 523
Java in the database, 95
ODBC, 440, 453
Unix, 444

multiple result sets
DESCRIBE statement, 551
ODBC, 464

myDispose method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 306

MyIP property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 415

N
name SQLDA field

about, 530
NativeError property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 318,
325, 336

NCHAR data type
embedded SQL, 512

NetWare
embedded SQL programs, 501

newsgroups
technical support, xix

NEXT_CONNECTION function
example, 708

NEXT_HTTP_HEADER function
web services, 688

NEXT_HTTP_VARIABLE function
web services, 686

NEXT_SOAP_HEADER function
web services, 693

NextResult method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 305

NFIXCHAR data type
embedded SQL, 512

NLM
embedded SQL programs, 501

NO SCROLL cursors
about, 35, 42
embedded SQL, 52

Copyright © 2007, iAnywhere Solutions, Inc. 871

NotifyAfter property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 157

ntodbc.h
about, 442

NULL
dynamic SQL, 529
indicator variables, 516

null-terminated string
embedded SQL data type, 507

NVARCHAR data type
embedded SQL, 512

O
object-oriented programming

style, 81
objects

storage format, 93
obtaining time values

about, 127
ODBC

autocommit mode, 55
backward compatibility, 441
compatibility, 441
conformance, 440
connecting with no data source, 812
controlling autocommit behavior, 55
cursor types, 35
cursors, 51, 458
data sources, 810
deploying, 806
driver deployment, 806
error checking, 466
FETCH FOR UPDATE, 50
handles, 448
header files, 442
import libraries, 442
introduction, 440
introduction to programming, 6
linking, 442
linking applications on Windows CE, 443
multi-threaded applications, 453
multiple result sets, 464
prepared statements, 456
programming, 439
registry entries, 810
result sets, 464
sample application, 449

sample program, 446
SQL statements, 20
stored procedures, 464
Unix development, 444
version supported, 440
Windows CE, 444

ODBC API
about, 439

ODBC driver managers
Unix, 445

ODBC drivers
Unix, 444

ODBC programming interface
introduction, 6

ODBC settings
deploying, 806, 810

odbc.h
about, 442

OEM.ini
administration tools , 835

Offset property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 359

OLE DB
about, 426
autocommit mode, 55
controlling autocommit behavior, 55
cursor types, 35
cursors, 51, 431
deploying, 799
Microsoft Linked Server setup, 433
ODBC and, 426
provider deployment, 799
supported interfaces, 434
supported platforms, 426
updates, 431

OLE DB and ADO programming interface
about, 425
introduction, 5

OLE DB and ADO programming interfaces
about, 715

OLE transactions
three-tier computing, 61, 62

oleschem.sql
initializing databases, 837

online backups
embedded SQL, 552

online books
PDF, xii

Index

872 Copyright © 2007, iAnywhere Solutions, Inc.

Open Client
architecture, 622
autocommit mode, 55
controlling autocommit behavior, 55
cursor types, 35
data type ranges, 624
data types, 624
data types compatibility, 624
deploying Open Client applications, 815
interface, 621
introduction, 9
limitations, 629
requirements, 623
SQL, 626
SQL Anywhere limitations, 629
SQL statements, 20

Open method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 235

OPEN statement
using cursors in embedded SQL, 538

operating systems
file names, 791

optdeflt.sql
unloading databases, 837

options dialog
SQL Anywhere Explorer, 16

opttemp.sql
unloading databases, 837

OUT parameters
Java in the database, 97

overflow errors
data type conversion, 624

P
packages

installing, 92
Java in the database, 80
jConnect, 475
unsupported, 100

parallel backups
db_backup function, 557

ParameterName property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 359

Parameters property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 186

Password property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 255

PDF
documentation, xii

performance
cursors, 46, 47
JDBC, 487
JDBC drivers, 470
prepared statements, 22, 456

Perl
DBD::SQLAnywhere, 581
installing DBD::SQLAnywhere on Unix and Mac
OS X, 585
installing DBD::SQLAnywhere on Windows, 583
writing DBD::SQLAnywhere scripts, 587

Perl API
about, 581

Perl DBD::SQLAnywhere
about, 581
introduction to programming, 10

permissions
JDBC, 491

persistence
Java in the database classes, 80

PersistSecurityInfo property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 255

personal server
deploying, 843

PHP module
about, 591
API reference, 606
configuring SQL Anywhere module, 596
installing SQL Anywhere module, 593
introduction to programming, 11
running PHP scripts in web pages, 599
versions, 593
writing scripts, 600
writing web pages, 598

place holders
dynamic SQL, 525

platforms
cursors, 35
Java in the database support, 74

plug-ins
deploying, 816

policy.10.0.iAnywhere.Data.SQLAnywhere.dll
deploying .NET clients, 798

pooling
connections with .NET Data Provider, 109

POOLING option

Copyright © 2007, iAnywhere Solutions, Inc. 873

.NET Data Provider, 109
Pooling property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 255
positioned DELETE statement

about, 32
positioned UPDATE statement

about, 32
positioned updates

about, 30
Precision property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 360
prefetch

cursor performance, 46
cursors, 47
fetching multiple rows, 31

prefetch option
cursors, 47

PrefetchBuffer property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 256

PrefetchRows property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 256

Prepare method
using, 23

Prepare method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 201

PREPARE statement
about, 525

PREPARE TRANSACTION statement
and Open Client, 629

prepared statements
ADO.NET overview, 23
bind parameters, 23
cursors, 28
dropping, 23
JDBC, 487
ODBC, 456
Open Client, 626
using, 22

PreparedStatement interface
about, 487

prepareStatement method
JDBC, 24

preparing
to commit, 62

preparing statements
about, 22

preprocessor
about, 496

running, 497
primary keys

obtaining values for, 123
println method

Java in the database, 79
ProcedureParameters field [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 347
procedures

embedded SQL, 549
ODBC, 464
parameters to web service clients, 678
refreshing from SQL Anywhere Explorer, 18
result sets, 549

Procedures field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 347

program structure
embedded SQL, 499

ProgramData
deploying administration tools on Windows, 823

programming interfaces, xi
(see also APIs)
JDBC API, 7
ODBC API, 6
Perl DBD::SQLAnywhere API, 10
SQL Anywhere .NET API, 4
SQL Anywhere embedded SQL, 8
SQL Anywhere OLE DB and ADO APIs, 5
SQL Anywhere PHP DBI, 11
SQL Anywhere web services, 12
Sybase Open Client API, 9

properties
db_get_property function, 564

providers
supported in .NET, 104

public fields
issues, 81

PUT statement
modifying rows through a cursor, 32
multi-row, 540
wide, 540

Q
QAnywhere.jpr

deploying administration tools on Windows, 821,
824

qanywhere.jpr

Index

874 Copyright © 2007, iAnywhere Solutions, Inc.

deploying administration tools on Linux/Unix, 830,
833

queries
ADO Recordset object, 429, 430
single-row, 537

quick start
web services, 633

quotation marks
Java in the database strings, 79

quoted identifiers
sql_needs_quotes function, 576

quoted_identifier option
jConnect setting, 478

R
Read method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 306
read-only

deploying databases, 841
read-only cursors

about, 35
ReceiveBufferSize property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 415
record sets

ADO programming, 431
RecordsAffected property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 283,
396

Recordset ADO object
ADO, 429
ADO programming, 432
updating data, 431

Recordset object
ADO, 430

recovery
distributed transactions, 64

reentrant code
multi-threaded embedded SQL example, 521

registering
DLLs for deployment, 840

registering the .NET Data Provider
about, 134

registry
deploying, 806, 810, 839
deploying administration tools on Windows, 822,
826
ODBC, 810

Wow6432Node, 822, 826
REMOTEPWD

using, 477
Remove method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 177,
263, 381

RemoveAt method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 177

RemoveAt methods [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 382

RemoveAt(Int32) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 382

RemoveAt(String) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 382

request processing
embedded SQL, 552

requests
aborting, 561

requirements
Open Client applications, 623

ReservedWords field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 348

ResetCommandTimeout method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 201

ResetDbType method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 364

resource dispensers
three-tier computing, 62

resource managers
about, 60
three-tier computing, 62

response file
definition, 795

Restrictions field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 348

result sets
ADO Recordset object, 429, 430
cursors, 25
Java in the database stored procedures, 96
JDBC, 489
metadata, 53
multiple ODBC, 464
ODBC, 458, 464
Open Client, 628
retrieving ODBC, 460
stored procedures, 549
using, 28

Results method

Copyright © 2007, iAnywhere Solutions, Inc. 875

JDBCExample, 489
retrieving

ODBC, 460
SQLDA and, 535

RetryConnectionTimeout property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 257

return codes
about, 783
ODBC, 466

return values and result sets
web clients, 675

Rollback methods [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 422

ROLLBACK statement
cursors, 57

ROLLBACK TO SAVEPOINT statement
cursors, 58

Rollback() method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 422

Rollback(String) method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 423

RollbackTrans ADO method
ADO programming, 432
updating data, 431

RowsCopied property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 391

RowUpdated event [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 275

RowUpdating event [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 275

RPC option
Linked Server, 433

RPC Out option
Linked Server, 433

rstab.sql
initializing databases, 837

runtime classes
Java in the database, 78

S
sa_config.csh file

deployment, 791
sa_config.sh file

deployment, 791
SA_SQL_TXN_READONLY_STATEMENT_SNAP
SHOT

isolation level, 458

SA_SQL_TXN_SNAPSHOT
isolation level, 458

SA_SQL_TXN_STATEMENT_SNAPSHOT
isolation level, 458

SABulkCopy class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 151

SABulkCopy constructors [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 152

SABulkCopy members [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 151

SABulkCopy(SAConnection) constructor [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 152
SABulkCopy(SAConnection, SABulkCopyOptions,
SATransaction) constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 154
SABulkCopy(String) constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 153
SABulkCopy(String, SABulkCopyOptions)
constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 153
SABulkCopyColumnMapping class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 163
SABulkCopyColumnMapping constructors [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 164
SABulkCopyColumnMapping members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 163
SABulkCopyColumnMapping() constructor [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 164
SABulkCopyColumnMapping(Int32, Int32)
constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 164
SABulkCopyColumnMapping(Int32, String)
constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 165
SABulkCopyColumnMapping(String, Int32)
constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 166
SABulkCopyColumnMapping(String, String)
constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 166
SABulkCopyColumnMappingCollection class
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 170
SABulkCopyColumnMappingCollection members
[SA .NET 2.0]

Index

876 Copyright © 2007, iAnywhere Solutions, Inc.

iAnywhere.Data.SQLAnywhere namespace, 170
SABulkCopyOptions enumeration [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 179
SACommand class

about, 111
deleting data, 114
inserting data, 114
retrieving data, 112
updating data, 114
using, 23, 111
using in a Visual Studio .NET project, 143, 148

SACommand class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 180

SACommand constructors [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 182

SACommand members [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 180

SACommand() constructor [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 182

SACommand(String) constructor [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 182

SACommand(String, SAConnection) constructor
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 183
SACommand(String, SAConnection, SATransaction)
constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 183
SACommandBuilder class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 203
SACommandBuilder constructors [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 204
SACommandBuilder members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 203
SACommandBuilder() constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 204
SACommandBuilder(SADataAdapter) constructor
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 205
SACommLinksOptionsBuilder class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 213
SACommLinksOptionsBuilder constructors [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 214
SACommLinksOptionsBuilder members [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 213
SACommLinksOptionsBuilder() constructor [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 214
SACommLinksOptionsBuilder(String) constructor
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 215
SAConnection class

connecting to a database, 108
using in a Visual Studio .NET project, 143, 147

SAConnection class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 221

SAConnection constructors [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 222

SAConnection function
using in a Visual Studio .NET project, 147

SAConnection members [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 221

SAConnection() constructor [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 222

SAConnection(String) constructor [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 223

SAConnectionStringBuilder class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 238

SAConnectionStringBuilder constructors [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 242
SAConnectionStringBuilder members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 238
SAConnectionStringBuilder() constructor [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 242
SAConnectionStringBuilder(String) constructor
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 242
SAConnectionStringBuilderBase class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 259
SAConnectionStringBuilderBase members [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 259
SADataAdapter

obtaining primary key values, 123
SADataAdapter class

about, 111
deleting data, 118
inserting data, 118
obtaining result set schema information, 123
retrieving data, 117
updating data, 118
using, 117

SADataAdapter class [SA .NET 2.0]

Copyright © 2007, iAnywhere Solutions, Inc. 877

iAnywhere.Data.SQLAnywhere namespace, 266
SADataAdapter constructors [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 268
SADataAdapter members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 266
SADataAdapter() constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 268
SADataAdapter(SACommand) constructor [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 269
SADataAdapter(String, SAConnection) constructor
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 269
SADataAdapter(String, String) constructor [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 270
SADataReader class

using, 112
using in a Visual Studio .NET project, 143, 148

SADataReader class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 277

SADataReader members [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 277

SADataSourceEnumerator class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 308

SADataSourceEnumerator members [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 308

SADbType enumeration [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 310

SADbType property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 360

sadebug.sql
initializing databases, 837

SADefault class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 315

SADefault members [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 315

SAError class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 317

SAError members [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 317

SAErrorCollection class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 320

SAErrorCollection members [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 320

SAException class
using in a Visual Studio .NET project, 144, 148

SAException class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 323
SAException members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 323
SAFactory class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 327
SAFactory members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 328
SAInfoMessageEventArgs class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 334
SAInfoMessageEventArgs members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 334
SAInfoMessageEventHandler delegate [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 338
SAIsolationLevel enumeration [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 339
SAIsolationLevel property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 421
sajvm.jar

deploying database servers, 838
SAMessageType enumeration [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 341
SAMetaDataCollectionNames class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 342
SAMetaDataCollectionNames members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 342
samples

.NET Data Provider, 139
building embedded SQL applications, 502
DBTools program, 728
embedded SQL, 503
embedded SQL applications, 502
ODBC, 446
static cursors in embedded SQL, 504, 505

samples-dir
documentation usage, xvi

SAOLEDB
OLE DB provider, 426

saopts.sql
initializing databases, 837

SAParameter class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 352

SAParameter constructors [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 353

SAParameter members [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 352

SAParameter() constructor [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 353

Index

878 Copyright © 2007, iAnywhere Solutions, Inc.

SAParameter(String, Object) constructor [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 354
SAParameter(String, SADbType) constructor
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 354
SAParameter(String, SADbType, Int32) constructor
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 355
SAParameter(String, SADbType, Int32,
ParameterDirection, Boolean, Byte, Byte, String,
DataRowVersion, Object) constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 356
SAParameter(String, SADbType, Int32, String)
constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 356
SAParameterCollection class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 366
SAParameterCollection members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 366
SAPermission class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 384
SAPermission constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 385
SAPermission members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 384
SAPermissionAttribute class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 387
SAPermissionAttribute constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 388
SAPermissionAttribute members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 387
SARowsCopied event [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 161
SARowsCopiedEventArgs class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 390
SARowsCopiedEventArgs constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 390
SARowsCopiedEventArgs members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 390
SARowsCopiedEventHandler delegate [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 393
SARowUpdatedEventArgs class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 394
SARowUpdatedEventArgs constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 395
SARowUpdatedEventArgs members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 394

SARowUpdatedEventHandler delegate [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 397

SARowUpdatingEventArgs class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 398

SARowUpdatingEventArgs constructor [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 399

SARowUpdatingEventArgs members [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 398

SARowUpdatingEventHandler delegate [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 401

SASpxOptionsBuilder class [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 402

SASpxOptionsBuilder constructors [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 404

SASpxOptionsBuilder members [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 402

SASpxOptionsBuilder() constructor [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 404

SASpxOptionsBuilder(String) constructor [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 404
SATcpOptionsBuilder class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 408
SATcpOptionsBuilder constructors [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 410
SATcpOptionsBuilder members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 408
SATcpOptionsBuilder() constructor [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 410
SATcpOptionsBuilder(String) constructor [SA .NET
2.0]

iAnywhere.Data.SQLAnywhere namespace, 411
SATransaction class

using, 130
SATransaction class [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 419
SATransaction members [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 419
Save method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 423
savepoints

cursors, 58
sbgse2.dll

FIPS-approved RSA encryption, 842
Scale property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 361
SCROLL cursors

about, 35, 45

Copyright © 2007, iAnywhere Solutions, Inc. 879

embedded SQL, 52
scrollable cursors

about, 31
JDBC support, 470

SearchBindery property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 406

security
Java in the database, 98

security manager
about, 98

SELECT statement
dynamic, 527
single row, 537

SelectCommand property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 272

self-registering DLLs
deploying SQL Anywhere, 840

SendBufferSize property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 415

sensitive cursors
about, 42
delete example, 38
embedded SQL, 52
introduction, 38
update example, 40

sensitivity
cursors, 37, 38
delete example, 38
isolation levels, 50
update example, 40

serialization
objects in tables, 93

server address
embedded SQL function, 564

server-side autocommit
about, 56

ServerName property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 257

ServerPort property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 416

servers
locating, 574
web services, 631
web services quick start, 633

ServerVersion property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 227

services
character sets, 709

creating web, 636
data types, 660
default, 658
errors, 710
HTTP headers, 688
HTTP session, 703
interpreting URLs, 642
listening for SOAP HTTP requests, 639
MIME types, 700
request handlers, 657
SOAP headers, 693
variables, 686
web, 631
web quick start, 633

session key
HTTP session, 703

SessionCreateTime
connection property, 704

SessionID
connection property, 704

SessionID property
HTTP session, 703

SessionLastTime
connection property, 704

setAutocommit method
about, 484

setting
values using the SQLDA, 534

setup program
silent installation, 795

SetUseLongNameAsKeyword method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 219,
264

SharedMemory property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 216

ShouldSerialize method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 264

silent install
about, 795

SimpleCE
.NET Data Provider sample project, 105

SimpleWin32
.NET Data Provider sample project, 105

SimpleXML
.NET Data Provider sample project, 105

single-threaded applications
Unix, 444

Size property [SA .NET 2.0]

Index

880 Copyright © 2007, iAnywhere Solutions, Inc.

iAnywhere.Data.SQLAnywhere namespace, 361
snapshot isolation

lost updates, 48
SQL Anywhere .NET Data Provider, 130

SOAP faults
about, 710

SOAP headers
in web services handlers, 693

SOAP server
SOAP headers, 693

SOAP services
about, 631
creating, 636, 646, 690
errors, 710
Java JAX-RPC tutorial, 652
Microsoft .NET tutorial, 649, 665

SOAP_HEADER function
web services, 693

software
return codes, 784

Source property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 318,
325, 336

SourceColumn property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 168,
362

SourceColumnNullMapping property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 363

SourceOrdinal property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 169

SourceVersion property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 363

sp_mda stored procedure
setting options for jConnect, 478

sp_tsql_environment system procedure
setting options for jConnect, 478

SpxOptionsBuilder property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 217

SpxOptionsString property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 217

SQL
ADO applications, 20
applications, 20
embedded SQL applications, 20
JDBC applications, 20
ODBC applications, 20
Open Client applications, 20

SQL Anywhere

, 18
documentation, xii

SQL Anywhere .NET API
about, 4

SQL Anywhere .NET Data Provider
about, 103
tutorial, 139

SQL Anywhere embedded SQL
about, 495

SQL Anywhere Explorer
about, 13
adding database objects, 17
configuring, 16
connection, 15
supported programming languages, 15
Visual Studio integration, 15
working with tables, 17

SQL Anywhere JDBC API
about, 469

SQL Anywhere ODBC driver
deploying, 806
linking on Windows, 442

SQL Anywhere OLE DB and ADO APIs
about, 425

SQL Anywhere Perl DBD::SQLAnywhere API
about, 581

SQL Anywhere PHP API
about, 591

SQL Anywhere PHP module
about, 591
API reference, 606
choosing which to use, 593
configuring, 596
installing, 593
versions, 593

SQL Anywhere plug-in
deployment considerations, 816

SQL Anywhere web services
about, 631

SQL applications
executing SQL statements, 20

SQL Communications Area
about, 519

SQL preprocessor
about, 553
running, 497
syntax, 553

SQL Remote

Copyright © 2007, iAnywhere Solutions, Inc. 881

deploying, 845
SQL statements

executing, 626
SQL/1992

SQL preprocessor, 553
SQL/1999

SQL preprocessor, 553
SQL/2003

SQL preprocessor, 553
SQL_ATTR_CONCURRENCY attribute

about, 459
SQL_ATTR_CURSOR_SCROLLABLE attribute

about, 459
SQL_ATTR_KEYSET_SIZE

ODBC attribute, 51
SQL_ATTR_MAX_LENGTH attribute

about, 460
SQL_ATTR_ROW_ARRAY_SIZE

ODBC attribute, 31, 51
SQL_CALLBACK type declaration

about, 568
SQL_CALLBACK_PARM type declaration

about, 568
SQL_CONCUR_LOCK

concurrency value, 459
SQL_CONCUR_READ_ONLY

concurrency value, 459
SQL_CONCUR_ROWVER

concurrency value, 459
SQL_CONCUR_VALUES

concurrency value, 459
SQL_CURSOR_KEYSET_DRIVEN

ODBC cursor attribute, 51
SQL_ERROR

ODBC return code, 466
SQL_INVALID_HANDLE

ODBC return code, 466
SQL_NEED_DATA

ODBC return code, 466
sql_needs_quotes function

about, 576
SQL_NO_DATA_FOUND

ODBC return code, 466
SQL_ROWSET_SIZE

ODBC attribute, 31
SQL_SUCCESS

ODBC return code, 466
SQL_SUCCESS_WITH_INFO

ODBC return code, 466
SQL_TXN_READ_COMMITTED

isolation level, 458
SQL_TXN_READ_UNCOMMITTED

isolation level, 458
SQL_TXN_REPEATABLE_READ

isolation level, 458
SQL_TXN_SERIALIZABLE

isolation level, 458
SQLAllocHandle ODBC function

about, 448
binding parameters, 455
executing statements, 454
using, 448

sqlany.cvf
deploying database servers, 838

SQLANY10
deployment, 791

SQLANYSH10
deployment, 791

SQLAnywhere.jpr
deploying administration tools on Windows, 821,
824

sqlanywhere.jpr
deploying administration tools on Linux/Unix, 830,
833

sqlanywhere_commit function
syntax, 606

sqlanywhere_connect function
syntax, 607

sqlanywhere_data_seek function
syntax, 607

sqlanywhere_disconnect function
syntax, 608

sqlanywhere_error function
syntax, 608

sqlanywhere_errorcode function
syntax, 609

sqlanywhere_execute function
syntax, 610

sqlanywhere_fetch_array function
syntax, 611

sqlanywhere_fetch_field function
syntax, 611

sqlanywhere_fetch_object function
syntax, 612

sqlanywhere_fetch_row function
syntax, 613

Index

882 Copyright © 2007, iAnywhere Solutions, Inc.

sqlanywhere_free_result function
syntax, 613

sqlanywhere_identity function
syntax, 614

sqlanywhere_insert_id function
syntax, 614

sqlanywhere_num_fields function
syntax, 615

sqlanywhere_num_rows function
syntax, 615

sqlanywhere_pconnect function
syntax, 616

sqlanywhere_query function
syntax, 616

sqlanywhere_result_all function
syntax, 617

sqlanywhere_rollback function
syntax, 618

sqlanywhere_set_option function
syntax, 619

SQLBindCol ODBC function
about, 460
storage alignment, 461

SQLBindParameter function
ODBC prepared statements, 23
prepared statements, 456

SQLBindParameter ODBC function
about, 455
storage alignment, 461
stored procedures, 464

SQLBrowseConnect ODBC function
about, 451

SQLBulkOperations
ODBC function, 32

SQLCA
about, 519
changing, 521
fields, 519
length of, 519
multiple, 523, 524
threads, 521

sqlcabc SQLCA field
about, 519

sqlcaid SQLCA field
about, 519

sqlcode SQLCA field
about, 519

SQLConnect ODBC function

about, 451
SQLCOUNT

sqlerror SQLCA field element, 520
sqld SQLDA field

about, 530
SQLDA

about, 525, 529
allocating, 557
descriptors, 53
fields, 530
filling, 575
freeing, 575
host variables, 530
sqllen field, 532
strings, 575

sqlda_storage function
about, 576

sqlda_string_length function
about, 577

sqldabc SQLDA field
about, 530

sqldaif SQLDA field
about, 530

sqldata SQLDA field
about, 530

SQLDATETIME data type
embedded SQL, 512

sqldef.h
data types, 507

sqldef.h file
software exit codes location, 784

SQLDriverConnect ODBC function
about, 451

sqlerrd SQLCA field
about, 520

sqlerrmc SQLCA field
about, 519

sqlerrml SQLCA field
about, 519

SQLError ODBC function
about, 466

sqlerror SQLCA field
elements, 520
SQLCOUNT, 520
SQLIOCOUNT, 520
SQLIOESTIMATE, 521

sqlerror_message function
about, 577

Copyright © 2007, iAnywhere Solutions, Inc. 883

sqlerrp SQLCA field
about, 520

SQLExecDirect ODBC function
about, 454
bound parameters, 455

SQLExecute function
ODBC prepared statements, 23

SQLExtendedFetch
ODBC function, 30, 31

SQLExtendedFetch ODBC function
about, 460
stored procedures, 464

SQLFetch
ODBC function, 30

SQLFetch ODBC function
about, 460
stored procedures, 464

SQLFetchScroll
ODBC function, 30, 31

SQLFetchScroll ODBC function
about, 460

SQLFreeHandle ODBC function
using, 448

SQLFreeStmt function
ODBC prepared statements, 23

SQLGetData ODBC function
about, 460
storage alignment, 461

sqlind SQLDA field
about, 530

SQLIOCOUNT
sqlerror SQLCA field element, 520

SQLIOESTIMATE
sqlerror SQLCA field element, 521

SQLJ standard
about, 72

sqllen SQLDA field
about, 530, 532
DESCRIBE statement, 532
describing values, 532
retrieving values, 535
sending values, 534

sqlname SQLDA field
about, 530

SQLNumResultCols ODBC function
stored procedures, 464

sqlpp utility
about, 496

running, 497
syntax, 553

SQLPrepare function
about, 456
ODBC prepared statements, 23

SQLRETURN
ODBC return code type, 466

SQLSetConnectAttr ODBC function
about, 453
transaction isolation levels, 458

SQLSetPos ODBC function
about, 462

SQLSetStmtAttr ODBC function
cursor characteristics, 459

SqlState property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 319

sqlstate SQLCA field
about, 520

SQLTransact ODBC function
about, 449

sqltype SQLDA field
about, 530
DESCRIBE statement, 532

sqlvar SQLDA field
about, 530
contents, 530

sqlwarn SQLCA field
about, 520

standard output
Java in the database, 79

standards
SQLJ, 72

starting
databases using jConnect, 477

StartLine property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 257

State property
.NET Data Provider, 109

State property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 227

StateChange event [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 236

statement handles
ODBC, 448

statements
COMMIT, 57
DELETE positioned, 32
insert, 22

Index

884 Copyright © 2007, iAnywhere Solutions, Inc.

PUT, 32
ROLLBACK, 57
ROLLBACK TO SAVEPOINT, 58
UPDATE positioned, 32

static cursors
about, 42
ODBC, 51

static SQL
about, 525

steps for using cursors
about, 28

stored functions
parameters to web service clients, 678

stored procedures
.NET Data Provider, 128
creating in embedded SQL, 549
executing in embedded SQL, 549
INOUT parameters and Java, 97
Java in the database, 96
OUT parameters and Java, 97
parameters to web service clients, 678
result sets, 549

string
data type, 577

strings
blank padding of DT_NSTRING, 508
blank padding of DT_STRING, 507
Java in the database, 79

structure packing
header files, 498

sun.* packages
unsupported classes, 100

support
newsgroups, xix

supported platforms
OLE DB, 426

Sybase Central
adding JAR files, 92
adding Java classes, 91
adding ZIP files, 92
configuring for deployment, 835
deploying, 816
deploying on Linux and Unix, 826
deploying on Windows without InstallShield, 816
deployment considerations, 816
opening from Visual Studio .NET, 15

Sybase EAServer (see EAServer)
Sybase Enterprise Application Studio

executing SQL statements, 21
Sybase Open Client API

about, 621
sybprocs.sql

initializing databases, 837
symlink

deployment on Unix, 790
SyncRoot property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 371
syscap.sql

initializing databases, 837
systabviews.sql

initializing databases, 837
system requirements

.NET Data Provider, 133
sysviews.sql

initializing databases, 837

T
TableMappings property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 272
Tables field [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 349
TableViewer

.NET Data Provider sample project, 105
TcpOptionsBuilder property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 218
TcpOptionsString property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 218
TDS property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 416
technical support

newsgroups, xix
threaded applications

Unix, 790
threads

Java in the database, 95
multiple SQLCAs, 523
multiple thread management in embedded SQL,
521
ODBC, 440
ODBC applications, 453
Unix development, 444

three-tier computing
about, 59
architecture, 61
Distributed Transaction Coordinator, 62

Copyright © 2007, iAnywhere Solutions, Inc. 885

distributed transactions, 61
EAServer, 62
Microsoft Transaction Server, 62
resource dispensers, 62
resource managers, 62

Time structure
time values in .NET Data Provider, 127

Timeout property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 407,
416

times
obtaining with .NET Data Provider, 127

TimeSpan
.NET Data Provider, 127

TIMESTAMP data type
conversion, 624

ToString method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 219,
319, 336, 365, 407, 417

tracing
.NET 2.0 support, 135

transaction attribute
component, 66

transaction coordinator
EAServer, 66

transaction processing
using the .NET Data Provider, 130

Transaction property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 187

transactions
ADO, 432
application development, 55
autocommit mode, 55
choosing ODBC transaction isolation level, 458
controlling autocommit behavior, 55
cursors, 57
distributed, 60, 64
isolation level, 57
ODBC, 449
OLE DB, 432

troubleshooting
cursor positioning, 30
Java in the database methods, 95
newsgroups, xix

truncation
FETCH statement, 517
indicator variables, 517
on FETCH, 517

TryGetValue method [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 265

tutorials
developing a Visual Basic application, 716
Java in the database, 83
SQL Anywhere .NET Data Provider, 139
using the .NET Data Provider Simple code sample,
141
using the .NET Data Provider Table Viewer code
sample, 145
web services using JAX-RPC, 652
web services using Microsoft Visual C#, 649, 665

two-phase commit
and Open Client, 629
three-tier computing, 61, 62

U
UltraLite.jpr

deploying administration tools on Windows, 821,
824

unchained mode
controlling, 55
implementation, 56
transactions, 55

Unconditional property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 258

Unicode
linking ODBC applications on Windows CE, 443
linking Windows CE applications, 443

unique cursors
about, 35

Unix
deployment issues, 790
directory structure, 790
multi-threaded applications, 790
ODBC, 444
ODBC driver managers, 445

unixodbc.h
about, 442

unload database utility [dbunload]
deployment considerations, 844
deployment for pre 10.0 databases, 844

unload.sql
unloading databases, 837

unloading databases
SQL script files, 837

unloadold.sql

Index

886 Copyright © 2007, iAnywhere Solutions, Inc.

unloading databases, 837
UnquoteIdentifier method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 212
UNSIGNED BIGINT data type

embedded SQL, 512
unsupported classes

java.applet, 100
java.awt, 100
java.awt.datatransfer, 100
java.awt.event, 100
java.awt.image, 100
sun.*, 100

UPDATE statement
positioned, 32

UpdateBatch ADO method
ADO programming, 432
updating data, 431

UpdateBatchSize property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 273

UpdateCommand property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 274

UpdatedRowSource property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 188

updates
cursor, 431

URL path
about, 643

URL searchpart
about, 644

URL session ID
HTTP session, 703

URLs
database, 477
default services, 658
handling, 657
iAnywhere JDBC driver, 473
interpreting, 642
jConnect, 477

UserDefinedTypes field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 349

UserID property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 258

Users field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 350

using an ODBC driver manager on Unix
about, 445

using the deployment wizard
about, 793

using the SQL Anywhere Explorer
about, 15

utilities
deploying database utilities, 843
return codes, 784
SQL preprocessor, 553

V
Value field [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 315
Value property [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 364
value-sensitive cursors

about, 45
delete example, 38
introduction, 38
update example, 40

VARCHAR data type
embedded SQL, 512

variables
in web services handlers, 686
persistence for Java in the database, 80

verbosity enumeration
syntax, 781

VerifyServerName property [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 417

version number
file names, 791

ViewColumns field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 350

Views field [SA .NET 2.0]
iAnywhere.Data.SQLAnywhere namespace, 351

visible changes
cursors, 37

Visual Basic
support in .NET Data Provider, 4
tutorial, 716

Visual C++
embedded SQL support, 497

Visual Studio
SQL Anywhere Explorer integration, 15

Visual Studio .NET
accessing SQL Anywhere databases, 15
SQL Anywhere database connections, 15

VM
Java virtual machine, 73
starting Java, 99

Copyright © 2007, iAnywhere Solutions, Inc. 887

stopping Java, 99

W
Watcom C/C++

embedded SQL support, 497
web pages

adding PHP scripts to, 598
running PHP scripts in, 599

web servers
licensing, 706
PHP API, 591

web service clients
parameters to functions and procedures, 678
procedure and function names, 671

web services
about, 631
character sets, 709
client result sets, 675
creating, 636
creating SOAP and DISH, 646
creating SOAP services, 690
data types, 660
default services, 658
errors, 710
HTTP headers, 688
HTTP session, 703
HTTP_HEADER function, 688
HTTP_VARIABLE function, 686
interpreting URLs, 642
introduction, 12
listening for SOAP and HTTP requests, 639
MIME types, 700
NEXT_HTTP_HEADER function, 688
NEXT_HTTP_VARIABLE function, 686
NEXT_SOAP_HEADER function, 693
quick start, 633
request handlers, 657
SOAP headers, 693
SOAP_HEADER function, 693
variables, 686

wide fetches
about, 31, 540

wide inserts
about, 540

wide puts
about, 540

Windows

deploying administration tools without InstallShield,
816
sample ODBC program, 446

Windows CE
dbtool10.dll, 722
Java in the database unsupported, 74
linking ODBC applications, 443
ODBC, 444
OLE DB, 426
supported versions, 426

WITH HOLD clause
cursors, 30

wizards
create Java class, 91
deployment, 793
JAR and ZIP file creation, 92
Java class creation, 483

work tables
cursor performance, 46

working with procedures and functions using the SQL
Anywhere Explorer

about, 18
working with tables using the SQL Anywhere Explorer

about, 17
WriteToServer methods [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 159
WriteToServer(DataRow[]) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 159
WriteToServer(DataTable) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 159
WriteToServer(DataTable, DataRowState) method
[SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 161
WriteToServer(IDataReader) method [SA .NET 2.0]

iAnywhere.Data.SQLAnywhere namespace, 160
wscompile

JAX-RPC and web services, 654

X
XML server

about, 631
creating web services, 636

XML services
listening for SOAP HTTP requests, 639

Index

888 Copyright © 2007, iAnywhere Solutions, Inc.

	ianywhere.com
	http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1001/en/pdf/dbpgen10.pdf
	SQL Anywhere® Server - Programming
	Contents
	About This Manual
	SQL Anywhere documentation
	Documentation conventions
	Finding out more and providing feedback

	Part I. Introduction to Programming with SQL Anywhere
	SQL Anywhere Data Access Programming Interfaces
	SQL Anywhere .NET API
	SQL Anywhere OLE DB and ADO APIs
	ODBC API
	JDBC API
	SQL Anywhere embedded SQL
	Sybase Open Client API
	Perl DBD::SQLAnywhere API
	SQL Anywhere PHP API
	SQL Anywhere web services

	SQL Anywhere Explorer
	Introduction to the SQL Anywhere Explorer
	Using the SQL Anywhere Explorer
	Working with database connections in Visual Studio .NET
	Configuring the SQL Anywhere Explorer
	Adding database objects using the SQL Anywhere Explorer
	Working with tables using the SQL Anywhere Explorer
	Working with procedures and functions using the SQL Anywhere Explorer

	Using SQL in Applications
	Executing SQL statements in applications
	Preparing statements
	How to use prepared statements

	Introduction to cursors
	What are cursors?
	Benefits of using cursors

	Working with cursors
	Using cursors
	Cursor positioning
	Configuring cursors on opening
	Fetching rows through a cursor
	Fetching multiple rows
	Fetching with scrollable cursors
	Modifying rows through a cursor
	Understanding updatable statements
	Canceling cursor operations

	Choosing cursor types
	Availability of cursors
	Cursor properties
	Bookmarks and cursors
	Block cursors

	SQL Anywhere cursors
	Cursor sensitivity overview
	Cursor sensitivity example: A deleted row
	Cursor sensitivity example: An updated row
	Insensitive cursors
	Sensitive cursors
	Asensitive cursors
	Value-sensitive cursors
	Cursor sensitivity and performance
	Prefetching rows
	Lost updates

	Cursor sensitivity and isolation levels
	Requesting SQL Anywhere cursors
	ADO.NET
	ADO/OLE DB and ODBC
	JDBC
	Embedded SQL
	Open Client

	Describing result sets
	Controlling transactions in applications
	Setting autocommit or manual commit mode
	Controlling autocommit behavior
	Autocommit implementation details

	Controlling the isolation level
	Cursors and transactions

	Three-Tier Computing and Distributed Transactions
	Introduction to three-tier computing and distributed transactions
	Three-tier computing architecture
	Distributed transactions in three-tier computing
	The vocabulary of distributed transactions
	How application servers use DTC
	Distributed transaction architecture

	Using distributed transactions
	DTC isolation levels
	Recovery from distributed transactions

	Using EAServer with SQL Anywhere
	Configuring EAServer
	Setting the component transaction attribute

	Part II. Java in the database
	Java in the Database
	Introduction to Java in the database
	Learning about Java in the database

	Java in the database Q & A
	What are the key features of Java in the database?
	How do I store Java classes in the database?
	How does Java get executed in a database?
	Why Java?
	On what platforms is Java in the database supported?
	How do I use Java and SQL together?
	How do I access Java from SQL?
	Which Java classes are supported?
	How can I use my own Java classes in databases?
	Can I access data using Java?
	Can I move classes from client to server?
	What can I not do with Java in the database?

	Java error handling
	The runtime environment for Java in the database
	The runtime Java classes
	Java is case sensitive
	Strings in Java and SQL
	Printing to the command line
	Using the main method
	Persistence
	Java escape characters in SQL statements
	Using import statements
	Public fields

	Tutorial: Using Java in the Database
	Introduction to Java in the Database tutorial
	Creating and compiling the sample Java class
	Choosing a Java VM
	Install the sample Java class
	Using the CLASSPATH variable
	Accessing methods in the Java class
	Accessing fields and methods of the Java object

	Installing Java classes into a database
	Creating a class
	Installing a class
	Installing a JAR
	Updating classes and JAR files

	Special features of Java classes in the database
	Calling the main method
	Using threads in Java applications
	No Such Method Exception
	Returning result sets from Java methods
	Returning values from Java via stored procedures
	Security management for Java

	Starting and stopping the Java VM
	Unsupported Java classes

	Part III. SQL Anywhere Data Access APIs
	SQL Anywhere .NET Data Provider
	SQL Anywhere .NET Data Provider features
	Running the sample projects
	Using the .NET Data Provider in a Visual Studio .NET project
	Connecting to a database
	Connection pooling
	Checking the connection state

	Accessing and manipulating data
	Using the SACommand object to retrieve and manipulate data
	Getting data using the SACommand object
	Inserting, updating, and deleting rows using the SACommand object
	Obtaining DataReader schema information

	Using the SADataAdapter object to access and manipulate data
	Getting data using the SADataAdapter object
	Inserting, updating, and deleting rows using the SADataAdapter object
	Obtaining SADataAdapter schema information

	Obtaining primary key values
	Handling BLOBs
	Obtaining time values

	Using stored procedures
	Transaction processing
	Error handling and the SQL Anywhere .NET Data Provider
	Deploying the SQL Anywhere .NET Data Provider
	SQL Anywhere .NET Data Provider system requirements
	SQL Anywhere .NET Data Provider required files
	Registering the SQL Anywhere .NET Data Provider DLL

	.NET 2.0 tracing support

	Tutorial: Using the SQL Anywhere .NET Data Provider
	Introduction to the .NET data provider tutorial
	Using the Simple code sample
	Understanding the Simple sample project

	Using the Table Viewer code sample
	Understanding the Table Viewer sample project

	SQL Anywhere .NET 2.0 API Reference
	SABulkCopy class
	SABulkCopy members
	SABulkCopy constructors
	SABulkCopy(SAConnection) constructor
	SABulkCopy(String) constructor
	SABulkCopy(String, SABulkCopyOptions) constructor
	SABulkCopy(SAConnection, SABulkCopyOptions, SATransaction) constructor

	BatchSize property
	BulkCopyTimeout property
	ColumnMappings property
	DestinationTableName property
	NotifyAfter property
	Close method
	Dispose method
	WriteToServer methods
	WriteToServer(DataRow[]) method
	WriteToServer(DataTable) method
	WriteToServer(IDataReader) method
	WriteToServer(DataTable, DataRowState) method

	SARowsCopied event

	SABulkCopyColumnMapping class
	SABulkCopyColumnMapping members
	SABulkCopyColumnMapping constructors
	SABulkCopyColumnMapping() constructor
	SABulkCopyColumnMapping(Int32, Int32) constructor
	SABulkCopyColumnMapping(Int32, String) constructor
	SABulkCopyColumnMapping(String, Int32) constructor
	SABulkCopyColumnMapping(String, String) constructor

	DestinationColumn property
	DestinationOrdinal property
	SourceColumn property
	SourceOrdinal property

	SABulkCopyColumnMappingCollection class
	SABulkCopyColumnMappingCollection members
	Item property
	Add methods
	Add(SABulkCopyColumnMapping) method
	Add(Int32, Int32) method
	Add(Int32, String) method
	Add(String, Int32) method
	Add(String, String) method

	Contains method
	CopyTo method
	IndexOf method
	Remove method
	RemoveAt method

	SABulkCopyOptions enumeration
	SACommand class
	SACommand members
	SACommand constructors
	SACommand() constructor
	SACommand(String) constructor
	SACommand(String, SAConnection) constructor
	SACommand(String, SAConnection, SATransaction) constructor

	CommandText property
	CommandTimeout property
	CommandType property
	Connection property
	DesignTimeVisible property
	Parameters property
	Transaction property
	UpdatedRowSource property
	BeginExecuteNonQuery methods
	BeginExecuteNonQuery() method
	BeginExecuteNonQuery(AsyncCallback, Object) method

	BeginExecuteReader methods
	BeginExecuteReader() method
	BeginExecuteReader(CommandBehavior) method
	BeginExecuteReader(AsyncCallback, Object) method
	BeginExecuteReader(AsyncCallback, Object, CommandBehavior) method

	Cancel method
	CreateParameter method
	EndExecuteNonQuery method
	EndExecuteReader method
	ExecuteNonQuery method
	ExecuteReader methods
	ExecuteReader() method
	ExecuteReader(CommandBehavior) method

	ExecuteScalar method
	Prepare method
	ResetCommandTimeout method

	SACommandBuilder class
	SACommandBuilder members
	SACommandBuilder constructors
	SACommandBuilder() constructor
	SACommandBuilder(SADataAdapter) constructor

	DataAdapter property
	DeriveParameters method
	GetDeleteCommand methods
	GetDeleteCommand(Boolean) method
	GetDeleteCommand() method

	GetInsertCommand methods
	GetInsertCommand(Boolean) method
	GetInsertCommand() method

	GetUpdateCommand methods
	GetUpdateCommand(Boolean) method
	GetUpdateCommand() method

	UnquoteIdentifier method

	SACommLinksOptionsBuilder class
	SACommLinksOptionsBuilder members
	SACommLinksOptionsBuilder constructors
	SACommLinksOptionsBuilder() constructor
	SACommLinksOptionsBuilder(String) constructor

	All property
	ConnectionString property
	SharedMemory property
	SpxOptionsBuilder property
	SpxOptionsString property
	TcpOptionsBuilder property
	TcpOptionsString property
	GetUseLongNameAsKeyword method
	SetUseLongNameAsKeyword method
	ToString method

	SAConnection class
	SAConnection members
	SAConnection constructors
	SAConnection() constructor
	SAConnection(String) constructor

	ConnectionString property
	ConnectionTimeout property
	DataSource property
	Database property
	InitString property
	ServerVersion property
	State property
	BeginTransaction methods
	BeginTransaction() method
	BeginTransaction(IsolationLevel) method
	BeginTransaction(SAIsolationLevel) method

	ChangeDatabase method
	ChangePassword method
	ClearAllPools method
	ClearPool method
	Close method
	CreateCommand method
	GetSchema methods
	GetSchema() method
	GetSchema(String) method
	GetSchema(String, String[]) method

	Open method
	InfoMessage event
	StateChange event

	SAConnectionStringBuilder class
	SAConnectionStringBuilder members
	SAConnectionStringBuilder constructors
	SAConnectionStringBuilder() constructor
	SAConnectionStringBuilder(String) constructor

	AppInfo property
	AutoStart property
	AutoStop property
	Charset property
	CommBufferSize property
	CommLinks property
	Compress property
	CompressionThreshold property
	ConnectionLifetime property
	ConnectionName property
	ConnectionReset property
	ConnectionTimeout property
	DataSourceName property
	DatabaseFile property
	DatabaseKey property
	DatabaseName property
	DatabaseSwitches property
	DisableMultiRowFetch property
	EncryptedPassword property
	Encryption property
	Enlist property
	FileDataSourceName property
	ForceStart property
	IdleTimeout property
	Integrated property
	Kerberos property
	Language property
	LazyClose property
	LivenessTimeout property
	LogFile property
	MaxPoolSize property
	MinPoolSize property
	Password property
	PersistSecurityInfo property
	Pooling property
	PrefetchBuffer property
	PrefetchRows property
	RetryConnectionTimeout property
	ServerName property
	StartLine property
	Unconditional property
	UserID property

	SAConnectionStringBuilderBase class
	SAConnectionStringBuilderBase members
	Item property
	Keys property
	ContainsKey method
	GetKeyword method
	GetUseLongNameAsKeyword method
	Remove method
	SetUseLongNameAsKeyword method
	ShouldSerialize method
	TryGetValue method

	SADataAdapter class
	SADataAdapter members
	SADataAdapter constructors
	SADataAdapter() constructor
	SADataAdapter(SACommand) constructor
	SADataAdapter(String, SAConnection) constructor
	SADataAdapter(String, String) constructor

	DeleteCommand property
	InsertCommand property
	SelectCommand property
	TableMappings property
	UpdateBatchSize property
	UpdateCommand property
	GetFillParameters method
	RowUpdated event
	RowUpdating event

	SADataReader class
	SADataReader members
	Depth property
	FieldCount property
	HasRows property
	IsClosed property
	Item properties
	Item(Int32) property
	Item(String) property

	RecordsAffected property
	Close method
	GetBoolean method
	GetByte method
	GetBytes method
	GetChar method
	GetChars method
	GetData method
	GetDataTypeName method
	GetDateTime method
	GetDecimal method
	GetDouble method
	GetEnumerator method
	GetFieldType method
	GetFloat method
	GetGuid method
	GetInt16 method
	GetInt32 method
	GetInt64 method
	GetName method
	GetOrdinal method
	GetSchemaTable method
	GetString method
	GetTimeSpan method
	GetUInt16 method
	GetUInt32 method
	GetUInt64 method
	GetValue methods
	GetValue(Int32) method
	GetValue(Int32, Int64, Int32) method

	GetValues method
	IsDBNull method
	NextResult method
	Read method
	myDispose method

	SADataSourceEnumerator class
	SADataSourceEnumerator members
	Instance property
	GetDataSources method

	SADbType enumeration
	SADefault class
	SADefault members
	Value field

	SAError class
	SAError members
	Message property
	NativeError property
	Source property
	SqlState property
	ToString method

	SAErrorCollection class
	SAErrorCollection members
	Count property
	Item property
	CopyTo method
	GetEnumerator method

	SAException class
	SAException members
	Errors property
	Message property
	NativeError property
	Source property
	GetObjectData method

	SAFactory class
	SAFactory members
	Instance field
	CanCreateDataSourceEnumerator property
	CreateCommand method
	CreateCommandBuilder method
	CreateConnection method
	CreateConnectionStringBuilder method
	CreateDataAdapter method
	CreateDataSourceEnumerator method
	CreateParameter method
	CreatePermission method

	SAInfoMessageEventArgs class
	SAInfoMessageEventArgs members
	Errors property
	Message property
	MessageType property
	NativeError property
	Source property
	ToString method

	SAInfoMessageEventHandler delegate
	SAIsolationLevel enumeration
	SAMessageType enumeration
	SAMetaDataCollectionNames class
	SAMetaDataCollectionNames members
	Columns field
	DataSourceInformation field
	DataTypes field
	ForeignKeys field
	IndexColumns field
	Indexes field
	MetaDataCollections field
	ProcedureParameters field
	Procedures field
	ReservedWords field
	Restrictions field
	Tables field
	UserDefinedTypes field
	Users field
	ViewColumns field
	Views field

	SAParameter class
	SAParameter members
	SAParameter constructors
	SAParameter() constructor
	SAParameter(String, Object) constructor
	SAParameter(String, SADbType) constructor
	SAParameter(String, SADbType, Int32) constructor
	SAParameter(String, SADbType, Int32, String) constructor
	SAParameter(String, SADbType, Int32, ParameterDirection, Boolean, Byte, Byte, String, DataRowVersion, Object) constructor

	DbType property
	Direction property
	IsNullable property
	Offset property
	ParameterName property
	Precision property
	SADbType property
	Scale property
	Size property
	SourceColumn property
	SourceColumnNullMapping property
	SourceVersion property
	Value property
	ResetDbType method
	ToString method

	SAParameterCollection class
	SAParameterCollection members
	Count property
	IsFixedSize property
	IsReadOnly property
	IsSynchronized property
	Item properties
	Item(Int32) property
	Item(String) property

	SyncRoot property
	Add methods
	Add(Object) method
	Add(SAParameter) method
	Add(String, Object) method
	Add(String, SADbType) method
	Add(String, SADbType, Int32) method
	Add(String, SADbType, Int32, String) method

	AddRange methods
	AddRange(Array) method
	AddRange(SAParameter[]) method

	Clear method
	Contains methods
	Contains(Object) method
	Contains(String) method

	CopyTo method
	GetEnumerator method
	IndexOf methods
	IndexOf(Object) method
	IndexOf(String) method

	Insert method
	Remove method
	RemoveAt methods
	RemoveAt(Int32) method
	RemoveAt(String) method

	SAPermission class
	SAPermission members
	SAPermission constructor

	SAPermissionAttribute class
	SAPermissionAttribute members
	SAPermissionAttribute constructor
	CreatePermission method

	SARowsCopiedEventArgs class
	SARowsCopiedEventArgs members
	SARowsCopiedEventArgs constructor
	Abort property
	RowsCopied property

	SARowsCopiedEventHandler delegate
	SARowUpdatedEventArgs class
	SARowUpdatedEventArgs members
	SARowUpdatedEventArgs constructor
	Command property
	RecordsAffected property

	SARowUpdatedEventHandler delegate
	SARowUpdatingEventArgs class
	SARowUpdatingEventArgs members
	SARowUpdatingEventArgs constructor
	Command property

	SARowUpdatingEventHandler delegate
	SASpxOptionsBuilder class
	SASpxOptionsBuilder members
	SASpxOptionsBuilder constructors
	SASpxOptionsBuilder() constructor
	SASpxOptionsBuilder(String) constructor

	DLL property
	DoBroadcast property
	Host property
	SearchBindery property
	Timeout property
	ToString method

	SATcpOptionsBuilder class
	SATcpOptionsBuilder members
	SATcpOptionsBuilder constructors
	SATcpOptionsBuilder() constructor
	SATcpOptionsBuilder(String) constructor

	Broadcast property
	BroadcastListener property
	ClientPort property
	DoBroadcast property
	Host property
	IPV6 property
	LDAP property
	LocalOnly property
	MyIP property
	ReceiveBufferSize property
	SendBufferSize property
	ServerPort property
	TDS property
	Timeout property
	VerifyServerName property
	ToString method

	SATransaction class
	SATransaction members
	Connection property
	IsolationLevel property
	SAIsolationLevel property
	Commit method
	Rollback methods
	Rollback() method
	Rollback(String) method

	Save method

	SQL Anywhere OLE DB and ADO APIs
	Introduction to OLE DB
	Supported platforms
	Distributed transactions

	ADO programming with SQL Anywhere
	Connecting to a database with the Connection object
	Executing statements with the Command object
	Querying the database with the Recordset object
	Working with the Recordset object
	Updating data through a cursor
	Using transactions

	Setting up a Microsoft Linked Server using OLE DB
	Supported OLE DB interfaces

	SQL Anywhere ODBC API
	Introduction to ODBC
	ODBC conformance

	Building ODBC applications
	Including the ODBC header file
	Linking ODBC applications on Windows
	Linking ODBC applications on Windows CE
	Linking ODBC applications on Unix
	Using an ODBC driver manager on Unix

	ODBC samples
	Building the sample ODBC program
	Running the sample ODBC program

	ODBC handles
	Allocating ODBC handles
	A first ODBC example

	Choosing an ODBC connection function
	Establishing a connection
	Setting connection attributes
	Threads and connections in ODBC applications

	Executing SQL statements
	Executing statements directly
	Executing statements with bound parameters
	Executing prepared statements

	Working with result sets
	Choosing ODBC transaction isolation level
	Choosing ODBC cursor characteristics
	Retrieving data
	Data alignment requirements
	Updating and deleting rows through a cursor
	Using bookmarks

	Calling stored procedures
	Handling errors

	SQL Anywhere JDBC API
	Introduction to JDBC
	Choosing a JDBC driver
	JDBC program structure
	Differences between client- and server-side JDBC connections

	Using the iAnywhere JDBC driver
	Loading the iAnywhere JDBC driver
	Supplying a URL to the driver

	Using the jConnect JDBC driver
	Installing jConnect system objects into a database
	Loading the jConnect driver
	Supplying a URL to the driver
	Specifying a database on a server
	Database options set for jConnect connections

	Connecting from a JDBC client application
	How the connection example works
	Running the connection example
	Establishing a connection from a server-side JDBC class
	Server-side connection example code
	How the server-side connection example differs
	Running the server-side connection example

	Notes on JDBC connections

	Using JDBC to access data
	Preparing for the examples
	Inserts, updates, and deletes using JDBC
	Using prepared statements for more efficient access
	Returning result sets
	Miscellaneous JDBC notes

	Using JDBC escape syntax

	SQL Anywhere Embedded SQL
	Introduction to embedded SQL
	Development process overview
	Running the SQL preprocessor
	Supported compilers
	Embedded SQL header files
	Import libraries
	A simple example
	Structure of embedded SQL programs
	Loading the interface library dynamically
	Building NetWare Loadable Modules

	Sample embedded SQL programs
	Building the sample programs
	Running the sample programs
	Static cursor sample
	Dynamic cursor sample

	Embedded SQL data types
	Using host variables
	Declaring host variables
	C host variable types
	Host variable usage
	Indicator variables
	Using indicator variables to handle NULL
	Using indicator variables for truncated values
	Using indicator values for conversion errors
	Summary of indicator variable values

	The SQL Communication Area (SQLCA)
	SQLCA fields
	SQLCA management for multi-threaded or reentrant code
	Using multiple SQLCAs
	When to use multiple SQLCAs
	Connection management with multiple SQLCAs

	Static and dynamic SQL
	Static SQL statements
	Dynamic SQL statements
	Dynamic SELECT statement

	The SQL descriptor area (SQLDA)
	The SQLDA header file
	SQLDA fields
	SQLDA host variable descriptions
	SQLDA sqllen field values
	Describing values
	Sending values
	Retrieving values

	Fetching data
	SELECT statements that return at most one row
	Using cursors in embedded SQL
	Fetching more than one row at a time

	Sending and retrieving long values
	Retrieving LONG data
	Sending LONG data

	Using simple stored procedures
	Stored procedures with result sets

	Embedded SQL programming techniques
	SQL preprocessor
	Library function reference
	alloc_sqlda function
	alloc_sqlda_noind function
	db_backup function
	db_cancel_request function
	db_change_char_charset function
	db_change_nchar_charset function
	db_delete_file function
	db_find_engine function
	db_fini function
	db_get_property function
	db_init function
	db_is_working function
	db_locate_servers function
	db_locate_servers_ex function
	db_register_a_callback function
	db_start_database function
	db_start_engine function
	db_stop_database function
	db_stop_engine function
	db_string_connect function
	db_string_disconnect function
	db_string_ping_server function
	db_time_change function
	fill_s_sqlda function
	fill_sqlda function
	free_filled_sqlda function
	free_sqlda function
	free_sqlda_noind function
	sql_needs_quotes function
	sqlda_storage function
	sqlda_string_length function
	sqlerror_message function

	Embedded SQL command summary

	SQL Anywhere Perl DBD::SQLAnywhere API
	Introduction to DBD::SQLAnywhere
	Installing DBD::SQLAnywhere on Windows
	Installing DBD::SQLAnywhere on Unix
	Writing Perl scripts that use DBD::SQLAnywhere
	Loading the DBI module
	Opening and closing a connection
	Selecting data
	Inserting rows

	SQL Anywhere PHP API
	Introduction to the SQL Anywhere PHP module
	Installing and configuring SQL Anywhere PHP
	Choosing which PHP module to use
	Installing the PHP module on Windows
	Installing the PHP module on Linux
	Building the PHP module on Unix and Mac OS X
	Configuring the SQL Anywhere PHP module

	Running PHP test scripts in your web pages
	Creating PHP test pages
	Accessing your test web pages

	Writing PHP scripts
	Connecting to a database
	Retrieving data from a database
	Web forms
	Working with BLOBs

	SQL Anywhere PHP API reference
	sqlanywhere_commit
	sqlanywhere_connect
	sqlanywhere_data_seek
	sqlanywhere_disconnect
	sqlanywhere_error
	sqlanywhere_errorcode
	sqlanywhere_execute
	sqlanywhere_fetch_array
	sqlanywhere_fetch_field
	sqlanywhere_fetch_object
	sqlanywhere_fetch_row
	sqlanywhere_free_result
	sqlanywhere_identity
	sqlanywhere_num_fields
	sqlanywhere_num_rows
	sqlanywhere_pconnect
	sqlanywhere_query
	sqlanywhere_result_all
	sqlanywhere_rollback
	sqlanywhere_set_option

	Sybase Open Client API
	Open Client architecture
	What you need to build Open Client applications
	Data type mappings
	Range limitations in data type mapping

	Using SQL in Open Client applications
	Executing SQL statements
	Using prepared statements
	Using cursors
	Modifying rows through a cursor

	Describing query results in Open Client

	Known Open Client limitations of SQL Anywhere

	SQL Anywhere Web Services
	Introduction to web services
	Quick start to web services
	Creating web services
	Starting a database server that listens for web requests
	Understanding how URLs are interpreted
	Creating SOAP and DISH web services
	Tutorial: Accessing web services from Microsoft .NET
	Tutorial: Accessing web services from Java JAX-RPC
	Using procedures that provide HTML documents
	Working with data types
	Tutorial: Using data types with Microsoft .NET
	Creating web service client functions and procedures
	Modifying HTTP headers

	Working with return values and result sets
	Selecting from result sets
	Using parameters
	Passed parameters
	Parameter substitution
	Parameter data type conversion

	Working with structured data types
	Working with variables
	Working with HTTP headers
	Using SOAP services
	Working with SOAP headers
	Working with MIME types
	Using HTTP sessions
	Creating an HTTP session
	Session management with cookies
	Detection of stale sessions
	Deleting or changing the session ID
	Session semantics
	Dropping a connection and server shutdown
	Session timeout
	Session scope
	Licensing
	Session errors
	Summary of session connection properties and options
	Administration

	Using automatic character set conversion
	Handling errors

	Part IV. Using ADO and Visual Basic with SQL Anywhere
	Tutorial: Develop a Simple Application in Visual Basic
	Introduction to Visual Basic tutorial

	Part V. SQL Anywhere Database Tools Interface
	Database Tools Interface
	Introduction to the database tools interface
	Using the database tools interface
	Using the import libraries
	Starting and finishing the DBTools library
	Calling the DBTools functions
	Using callback functions
	Version numbers and compatibility
	Using bit fields
	A DBTools example

	DBTools functions
	DBBackup function
	DBChangeLogName function
	DBCreate function
	DBCreatedVersion function
	DBErase function
	DBInfo function
	DBInfoDump function
	DBInfoFree function
	DBLicense function
	DBRemoteSQL function
	DBSynchronizeLog function
	DBToolsFini function
	DBToolsInit function
	DBToolsVersion function
	DBTranslateLog function
	DBTruncateLog function
	DBUnload function
	DBUpgrade function
	DBValidate function

	DBTools structures
	a_backup_db structure
	a_change_log structure
	a_create_db structure
	a_db_info structure
	a_db_version_info structure
	a_dblic_info structure
	a_dbtools_info structure
	an_erase_db structure
	a_name structure
	a_remote_sql structure
	a_sync_db structure
	a_syncpub structure
	a_sysinfo structure
	a_table_info structure
	a_translate_log structure
	a_truncate_log structure
	an_unload_db structure
	an_upgrade_db structure
	a_validate_db structure

	DBTools enumeration types
	Blank padding enumeration
	a_chkpt_log_type enumeration
	a_db_version enumeration
	Database size unit enumeration
	dbtran_userlist_type enumeration
	dbunload type enumeration
	a_validate_type enumeration
	Verbosity enumeration

	Exit Codes
	Software component exit codes

	Part VI. Deploying SQL Anywhere
	Deploying Databases and Applications
	Introduction to deployment
	Types of deployment
	Ways to distribute files

	Understanding installation directories and file names
	Linux/Unix/Mac OS X deployment issues
	File naming conventions

	Using the Deployment wizard
	Using a silent installation for deployment
	Creating a silent install
	Running a silent install

	Deploying client applications
	Deploying .NET clients
	Deploying OLE DB and ADO clients
	Customizing the OLE DB provider

	Deploying ODBC clients
	ODBC driver required files
	Configuring the ODBC driver
	Deploying connection information

	Deploying embedded SQL clients
	Installing files for embedded SQL clients
	Connection information

	Deploying JDBC clients
	Deploying Open Client applications

	Deploying administration tools
	Deploying administration tools on Windows without InstallShield
	Step 1: Deciding what software to deploy
	Step 2: Copying the required files
	Step 3: Registering the administration tools with Windows
	Step 4: Updating the system path
	Step 5: Registering the Sybase Central plug-ins
	Step 6: Creating Connection Profiles for Sybase Central
	Step 7: Registering the SQL Anywhere ODBC driver
	Step 8: Registering the online help files

	Deploying administration tools on Linux/Unix/Mac OS X
	Step 1: Deciding what you want to deploy
	Step 2: Copying the required files
	Step 3: Setting environment variables
	Step 4: Registering the Sybase Central plug-ins
	Step 5: Creating Connection Profiles for Sybase Central

	Configuring the administration tools
	Deploying dbisqlc

	Deploying SQL script files
	Deploying database servers
	Registering DLLs on Windows
	Deploying databases
	Deploying databases on read-only media

	Deploying security
	Deploying embedded database applications
	Deploying personal servers
	Deploying database utilities
	Deploying unload support for pre 10.0 databases
	Deploying SQL Remote

	Index

